1塔设备的附件(一)裙座

合集下载

1-塔设备的附件(一)--裙座

1-塔设备的附件(一)--裙座

mAm sbaxmin0.9s,KB
裙座壳检查孔或较大管线引出截面为危险截面,应满足下列条件:
O 操作时 O 水压实验时
M Z m s 1 1 m a x m 0 1 1g A s m F V 1 1m K in ,K Bts
0 .3 M Z w 1 s 1 m M e m 1 m 1g A as x m F V 1 1m K i,0 n .B 9s
基础环上无筋板时基础环作为悬臂梁,在均匀载荷Dmax的作用下其最大弯曲应力
O 为:
b 2 bmax
1 max
Mm1 ax zb1
2
1•b2
b
6b
bmax []b
基础环上有筋板时,求出基础环厚
O 度:
b
6M s
[ ]b
3螺栓座的设计
O 为了使塔设备在刮风或地震时不致翻倒,必须安装足够数量和一定直径的地脚螺栓,把设备固定 在基础上。地脚螺栓承受的最大拉应力为
1.座体设计
首先参照塔体厚度试取一座体有效厚度L0,然后验算危险截面的应力,危险截面的位置一般取裙座基底 截面、裙座壳检查孔或较大管线引出孔截面。
M 裙座基底截面危险截面,应满足下列0条件0 :
操作时
+
max
+水压试验时
+
Z sb
m0gFV 00 Asb
miK n,B Kts
0.3Mw00 Me Zsb
F1l3'
d3)c2
Z
F1l3'
(l2' d3)
c2(l4' d2)
2 z
三.总结,
O 裙座在化工设备中应用非常广泛,它是很好的固定装置,将设备与地面连接起来,虽然裙座不是 受压元件,但是由于裙座对整个塔器至关重要,标准要求与受压元件相同,因为裙座受压不多, 提高裙座的用材要求造成太大的浪费,这种处理大大提高了裙座支承塔体的可靠性。

静设备知识问答--塔

静设备知识问答--塔

静设备知识问答--生产部塔设备1、什么是塔,其主要包括哪几部分?答:塔是炼厂主要工艺设备之一,它是用来完成混合物分离的设备。

主要包括以下几个部分:①塔体:包括筒体、端盖(主要是椭圆形封头)及联接法兰等。

②内件:指塔盘或填料及其支承装置。

③支座:支撑塔体的底座,一般为裙式支座,即裙座。

④附件:包括人孔、进出料接管,各类仪表接管,液体和气体的分配装置,以及塔外的扶梯、平台、外保温等。

2、按结构塔设备可分哪几大类?答:①板式塔:塔内有一层层相隔一定距离塔盘、液气两相就在塔盘上相互接触,进行热和质的传递,然后分开,气相继续上升到一层塔盘,液体流到下层塔盘上。

②填料塔:塔内充填着各种形式的填料,液体自上往下流,气体自下往上流,气液在填料表面上接触完成传质传热过程。

3、按用途塔设备的分类有哪些?答:(1)分馏塔:将液体混合物分离成各种组分,如常压塔、减压塔、各种精馏塔等。

(2)吸收塔:在塔内通过吸收液来分离气体。

(3)解吸塔:将吸收液通过加热减压等方法使溶解其中的气体再放出来。

(4)抽提塔:通过某种液体溶剂将混合物中有关产品分离出来。

(5)洗涤塔:用水来除去气体中无用的成分或固体颗粒,称为水洗塔,它同时还有一定的冷却作用。

4、塔的主要内部构件有哪些?答:常用的板式塔的主要内部构件有:塔盘、各种液体和气体出入管、除雾器、挡板及过滤器等。

5、塔的塔盘有何作用?答:塔盘是塔的最主要内部件,气液间的传质、传热过程就是通过塔盘来完成的。

塔盘增加了气液间的接触面积和接触时间,使传质、传热更充分。

6、什么是传质过程?精馏塔内是怎样完成传质和传热的?答:由于分子处于不停的运动状态,分子在运动中相互碰撞,改变自己的运动方向,从而从一个地方扩散到另一个地方,这就是传质过程。

在精馏塔内,塔盘上存在着气、液两相,并密切接触,由于两相组分组成不平衡,使液相中的易挥发组分得到热量成为气相,而气相中难挥发组分,冷凝下来成为液相,从而完成了一个传质和传热过程。

塔器吊装裙座强度

塔器吊装裙座强度

塔设备的安装方法有分段吊装和整体吊装两类。

分段吊装对抱杆的要求较低,但增加了现场高空作业的工作量。

整体吊装用抱杆将设备一次起吊并安装就位。

通常采用整体吊装法。

整体吊装法又可分为单杆及双杆整体吊装,较大型的塔一般采用后者。

而双杆整体吊装又有双杆整体滑移吊装、双杆整体递夺吊装以及联合整体吊装之分。

对于载荷、高度和直径等都很大的塔设备,应采用双杆整体滑移吊装法〔1〕,其吊装情况如图1。

用双杆整体滑移吊装时,在起吊的一瞬间,应对吊点处塔体断面的切应力和弯曲应力进行校核,详见文献〔1〕。

塔设备在起吊的瞬间,裙座底端受到较大的作用力,从而使裙座底端轴向截面处产生了弯曲应力。

因此,在最大弯矩截面处应将其最大应力控制在许可范围内,否则有可能使该部位产生较大的不可恢复变形,严重者将使塔设备无法就位安装。

因此,对起吊瞬间裙座底端的最大应力进行强度校核,是一个值得研究的问题,笔者对其进行了分析与研究。

1起吊瞬间裙座底端强度校核1.1建立力学模型裙座底端由底板、盖板以及部分裙座筒体组成,见图2。

较大的塔设备,其盖板应为整体式圆环板,不宜采用分块式结构。

当盖板采用整体式圆环板时,其位于盖板和底板之间的部分可作为裙座筒体的一部分;但当盖板采用分块式时,则不可计入裙座筒体部分。

由于筋板是分散的和有限的,因此在考虑起吊瞬间裙座底端的受力时,可忽略筋板的作用。

还有,环板或底板因螺孔对强度的削弱亦可忽略不计。

起吊瞬间作用于裙座底端的力如图2所示。

Q为塔的其它部分的作用剪力,W′为底端部分的重力,p为地面反作用力,显然Q+W′=p。

由于截面高度与裙座半径的比值较小,故可将其视为如图3a的一个圆环,裙座底端的应力就可以简化为圆环承受一对集中压力作用下的应力来分析。

1.2计算最大应力圆环的几何形状和受力的对称性,使其变形和内力也是对称的。

现将圆盘分成两部分(图3b),利用内力的对称性以及力平衡方程,则可求得作用于圆环截面上的力N0=p/2,剪力Q0=0。

塔体压力校核(sw6)

塔体压力校核(sw6)
650
地脚螺栓个数:
24
地脚螺栓根径(mm):
23.752
地脚螺栓材料:
Q235
地脚螺栓许用应力(MPa):
147
基础环板内径(mm):
3050
基础环板厚度(mm):
8
基础环板外径(mm):
3390
基础环板上地脚螺栓两侧筋板内侧间距(mm):
443.891
基础环板上两相邻筋板外侧最大间距L(mm):
443.891
全部筋板块数:
15
筋板厚度(mm):
12
筋板高度(mm):
200
筋板宽度(mm):
110
盖板结构:
整块
盖板宽度(mm):
0
盖板厚度(mm):
18
垫板宽度(mm):
60
垫板厚度(mm):
12
垫板螺栓孔直径(mm):
30
盖板螺栓孔直径(mm):
43
框架结构数据
框架高度(mm):
0
框架质量(kg):
1
试验压力(Mpa):
0
自下向上第2段筒体
计算条件
材料名称:
16MnR(热轧)
本段设计压力(MPa):
材料类型:
板材
本段设计温度(℃):
105
本段筒体内径(mm):
3200
设计温度下许用应力t(MPa):
181
本段筒体名义厚度(mm):
20
试验温度下屈服点s(MPa):
325
本段筒体长度(mm):
2500
0
塔体保温层密度(mm):
0
最大管线外径(mm):
0
管线保温层厚度(mm):

塔设备例题习题

塔设备例题习题

例1-1有一塔设备(例1-1附图1-1),提馏段直径为2000mm ,精馏段直径为1600mm ,裙座高5000mm ,在操作条件下个部分的质量如表(1-4)所示。

已知平均风压为588Pa ,大气温度按15o C 考虑,塔壁保温层厚100mm 。

如此塔发生共振,试确定塔振动时塔顶的振幅,塔底截面处的弯矩。

表1-4 操作条件下塔体各部分的质量解:1.计算塔的自振周期根据直径的变化与质量分布的情形将塔分为10段(参见例1-1附图2)。

利用式(1-40)计算塔的自振周期:∑∑∑==-=⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡-+=n i i i B A ni i i n i i i H x m J h J H J H E T 1332131331因塔的直径只有一次变化,设分为A 、B 两大部分,惯性矩分别为JA 与JB ,则式(1-40)可写成:∑=⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡-+=n i i i B A A A B H x m J h J h J H E T 13333314320197.0012.06.14.08m s D J A =⨯⨯==π4320448.0014.024.08m s D J A =⨯⨯==π塔体各分段部分的质量以及有关的计算值列于表(1-5)。

表1-5 塔体分段部分的质量及有关的计算值塔分段序号 1 2 3 4 5 6 7 8 9 10 Hmi ,m 5620 5620562074207420742034453445 3445 3445 31.69xi ,m 1.6174.85 8.083 11.316 14.549 17.782 20.938 24.01 27.082 30.154 xi/H0.051 0.153 0.255 0.357 0.4590.561 0.6610.7580.8550.952(xi/H)3xX103 0.133 3.585 16.594 45.532 96.768 176.675 288.429 434.920 624.131 861.525 m(xi/H)3,kg 0.747 20.146 93.258 337.844 718.020 1310.929 993.638 1498.301 2150.130 2967.95510091如Pa E 111006.2⨯=则 s T 35.02.100770448.029.120197.029.120448.069.311006.231233311=⨯⎥⎦⎤⎢⎣⎡-+⨯⨯=π2.计算临界风速 因风压值q0=588Pa ,在15oC 时空气的密度为p=1.226kg/m3,动力粘度m=1.79x10-5Pas ,设备外经D=2+0.028+2x0.1=2.228m ,根据伯努利方程,可知当地风速为:s m q v /31226.1588220=⨯==ρ651072.41079.1226.131228.2⨯=⨯⨯⨯==-μρDv R e 因Re>3.5x106,属于超临界区。

关于塔设备各结构的详细介绍

关于塔设备各结构的详细介绍

关于塔设备各结构的详细介绍根据塔类设备在炼油工艺及化工生产过程中作用的不同,.采用结构的不同,操作压力的不同,塔设备可分为:(1)按用途及在工艺过程中的作用可分为:分馏塔、吸收塔、解收塔、抽提塔、汽提塔、稳定塔、水洗塔和于燥塔等;(2)按内件结构可分为:板式塔、填料塔和转盘塔等;.(3)按压力可分为:常压塔、减压塔和加压塔等。

塔设备包括塔体、端盖、支座、接管、人孔或手孔、物料进出口、塔内附件、塔外附件等。

塔体是塔设备的外壳,用钢板卷焊制成,其直径随处理量及操作条件而定。

常见的塔休多为等直径.、等壁厚的圆筒。

随着生产装置的大型化,由于工艺需要和节约原材料,也有各种用途的不等直径,不等壁厚的大型塔设备用于炼油化工生产中。

塔的高度主要取决于对分馏产品的要求,炼油厂的分馏塔一般为十几米到几十米高。

.塔体壳壁的厚度除满足工艺条件下的强度要求外,还应校核风力、地震、偏心载荷所引起的强度和刚度,以及水压试验、吊装、运输、开停工的悄况下塔体的强度及稳定性。

另外.对塔体安装的垂直度和弯曲度都有一定的要求。

端盖是由钢板压制焊接而成,一般塔设备多采用标准椭圆形端盖。

减压塔多为半球形端盖,以有利承受外部较高的压强,而且可利用端盖自身做为破沫空间,以节省金属。

塔体支座是支承塔体并与基础连接的部件,一般采用裙座.。

其高度根据工艺要求及管线布置要求所决定。

由于炼油厂的塔设备重量较大,高度也较高,露天安置经常受到风力以及地震等载荷作用,因此,它应具有足够的强度和刚度。

接管是用以连接工艺管线,使之与相关设备连成封闭的系统,有物料进、出口接管、进气、排气接管,侧线进、出口管,安装检修用人孔、手孔接管,各种化工仪表接管等。

人孔和手孔是为了安装检修的需要而设置的。

板式塔内件由塔盘、降液管、溢流堰、紧固件,支承件及涂沫网装置等组成。

填料塔内件由喷淋装置,填料,栅板,液休再分配器等组成。

塔体内件是完成工艺过程,保证产品质量的主要部件之一。

塔计算

塔计算

塔器主体设计参数压力试验类型:液压试验塔板分布段数:0 指定筒体材料负偏差为0: 未指定为0 填料分布段数: 2筒体分段数(不包括变径段且不大于10): 10 连接自下向上第2段与第3段筒体的变径段连接自下向上第1段与第2段筒体的变径段连接自下向上第4段与第5段筒体的变径段连接自下向上第3段与第4段筒体的变径段连接自下向上第6段与第7段筒体的变径段连接自下向上第5段与第6段筒体的变径段连接自下向上第8段与第9段筒体的变径段连接自下向上第7段与第8段筒体的变径段连接自下向上第9段与第10段筒体的变径段自下向上第1段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):14试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1750试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第2段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):5410试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第3段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):4450试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第4段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.2602自下向上第5段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第6段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第7段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm): 2 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第8段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):1000试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第9段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):3260试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023自下向上第10段筒体计算条件材料名称:S31603 本段设计压力(MPa): 2.35 材料类型:管材本段设计温度(℃):220 本段筒体内径(mm):305 设计温度下许用应力[σ]t (MPa):89.2 本段筒体名义厚度 (mm):10试验温度下屈服点σs (MPa):180 本段筒体长度 (mm):556试验温度下许用应力[σ] (MPa):99 腐蚀裕量C2 (mm):0 钢板负偏差C1 (mm):未指定为0 纵向焊缝焊接接头系数: 1 液柱静压力(MPa):0环向焊缝焊接接头系数:1试验压力 (Mpa) : 3.26023填料段数据自下向上第1填料段:操作工况下的填料密度(kg/m ):300 该段填料底部距基础高度hf1(mm):2827 该段填料顶部距基础高度hf2(mm):7827填料段数据自下向上第2填料段:操作工况下的填料密度(kg/m ):300 该段填料底部距基础高度hf1(mm):21577 该段填料顶部距基础高度hf2(mm):24577附件数据介质密度(kg/m ):1000 塔釜液面高度(mm):800 塔体保温层厚度(mm):100 塔体保温层密度(mm ):200 最大管线外径(mm):89 管线保温层厚度(mm):80 塔体上平台总个数:0 塔体上最低平台距基础的高度(mm):塔体上最高平台距基础的高度(mm):0 扶梯与最大管线的相对位置:90°平台宽度(mm):0 平台包角(°):360 载荷数据偏心载荷或集中载荷个数(不大于5):2 塔设备附件质量系数(以壳体质量为基准):1.2基本风压值(N/m ):0地震设防烈度:7度(0.1g) 场地土类型:III类地面粗糙度类别:B类地震类型:第二组第 1 个偏心载荷数据偏心载荷重量(kg):1000偏心载荷的作用位置到容器中心线的距离c(mm):0 偏心载荷中心至基础的距离(mm):5827第 2 个偏心载荷数据偏心载荷重量(kg):1000偏心载荷的作用位置到容器中心线的距离c(mm):0 偏心载荷中心至基础的距离(mm):20000裙座数据裙座数据(1)基础类型:无框架裙座结构:圆筒形裙座与筒体连接形式:对接锥形裙座底截面内径(mm):912 基础高度(mm):200 裙座总高度(mm):1077 裙座设计温度(°):20 裙座名义厚度(mm):12 裙座腐蚀裕量(mm): 2 裙座材料:Q345R 设计温度下许用应力(MPa)189 设计温度下屈服点(MPa):345 设计温度下弹性模量(MPa):201000 裙座防火层厚度(mm):0 裙座防火层密度(kg/m3):0 指定裙座材料负偏差为0 未指定为0 裙座与筒体连接段材料:Q345R 裙座与筒体连接段长度(mm):23 裙座与筒体连接段在设计温度下许用应力(MPa):2裙座数据(2)裙座上同一高度处较大孔(包括人孔)个数:2 裙座上较大孔中心线高度h1(mm):580裙座上较大孔引出管水平方向内径d(mm):36 裙座上较大孔引出管名义厚度t(mm):24裙座上较大孔引出管长度c(mm):140裙座数据(3)地脚螺栓公称直径(mm):36 地脚螺栓个数:8 地脚螺栓根径(mm):31.67 地脚螺栓材料:Q235 地脚螺栓许用应力(MPa):147 基础环板内径(mm):712 基础环板厚度(mm):22 基础环板外径(mm):1112基础环板上地脚螺栓两侧筋板内侧间距(mm):85 基础环板上两相邻筋板外侧最大间距L(mm):319.82全部筋板块数:16 筋板厚度(mm):16 筋板高度(mm):250 筋板宽度(mm):130 盖板结构:整块盖板宽度(mm):0 盖板厚度(mm):22 垫板宽度(mm):80 垫板厚度(mm):16 垫板螺栓孔直径(mm):39 盖板螺栓孔直径(mm):50框架结构数据框架高度(mm):0 框架质量(kg):0框架惯性矩(mm4):0 框架材料(碳钢)弹性模量(MPa):框架材料类型:混凝土上封头数据椭圆形封头数据材料类型板材曲面高度h I (mm) 81.25 材料名称S31603 直边高度h2(mm)25 试验温度下许用应力[σ] (MPa) 120 钢板负偏差C1 (mm) 未指定为0 设计温度下许用应力[σ]t(MPa) 104.8 腐蚀裕量C2 (mm) 0 焊接接头系数φ 1 名义厚度δn (mm) 10 液柱静压力(MPa)0下封头数据椭圆形封头数据材料类型板材曲面高度h I (mm) 81.25 材料名称S31603 直边高度h2(mm)25 试验温度下许用应力[σ] (MPa) 120 钢板负偏差C1 (mm) 未指定为0 设计温度下许用应力[σ]t(MPa) 104.8 腐蚀裕量C2 (mm) 0 焊接接头系数φ 1 名义厚度δn (mm) 14 液柱静压力(MPa)0。

塔设备裙式支座的设计

塔设备裙式支座的设计

塔设备裙式支座的设计摘要:裙座是塔设备的关键部位,牵涉到塔器的的安全运行,关系到人民生命和财产的安全塔设备是石油化工装置中重要设备,占整个系统设备总量的25%~46%,也就是说石油、化工设备装置中塔设备的投资比例在25%~46%以上,因此塔设备的安全运行关系到人民生命和财产的安全。

塔设备的安全运行除了塔体本身外,支撑也是同等重要,没有牢固的支撑,塔体甚至可能倒塌。

大型塔设备都是由裙座支撑,因此裙座的设计是设备设计中的一关键点。

裙座的设计除强度外主要考虑以下三个方面:1.环境温度的影响JB/T4710-2005《钢制塔式容器》中规定裙座壳用钢应按受压元件用钢选择,可见裙座的重要性。

受压元件用钢对材料的含碳量,硫磷含量及材料的强度,延展性,韧性都有较高要求,但不是所有受压元件用钢均可以使用到裙座上。

JB/T4710中规定裙座设计温度取使用地月平均气温的最低值加20度。

我国幅员辽阔,南方与北方气温相差很大,对于南方使用Q235系材料即可,但对于北方最冷月月平均气温达到零下30~40度的须使用Q245R、Q345R甚至低温钢。

2.介质温度的影响JB/T4710仅校核了按常温考虑的底截面及具有最大开孔的断面的组合应力,这两个截面远离塔体,仅环境温度影响,设计计算时许用应力按常温时选取即可,但对于裙座与下封头的焊缝及保温内的部分裙座标准上没有考虑。

在200度以内材料许用应力变化不大,但之后急剧缩小,因此当设备工作温度大于200度后不校核此部分的应力是很危险的。

此部分温度可通过传热计算得到,但不是设备专业范围,费时、费力、需花费一定财力且运行平稳后此部分的温度与设备内介质温度相差不大,因此可按设备介质温度作为此部分的设计温度,笔者有个简单易行的办法:在采用常温校核裙座后,对保温部分裙座采用与本体同牌号的材料连接塔体和裙座作为过渡段,因为裙座一般是采用Q235类材料,而塔体材料强度要高于裙座,只需要确认下过渡段材料在其设计温度下许用应力不低于环境温度下的裙座材料的许用应力即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

min
KB,0.9 s
2.基础环设计
O (1)基础环尺寸的确定 O 基础环内、外径一般可参考下试选取: DOb=Dis+(160~400)或
Dib=Dis-(160~400)
O (2)基础环厚度的设计 O 操作时或水压试验时,设备重力和弯矩在混凝土基础上所产生的最
大轴向压力为
bmax
max
M 00 max Zb
K
t s
0.3M00 w来自MeZ sbmmax Asb
min0.9 s , KB
裙座壳检查孔或较大管线引出截面为危 险截面,应满足下列条件:
O 操作时
M 11 max Z sm
m011 g FV11 Asm
min
KB, K
t s
O 水压实验时
0.3M
11 w
M
e
Z sm
m1ma1xg FV11 Asm
m0 g Fv00 Ab
,
0.3M
00 w
Zb
Me
mmax Ab
g
基础环上无筋板时基础环作为悬臂梁,在均 匀载荷Dmax的作用下其最大弯曲应力
O为:
b 2 b max
1 max
M
1 m
ax
zb1
2
1

2 b
b
6
由此得出基础厚度
b 1.73b
bmax [ ]b
基础环上有筋板时,求出基础环厚
把塔设备固定在基础上。 O(4)管孔 O在裙座上有检修用的检查孔、引出孔、排气孔等。
1.座体设计
首先参照塔体厚度试取一座体有效厚度L0,然后验算危险截面的应力, 危险截面的位置一般取裙座基底截面、裙座壳检查孔或较大管线引出 孔截面。
裙操+水座作压基时试底验截时面危+ M险Zm0截sba0x面+ ,m应0 g满Asb足FV0下0 列条mi件n K:B,
二.圆筒形裙座机械设计
O圆筒形裙座主要有以下几个部分组成: O(1)座体 O它的上端与塔体底封头焊接在基础环上,座体承受塔体
的全部载荷并把载荷传到基础环上去。 O(2)基础环 O基础环是块环形垫板,它把由座体传下来的载荷平均分
配到基础上去。 O(3)螺栓座 O由盖板和筋板组成,共安装地脚螺栓用,以便地脚螺栓
C2
4.盖板设计
O 分块盖板 O 分块盖板的最大应力计算:
Z
(l2'
F1l3'
d
3
)
2 c
Z
(l
' 2
F1l3'
d
3
)
2 c
(l4'
d
2
)
2 z
三.总结,
O 裙座在化工设备中应用非常广泛,它是很好的固定装置,将设备与 地面连接起来,虽然裙座不是受压元件,但是由于裙座对整个塔器 至关重要,标准要求与受压元件相同,因为裙座受压不多,提高裙 座的用材要求造成太大的浪费,这种处理大大提高了裙座支承塔体 的可靠性。
O 度:
b
6M s
[ ]b
3螺栓座的设计
O 为了使塔设备在刮风或地震时不致翻倒,必须安装足够数量和一定 直径的地脚螺栓,把设备固定在基础上。地脚螺栓承受的最大拉应 力为
B
max
M
00 w
Z
b
M
e
mmin g Ab
,
M
00 E
0.25M
00 w
Zb
Me
m0
g
Fv00 Ab
d1
4 B Ab n[ ]bt
塔设备附件(一) 裙座
立式储罐裙座设计
O一.概述 O1.常用的裙座 O塔体常用号裙座支承,常用的裙座结构有圆筒形
裙座和圆锥形裙座。圆筒形裙座制作方便,经济 上合理,应用广泛。圆锥形裙座常用于细高塔, 如塔径DN<1m,且高径比H/DN>25,或 DN>1m,H/DN>30的支承为了防止风载荷或地震 载荷引起的弯矩造成的倾倒,圆锥形裙座可配置 更多的地脚螺旋,且具有足够大的稳定性,圆锥 形裙座的半锥角不得超过15°,原因是半锥角增 大,裙座所受应力急剧增加,裙座筒体的厚度也 需急剧增
相关文档
最新文档