六年级上册分数四则混合运算+简便计算

合集下载

四则混合运算及简便计算

四则混合运算及简便计算

四则混合运算及简便计算四则混合运算的顺序和简便计算我们如何进行整数、小数、分数的四则混合运算呢?以下是运算定律:1、加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。

2、加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。

例如:75+124+225=124+75+225=4243、乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

4、乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)。

例如:25×37×466=37×25×466=5、乘法分配律:两个数的和(差)与一个数相乘,可以把两个加(减)数分别与这个数相乘再把两个积相加(减),即(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】。

例如:(40+4)×25=40×25+4×25=10006、减法的性质:一个数里连续减去两(几)个数,等于这个数连续减去这两(几)个数的和,即a-b-c=a-(b+c)。

【a-b-c-……-n=a-(b+c+……+n)】例如:875-324-376=875-(324+376)=1757、除法性质基本性质:一个数连续除以几个数,可以除以后几个数的积,也可以先除以第一个除数,再除以第二个除数。

a÷b÷c=a÷(b×c)=a÷c÷b。

例如:2500÷4÷256=2500÷(4×256)=2.xxxxxxxx综合练:2×6.6+2.5×611-6-14.6+3+6+5.43×(-÷) = 2583.xxxxxxxx4以上为四则混合运算的顺序和简便计算。

分数混合运算和简便计算(人教六上)

分数混合运算和简便计算(人教六上)

“分数混合运算和简便计算”教学设计特级教师王世明教学内容《义务教育教科书数学》(人教版)六年级上册第8~9页例6、例7。

教材分析分数混合运算和简便计算这一内容起着承前启后的作用:(1)学生已有基础:四年级下册整数的四则混合运算和简便计算,五年级上册的小数四则混合运算和简便计算,五年级下册分数的加减法,六年级上册刚学的分数乘法;(2)启后的内容有分数除法、分数、整数、小数、百分数混合的四则混合运算及计算。

本节课知识结构是:先教学分数混合运算的顺序,再教学分数乘法的运算定律。

教材在学生已有的知识基础和方法储备上,通过类推迁移探究新知。

例6主题图呈现“做这个画框需要多长的木条?”这一情境,引出不同方法计算长方形的周长,沟通分数混合运算的顺序和整数混合运算的顺序相同,这样为运算定律的迁移起到了铺垫作用。

例7两道式题主要教学分数乘法交换律、结合律、分配律的运用,让学生体会整数乘法的各种运算定律对于分数乘法也适用。

教学目标1. 在解决问题的过程中,知道分数混合运算的顺序和整数混合运算的顺序相同,能熟练进行有关分数混合运算的计算。

2.知道整数乘法的运算定律对于分数乘法同样适用,并能够运用所学运算定律进行一些简便运算。

3. 在观察、迁移、尝试学习、交流反馈等活动中,培养学生的推理能力及运算思维的灵活性。

教学重点、难点教学重点: 会计算分数混合运算,能利用乘法的运算定律进行简便运算。

教学难点:根据数据和运算符号特点,灵活地运用定律进行简便计算。

教学过程一、复习旧知,方法储备1. 说说下面算式的运算顺序。

75+25×4 24×(12+88)2.怎样简便就怎样计算125×7×8 23×17+83×23 34×99师:说说整数混合运算的顺序怎样的?[学情预设:没有括号,在同一级运算中,从左往右依次计算;没有括号,在只含有两级运算中,先算乘除法,再算加减法;含有括号的运算中,先算小括号里的,再算括号外的。

分数四则混合运算

分数四则混合运算

分数四则混合运算一、分数四则混合运算的运算法则:1.加减法:对于同分母的分数,直接将分子相加或相减,分母保持不变。

对于异分母的分数,需要先通分,然后再将分子相加或相减。

2.乘法:先进行约分,然后将分子相乘,分母相乘,得到的积即为结果。

3.除法:将被除数乘以除数的倒数即可得到结果。

二、分数四则混合运算的运算顺序:1.同级运算按从左往右的顺序进行计算。

2.如果既有加减法,又有乘除法,先进行乘除法的计算,然后再进行加减法的计算。

3.如果有括号,先计算括号内的表达式。

4.如果符合运算定律,可以利用运算定律进行简化计算。

三、分数四则混合运算的运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律。

四、分数四则混合运算的运算性质:减法的性质和除法的性质。

五、分数四则混合运算的简便计算:可以利用乘法分配律及其逆运算或者减法的性质进行简化计算。

举例:1.(-)×(÷)12÷(1+15/36)2.(1-21/49÷18/35)÷(7/9×13/10)3.XXX÷(xxxxxxx×(1+(÷)))4.(84×/)+(×)325.(×)xxxxxxxx41/(xxxxxxxx655+(×)-(÷)xxxxxxxx71)6.(×)+(÷)xxxxxxx/(×)+(÷)xxxxxxx7.(×)xxxxxxxx17/(-)+(÷)xxxxxxxx1318.解方程:X=18/21.X=574/35。

分数的混合运算和简便计算

分数的混合运算和简便计算

4 1 2 ( ) (2) 5 3 15
2 5 3 3 (3) 7 8 5 8
(4)(
4 2 2 9 15 15
(5)
7 5 54 9 27
(6)
3 5 5 4 8 4 8 5
巩固(1)
3 1 4 = 4 4
4 1 1 3 [ ( )] 3 6 4 (1) 9
8 7 15 15 9 8 (2)
3 5 14 1 [ ( )] 3 2 (3) 22 4
3
(4)
5 27 13 18 40 16
3 75 60% 24 0.6 5 (5)
1 2 4 2 ( ) 3 3 (6) 6 3
二、计算(能简便的要计算 1 3 7 1 2 2 3 2 ×6.6+2.5×6 11 -6 -1 4.6+3 +6 +5.4 2 5 8 3 3 5 5
6
4 5 3 3 4 5 3 5 3 3 ×( - ÷ )2.8+5 +7.2+3 4 +2.25+5 +7 15 7 14 4 9 9 8 8 4
3.87
3 7 3 2 0.87 175 175 10 10 2 3
1 1 1 1 1 5 13 9 9 ( ) 60 18 ( ) 105 ( 17 ) 2 3 4 5 15 21 16 13 13
4 2 4 2 1 3 7 12 3 4 12 12 5 ÷3+ 3 × 5 5 + 2 × 5 + 10 13 × 7 + 7 × 13 + 13
3
(7)35×
14 17
(8) 10

第二部分:六年级上册新课衔接讲义——第一单元第4课《分数的混合运算和简便运算》(解析版)人教版

第二部分:六年级上册新课衔接讲义——第一单元第4课《分数的混合运算和简便运算》(解析版)人教版

人教版数学五升六暑期精编专项讲义—新课衔接站第一单元《分数乘法》第4课《分数的混合运算和简便运算》学习目标:1.掌握分数乘加.乘减混合运算的运算顺序。

2.会用整数乘法的运算定律推广运用到分数乘法.并使一些计算简便。

新知讲解:【典例引入】(2018秋•黄山区校级月考)20减少它的是多少?正确列式是()A.20﹣B.20×C.20﹣20×【分析】求一个数的几分之几用乘法.一个数减少多少用减法.【解答】解:20减少它的列式为:20﹣20×.故选:C.【变式训练】(2014秋•瑞安市校级期中)×+×简算可以运用运算定律是乘法分配律.【分析】依据乘法分配律的意义:求一个数同两个数分别相乘.再把求得的积相加.可以先求这两个数的和.再用这个数与求得的和相乘.结果不变即可解答.【解答】解:×+×=(+)×=3×=1.故答案为:乘法分配律.【知识点总结】(一)分数乘法混合运算1.分数乘法混合运算顺序与整数相同.先乘.除后加.减.有括号的先算括号里面的.再算括号外面的。

2.整数乘法运算定律对分数乘法同样适用.运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(二)倒数的意义:乘积为1的两个数互为倒数。

1.倒数是两个数的关系.它们互相依存.不能单独存在。

单独一个数不能称为倒数。

(必须说清谁是谁的倒数)2.判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。

例如:a×b=1则a.b互为倒数。

3.求倒数的方法:①求分数的倒数:交换分子.分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数.再求倒数。

④求小数的倒数:先化成分数再求倒数。

六年级上册分数四则混合运算 简便计算

六年级上册分数四则混合运算 简便计算

六年级分数的四则运算+简便计算专题复习一、分数四则运算的运算法则和运算顺序运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。

2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母3、除法:除以一个数就等于乘这个数的倒数运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算2、如果既有加减、又有乘除法,先算乘除法、再算加减3、如果有括号,先算括号里面的4、如果符合运算定律,可以利用运算定律进行简算。

练习:1、34 -(15 + 13 )× 982、 10713151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+- 3、⎪⎭⎫⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷401 二、分数四则运算的简便运算引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:① 乘法交换律:________________________ ② 乘法结合律:________________________ ③ 乘法分配律:________________________做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。

分数简便运算常见题型第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)266831413⨯⨯ 涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅基本方法:将分数相乘的因数互相交换,先行运算。

第二种:乘法分配律的应用 例题:1)27)27498(⨯+2)4)41101(⨯+ 3)16)2143(⨯+ 涉及定律:乘法分配律 bc ac c b a ±=⨯±)(基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

《分数混合运算和简便运算》教案

《分数混合运算和简便运算》教案
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分数混合运算的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对分数混合运算的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分数四则混合运算的基本概念。分数四则混合运算是指包含加、减、乘、除的分数计算问题。它在数学运算中非常重要,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。假设你有2/3升的果汁,想要和朋友们分享,每个人分到1/4升,那么你最多可以分给几个朋友?这个案例展示了分数混合运算在实际中的应用,以及它如何帮助我们解决问题。
(2)对于异分母分数的加减,可以设计如1/6 + 1/8 + 1/12的题目,指导学生如何找到最小公分母,并进行通分和约分。
(3)在解决实际问题时,如购物打折、分配物资等,教师应引导学生如何提取关键信息,构建分数运算模型,并选择合适的运算方法进行求解。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分数混合运算和简便运算》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多个分数相加或相乘的情况?”比如购物时计算折扣,这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分数混合运算的奥秘。
5.熟练运用计算器进行分数混合运算。
本节课将结合具体实例,帮助学生巩固分数混合运算知识,提高运算速度和准确性,培养其解决问题的能力。

新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结

新苏教版六年级上册数学-分数四则混合运算知识题型归纳总结

分数四则混合运算(一)知识梳理一、分数四则运算的运算法则和运算顺序 1、运算法则(1)加减:同分母分数相加减,分母不变,分子相加减:异分母分数相加减,先通分,再分母不变,分子相加减。

(2)乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母 (3)除法:除以一个数就等于乘这个数的倒数 2、运算顺序(1)如果是同一级运算,一般按从左往右依次进行计算 (2)如果既有加减、又有乘除法,先算乘除法、再算加减 (3)如果有括号,先算括号里面的(4)如果符合运算定律,可以利用运算定律进行简算。

模块一 分数四则混合运算例1 计算,能用简便方法的要用简便方法。

454544÷-÷784341187÷+⨯ 2011103231322-⨯-2412743⨯+)( 52424587⨯÷ 32753275⨯÷⨯5216514371⨯-÷ 9519154÷+⨯ 149)]321(2[⨯-+变式1 计算,能用简便方法的要用简便方法。

100992727⨯- 72767276+÷+ )4183(83+÷1352213518135-⨯+⨯ 361)9212721(÷-+ 41)]8341(1[÷+- 46944695⨯+⨯ 2120)768364(÷+⨯ 109185)2153(43⨯-+÷简便计算类型归纳:模块二 分数四则混合运算实际运用例2 英才小学六年级共有200人,其中六(1)班人数占全年级的41 ,六(2)班人数占全年级的4011,六(1)班和六(2)班一共有多少人?例3 小马虎在计算一个数减去53的差除以4时漏看了小括号,这样算出的结果比正确结果大109,这个数是多少?例4 一袋大米,吃了81后,又买来15千克倒入袋中,结果比原来重了21,这袋大米现在有多少千克?变式2 食堂有43吨大米,前2天每天吃掉81吨,剩下的要3天吃完,平均每天可以吃多少吨?变式3 环卫工叔叔在小区里清理建筑垃圾,第一组有8人,共清理59吨,第二组有10人,共清理513吨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级分数的四则运算+简便计算
专题复习
一、分数四则运算的运算法则和运算顺序
运算法则是:1、加减:同分母分数相加减,分母不变,分子相加减:
异分母分数相加减,先通分,再分母不变,分子相加减。

2、乘法:先约分,分子乘分子作为积的分子,分母乘分母作为积的分母
3、除法:除以一个数就等于乘这个数的倒数
运算顺序是:1、如果是同一级运算,一般按从左往右依次进行计算 2、如果既有加减、又有乘除法,先算乘除法、再算加减 3、如果有括号,先算括号里面的
4、如果符合运算定律,可以利用运算定律进行简算。

练习:
1、34 -(15 + 13 )× 98
2、 107
13151321÷⎥⎦⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛+-
3、⎪⎭⎫
⎝⎛-+614121÷121 4、 9798411÷⎪⎭⎫ ⎝⎛⨯- 5、⎥⎦
⎤⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-÷109329712 6、
52593145-⨯- 7、8949581÷+⨯ 8、(52-81)÷40
1
二、分数四则运算的简便运算
引言:分数乘法简便运算所涉及的公式定律和整数乘法的简便运算是一样的,基本上有以下三个:
① 乘法交换律:________________________
② 乘法结合律:________________________ ③ 乘法分配律:________________________
做题时,我们要善于观察,仔细审题,发现数字与数字之间的关系,根据题意来选择适当的公式或方法,进行简便运算。

分数简便运算常见题型
第一种:连乘——乘法交换律的应用 例题:1)1474135⨯⨯ 2)56153⨯⨯ 3)26
6
831413⨯

涉及定律:乘法交换律 b c a c b a ⋅⋅=⋅⋅
基本方法:将分数相乘的因数互相交换,先行运算。

第二种:乘法分配律的应用 例题:1)27)27498(⨯+ 2)4)41101(⨯+ 3)16)2
1
43(⨯+
涉及定律:乘法分配律 bc ac c b a ±=⨯±)(
基本方法:将括号中相加减的两项分别与括号外的分数相乘,符号保持不变。

第三种:乘法分配律的逆运算 例题:1)213115121⨯+⨯ 2)61959565⨯+⨯ 3)75
1754⨯+⨯
涉及定律:乘法分配律逆向定律 )(c b a c a b a ±=⨯±⨯
基本方法:提取两个乘式中共有的因数,将剩余的因数用加减相连,同时添加括号,先行运算。

7
第四种:添加因数“1”
例题:1)759575
⨯- 2)9216792⨯- 3)232331
17
233114+⨯+⨯
涉及定律:乘法分配律逆向运算
基本方法:添加因数“1”,将其中一个数n 转化为1×n 的形式,将原式转化为两两之积相加减的形式,再提取公有因数,按乘法分配律逆向定律运算。

第五种:数字化加式或减式 例题:1)16317⨯ 2)19718⨯ 3)3169
67

涉及定律:乘法分配律逆向运算
基本方法:将一个大数转化为两个小数相加或相减的形式,或将一个普通的数字转化为整式整百或1等与另一个较小的数相加减的形式,再按照乘法分配律逆向运算解题。

注意:将一个数转化成两数相加减的形式要求转化后的式子在运算完成后依然等于原数,其值不发生变化。

例如:999可化为1000-1。

其结果与原数字保持一致。

第六种:带分数化加式 例题:1)4161725⨯ 2)351213⨯ 3)13
5127⨯
涉及定律:乘法分配律
基本方法:将带分数转化为整数部分和分数部分相加的形式,再按照乘法分配律计算。

第七种:乘法交换律与乘法分配律相结合 例题:1)247174249175⨯+⨯ 2)1981361961311⨯+⨯ 3)138
1137138137139⨯+⨯
涉及定律:乘法交换律、乘法分配律逆向运算
基本方法:将各项的分子与分子(或分母与分母)互换,通过变换得出公有因数,按照乘法分配律逆向运算进行计算。

注意:只有相乘的两组分数才能分子和分子互换,分母和分母互换。

不能分子和分母互换,也不能出现一组中的其中一个分子(或分母)和另一组乘式中的分子(或分母)进行互换。

课堂练习
1、59 × 34 +59 × 14
2、17× 916
3、( 34 +58 )×32
4、 54 × 18 ×16
5、15 + 29 × 310
6、44-72×5
12 7、52×214×10 8、6.8×51+5
1×3.2 9、)325(61-⨯ 10、46×4544 11、 (32+43-21)×12 12、
125×4
1
×24
13、42×(65-74) 14、69765⨯⨯ 15、(32+21)×76 16、53×914-94×5
3
17、2008×20062007 18、 23 +( 47 + 12 )×7
25 19、 149×14×9
2
20、47 ×1522 ×712 21、12×( 1112 - 348 ) 22、 910 ×1317 +910 × 4
17
23、36×937 24、 1113 -1113 ×1333 25、( 94 - 32 )× 83
26、( 38 -0.125)×4
13 27、 43×52+43×0.6 28、 257×101-25
7 29、508310019⨯⨯ 30、9
5739574⨯+⨯
31、解方程:
815 X +512 X = 57 X ÷35 = 512 ×815 3X +1335 = 57 34 x÷1
6 =18
家庭作业
1、直接写出得数:
2、下面各题怎样简便怎样算:
47 ÷32 +4
7 ÷3 (1-21-41)÷81 12÷(1+31-65)
524 ×12 = 6×524 = 49 ×2710 = 23 +34 = 225 ×5
6 =
72÷89 = 617 -1351 = 56 ÷12= 1320 ÷91100 = 78 ÷4
7 = 14 ×15 ×10= 83÷169 = 130 ÷15 ÷15 = =2156 47 ×1522 ×712 12×( 1112 - 348 ) 910 ×1317 +910 ×417 1113 -1113 ×1333 36×937 926 ÷ 813 ×827 1639 ÷914 +1639 ×49 ( 94 - 32 )× 83 ( 38 -0.125)×413。

相关文档
最新文档