PID参数调节
PID参数如何设定调节讲解

PID参数如何设定调节讲解PID(Proportional Integral Derivative)是一种常用的控制算法,广泛应用于自动化系统和过程控制中。
PID控制器根据被控对象的误差信号进行调整,通过调节比例、积分和微分这三个参数,可以有效地控制系统的稳定性和响应速度。
下面将详细讲解如何设置PID参数进行调节。
1. 比例参数(Proportional Gain,P):比例参数决定了输出调节量与误差信号之间的关系。
增大比例参数的值可以加快系统的响应速度,但过大的值会导致系统不稳定和超调。
通常的经验法则是,开始时可以设置一个较小的比例增益,然后逐渐增大直到系统开始出现振荡或超调为止。
根据实际情况,逐步调整比例参数,使系统具有准确的控制。
2. 积分参数(Integral Gain,I):积分参数用于处理系统的静态误差。
当系统的零偏较大或变化较慢时,可以适度增大积分参数,以减小系统的稳态误差。
但过大的积分参数会导致系统不稳定。
可以采用试验法来确定合适的积分参数:首先将比例和微分参数设置为零,然后逐渐增大积分参数直到系统开始超调。
然后逐渐减小积分参数直到系统达到最佳控制性能。
3. 微分参数(Derivative Gain,D):微分参数用于补偿系统的动态误差,主要用于抑制系统响应过程中出现的振荡。
过大或过小的微分参数都会导致系统不稳定。
微分参数的选择需要结合系统响应的快慢来进行调整。
通常情况下,较慢的系统需要较大的微分参数,而较快的系统需要较小的微分参数。
可以通过试验法或经验法来调整微分参数,以便使系统的响应与期望的响应曲线相适应。
4.调节顺序和迭代调节:在调节PID参数时,一般的建议是先从比例参数开始调节,然后再逐步加入积分和微分参数。
调节过程中应根据系统的实际情况进行迭代调节,通过反馈信息和实时数据不断调整参数,使系统的控制性能达到最佳状态。
在迭代调节过程中,可以采用逐步调整法,或者借助自动调节器进行优化。
PID调节参数及方法

PID调节参数及方法PID控制是一种常用的自动控制方法,它可以根据系统的实时反馈信息,即误差信号,来调整控制器的输出信号,从而实现系统的稳定性和性能优化。
PID调节参数是PID控制器中的比例系数、积分系数和微分系数。
调节这些参数可以达到所需的动态性能和稳态精度。
下面将介绍PID调节参数及常用的调节方法。
1.比例系数(Kp):比例系数用来调节控制器输出信号与误差信号的线性关系。
增大比例系数可以加快系统的响应速度,但可能会引起系统的超调和不稳定。
减小比例系数可以提高稳定性,但可能会导致系统的响应速度变慢。
调节比例系数的方法一般有经验法和试探法。
经验法:根据经验将比例系数初值设为1,然后逐渐增大或减小,观察系统的响应情况。
当增大比例系数时,如果系统的超调量明显增加,则应适当减小比例系数;相反,如果系统的超调量过小,则应适当增大比例系数。
反复调节,直到得到满意的响应。
试探法:根据系统的特性进行试探调节。
根据系统的频率响应曲线或步跃响应曲线,选择适当的比例系数初值,然后逐渐增大或减小,观察系统的响应。
如果系统的过冲量大,则应适当减小比例系数;如果系统的响应速度慢,则应适当增大比例系数。
反复试探调节,直到得到满意的响应。
2.积分系数(Ki):积分系数用来补偿系统的静差,增加系统的稳态精度。
增大积分系数可以减小系统的稳态误差,但可能会引起系统的震荡和不稳定。
减小积分系数可以提高稳定性,但可能会导致系统的静差增大。
调节积分系数的方法一般有试探法和校正法。
试探法:将积分系数初值设为0,然后逐渐增大,观察系统的响应。
如果系统的震荡明显增强,则应适当减小积分系数;相反,如果系统的响应速度慢,则应适当增大积分系数。
反复试探调节,直到得到满意的响应。
校正法:根据系统的静态特性进行校正调节。
首先将比例系数设为一个适当的值,然后减小积分系数,直到系统的静差满足要求。
这种方法通常用于对稳态精度要求较高的系统。
3.微分系数(Kd):微分系数用来补偿系统的过冲和速度变化,增加系统的相对稳定性。
PID参数意义与调整

PID参数意义与调整PID控制器(比例-积分-微分控制器)是一种广泛应用于工业控制系统中的常见控制策略。
它通过对系统的误差进行比例、积分和微分处理,来调整控制系统的输出,使系统能够更准确地跟踪预期的参考值。
PID控制器的参数调整对系统性能有重要影响,正确调整PID参数可以提高系统的稳定性、响应速度和鲁棒性。
PID控制器的三个参数分别是比例参数Kp、积分参数Ki和微分参数Kd。
下面将详细介绍这些参数的意义和调整方法。
1.比例参数Kp:比例参数反映了控制器输出与误差之间的关系。
增大Kp的值会增加控制器的灵敏度,使系统更快地对误差做出响应,但过大的Kp值可能会导致系统产生震荡。
因此,较小的Kp值适用于稳定系统,较大的Kp值适用于需要更快响应的系统。
通常,可以通过试探法或经验法来初步确定Kp的合适取值,并根据系统的实际反应进行微调。
2.积分参数Ki:积分参数用于消除稳态误差,即系统达到稳定状态后仍然存在的误差。
增大Ki的值可以增加积分效应,减小稳态误差。
然而,过大的Ki值可能会导致系统产生过冲或震荡。
因此,需要通过试探法或经验法来确定合适的Ki值,并根据系统的实际反应进行微调。
3.微分参数Kd:微分参数用于预测系统追踪误差的变化趋势。
增大Kd的值可以提高控制器对误差变化的敏感性,减小系统响应过程中的超调和震荡。
然而,过大的Kd值可能会导致系统产生噪声响应。
通常,可以通过试探法或经验法来确定合适的Kd值,并根据系统的实际反应进行微调。
1.手动调整法:通过观察系统的实际响应,根据经验和试探法调整PID参数。
首先,将积分和微分参数设置为零,只调整比例参数,使系统达到稳定状态。
然后,逐渐增大积分参数,以减小稳态误差。
最后,逐渐增大微分参数,以提高系统的响应速度和稳定性。
这种方法需要对系统有较深的理解和经验。
2. Ziegler-Nichols方法:该方法是一种经典的自整定方法,适用于线性、稳定和单输入单输出的系统。
PID参数的调整方法

PID参数的调整方法PID控制器是一种广泛应用于工业自动化控制系统中的一种控制算法,通过对控制系统的反馈信号进行分析和调整,来实现对控制系统的稳定控制。
PID参数调整的目的是通过修改PID控制器的三个参数(比例增益P、积分时间Ti、微分时间Td),来达到最优的控制效果。
下面将介绍几种常见的PID参数调整方法。
1.经验法:经验法是一种直接根据经验经验的方法来调整PID参数的调整方法,是初学者常用的方法。
经验法的基本原理是通过系统的试验,根据实际的经验经验来进行参数的调整。
其流程主要包括以下几个步骤:1)选择一个适当的比例增益P,使系统能够快速而准确地响应,但不引起系统的振荡。
2)逐渐增加积分时间Ti,使系统的稳态误差趋于零。
3)逐渐增加微分时间Td,使系统的响应更加平稳。
2. Ziegler-Nichols 调参法:Ziegler-Nichols 调参法是一种基于试验的经验方法,适用于较简单的系统。
其主要思想是通过改变比例增益P、积分时间Ti、微分时间Td的值,找到系统的临界增益和周期,然后根据经验公式计算参数。
具体步骤如下:1)以较小的增量逐步增加比例增益P,使系统产生小幅振荡。
2)记录振荡周期Tosc和振幅Aosc。
3)根据经验公式计算PID参数:P = 0.6KoscTi = 0.5ToscTd = 0.125Tosc3. Chien-Hrones-Reswick 调参法:Chien-Hrones-Reswick 调参法是一种经验法,适用于非线性和阻滞比较大的系统。
该方法主要通过分析系统的特性来进行参数调整。
具体步骤如下:1)选择一个适当的比例增益P,使系统快速而准确地响应。
2)根据系统的阶跃响应曲线,确定时间常数τp(过程时间常数),并计算增益裕度Kr(Kr=τp/T p)。
3)根据Kr的值,选择合适的积分时间Ti和微分时间Td。
4.自整定法:自整定法是一种根据系统的特性自动调整PID参数的方法,适用于不断变化的复杂系统。
PID参数以及PID调节

PID参数以及PID调节PID参数是一种常用的控制器参数,用于控制系统中的反馈环节,以达到期望的输出。
PID调节是对PID参数进行调整,以优化控制系统的性能。
PID(Proportional-Integral-Derivative)是一个由比例项、积分项和微分项组成的数学表达式,用于确定控制系统的输出。
在PID参数中,比例项(P项)用于根据当前偏差的大小调整输出;积分项(I项)用于根据过去偏差的累积值调整输出;微分项(D项)则用于根据当前偏差的变化速度调整输出。
PID参数的值直接影响着控制系统的性能,因此需要进行调节。
PID调节有多种方法和技巧,下面将介绍一些常用的调节方法:1.手动调节法:首先将I项和D项的参数设为零,然后逐步增大P项的数值,直到出现超调现象。
接着逐步减小P项数值,使系统的超调范围逐渐缩小,直至满足要求为止。
最后,逐一增加I项和D项的数值,注意调整的顺序和步骤,直到获得最佳的响应速度和稳定性。
2. Ziegler-Nichols法:这是一种经典的基于实验的PID调节方法。
该方法首先将I项和D项的参数设为零,然后逐步增大P项的数值,直到系统输出开始出现稳定振荡。
通过记录此时的临界增益值Kc和振荡周期Tu,可以使用固定的数学公式计算出P、I和D的参数。
3.自整定法:这是一种基于系统参数辨识的PID调节方法。
该方法通过对于开环与闭环响应的分析,识别出系统的速度常数和时间延迟等参数,从而确定最优的PID参数。
4.基于优化算法的自动调节法:这是一种由计算机自动调整PID参数的方法,常用的有遗传算法、模糊控制算法、粒子群优化算法等。
该方法基于优化算法,通过不断迭代的方式寻找最优的PID参数组合,以达到最佳的控制效果。
总结起来,PID参数的调节是一个复杂的过程,需要结合实际系统的特点和要求,运用不同的调节方法和技巧进行。
通过合理的参数调节,可以优化控制系统的性能,提高系统的稳定性、响应速度和抗干扰能力,从而实现更好的控制效果。
PID参数如何设定调节

PID参数如何设定调节PID(比例-积分-微分)控制器是一种常用的自动控制器,可以根据系统的反馈信号对控制对象进行调节。
PID参数是控制器的核心参数,其调节的准确性和合理性直接影响到控制系统的性能。
一般来说,PID参数的调节可以通过以下几个步骤进行:1.确定控制对象的准确数学模型。
首先,需要通过实际测试或系统分析得到控制对象的传递函数或状态空间模型。
这是确定PID参数调节的基础。
2. 根据控制器的需求和性能指标进行参数初步设定。
在确定控制对象的数学模型后,根据控制器的要求和性能指标,可以初步设定PID参数的取值范围。
通常,可以使用经验公式或者根据控制对象的动态特性进行设定。
比如,可以使用经验法则Ziegler-Nichols法则,它提供了一种经验性的套路,可以根据控制对象的阶数(惯性系数T和时延系数L)设定PID参数的经验公式。
3.利用实验或仿真进行参数调试。
在初步设定PID参数后,需要进行实验或者仿真以观察系统的响应。
可以通过改变PID参数的取值来观察系统的响应,进而评估系统的性能。
在实验或仿真中,可以通过以下几种方法来调节PID参数:-比例项(P项):增大P项的取值可以增强系统的灵敏度,但可能引起系统的震荡或过冲。
减小P项的取值可以减小系统的震荡,但可能导致系统的超调减小。
-积分项(I项):增大I项的取值可以增强系统的静差消除能力,但可能导致系统的震荡或者系统响应时间延长。
减小I项的取值可以减小系统的震荡,但可能导致系统的静差增大。
-微分项(D项):增大D项的取值可以使系统的响应速度更快,但可能导致系统的超调增大或震荡。
减小D项的取值可以减小系统的超调,但可能导致系统的响应速度减慢。
4. 进行反复调试和优化。
在进行实验或仿真后,需要根据观察结果对PID参数进行修正和优化。
如果系统的响应不理想,可以根据经验或者优化算法进行调整。
最常用的算法有Ziegler-Nichols算法、曲线拟合法或者用专业控制软件进行自动优化。
PID参数设置及调节方法
PID参数设置及调节方法1.什么是PID控制器?PID控制器是一种常用的闭环控制器,用于自动调节系统输出以使系统响应达到期望值。
PID控制器由三个部分组成:比例(Proportional),积分(Integral)和微分(Derivative)。
比例部分根据当前误差调整输出,积分部分根据过去误差的累积调整输出,微分部分根据误差的变化率调整输出。
2.PID参数PID控制器的性能取决于三个参数:比例增益(Kp)、积分时间(Ti)和微分时间(Td)。
PID参数越合理,系统响应越快、稳定。
3.PID参数设置方法设置PID参数的一般方法包括试验法、Ziegler-Nichols法和频率响应法等。
(1)试验法:通过对系统进行试验,手动调节PID参数,观察系统响应并调整参数至效果最佳。
试验法简单有效,但需要经验和时间。
(2) Ziegler-Nichols法:通过观察系统的临界响应,确定合适的PID参数。
Ziegler-Nichols法中共有三种方法:经验法、连续模型法和离散模型法。
这些方法根据系统的临界增益(Ku)和临界周期(Tu)计算PID参数。
经验法适用于简单的系统,连续模型法适用于具有较强非线性的系统,离散模型法适用于数字控制系统。
(3)频率响应法:通过对系统进行频率响应测试,根据系统的频率特性确定PID参数。
频率响应法需要用到系统的传递函数,适用于线性、时不变的系统。
4.PID参数调节方法当得到了初步的PID参数后,还需要进行参数调节才能达到期望的控制效果。
(1)手动调参法:根据系统的响应特性,手工调整PID参数。
首先将积分和微分增益设置为零,仅调整比例增益。
根据系统的超调量和调整时间,逐渐增加积分和微分增益,直到系统响应满足要求为止。
(2)自动调参法:利用自适应算法或优化算法自动调整PID参数。
自适应算法根据系统响应实时调整PID参数,如基于模型参考自适应控制(MRAC)算法。
优化算法通过目标函数最小化或优化算法最佳PID参数。
PID参数的调整方法
对PID控制,PV的动向与MV的动向有密切关系。作为控制的考虑方向,如果MV能按理想状态进行动 作,PV也将追踪MV的变化,从而再现理想的PV控制结果。同时监测PV及MV的动向进行PID调整相比于 仅仅监测PV的动向进行PID调整,会更容易判断怎样来调整PID值。
下面的控制状态图是把PV与MV在同一趋势上表示。坐标右纵轴是PV值,左纵轴是MV值,横轴是时间。 ⑴ 仅P控制的趋势图比较:
PID参数的调整方法
对于PID控制的场合,如果PID参数不确定需要采用自己编写程序或人工方式调整,可以按照下面的步骤进行:
1. 启动装置,观察装置运行情况,按下表逐步调整(表中数据为举例):
调整顺序
1
2
3
比例带 P 积分时间 I 微分时间 D
(宽)20% (弱作用)200秒 (强作用) 40秒
(中)10% (中度作用)100秒 (中度作用) 20秒
2. 装置启动后根据PV(测量值,即控制对象实际值)调整参数的方法:
⑴ 超程大(超调、过冲大):见左图。 方法:先把P值调小(比例带变窄)
超程大
如果还产生超程,请把 *值调小(积分作用变强)
设定值
时间
同时按照 D=*÷(4~6)的公示改变微分时间
⑵ 起动时间过长(达到设定值太慢):见左图。 方法:把P值调小(比例带变窄) 把 *值调小(积分作用变强)
结果:起动时间长
分
值
MV
PV MV
积分值大、微分值大 结果:起动时间长
小
PV
︵
强
作
MV
用
嗼
积分值小、微分值小 结果:积分太强,微分动作 较弱,起动时产生超程。
小(弱作用)
PV
PID调节参数及方法
PID调节参数及方法PID(比例-积分-微分)调节是一种常用的自动控制器设计方法,广泛应用于各种控制系统中。
其基本原理是根据控制对象的反馈信号来计算出输出信号,从而使控制对象的输出尽可能接近设定值。
PID控制器的参数包括比例系数Kp、积分时间Ti和微分时间Td。
下面将分别介绍这些参数的调节方法以及应用案例。
1.比例系数Kp的调节方法:比例系数Kp用于调节控制器对误差的响应速度。
Kp越大,控制器对误差的响应越快,但也容易导致系统的超调和震荡。
调节Kp时可以采用试控制法,逐渐增大Kp并观察系统的响应情况,直到系统出现超调或不稳定为止,然后适当减小Kp的值。
2.积分时间Ti的调节方法:积分时间Ti用于调节控制器对系统稳态误差的补偿能力。
增大Ti可以减小系统的稳态误差,但也容易导致系统的超调和震荡。
调节Ti时可以采用试控制法,逐渐增大Ti并观察系统的响应情况,直到系统出现超调或不稳定为止,然后适当减小Ti的值。
3.微分时间Td的调节方法:微分时间Td用于调节控制器对系统的动态响应速度。
增大Td可以提高系统的快速响应能力,但也容易导致系统的超调和震荡。
调节Td时可以采用试控制法,逐渐增大Td并观察系统的响应情况,直到系统出现超调或不稳定为止,然后适当减小Td的值。
同时,还有一些常用的PID调节方法:- Ziegler-Nichols 法:通过实验步骤进行参数调节,包括确定比例放大倍数Ku、临界周期Tu和临界增益Kc,然后根据不同的控制对象类型选择合适的参数调整方法。
- Chien-Hrones-Reswick(CHR)法:通过建立传递函数模型,根据系统的特性分析参数调节方法,适用于非线性和时变系统。
-直接数值调整法:根据经验公式直接对参数进行调整,例如根据系统的响应时间、超调量等指标进行调整。
下面是一个PID调节的应用案例:假设有一个温度控制系统,通过调节加热器的功率来控制目标温度。
系统的传递函数为:G(s)=K/(Ts+1)根据实验数据,目标温度为100°C,实际温度为87°C,采样时间为0.1秒。
PID控制器的原理与参数调节
PID控制器的原理与参数调节PID控制器(Proportional-Integral-Derivative Controller)是一种常用的自动控制算法。
本文将介绍PID控制器的原理,并探讨其参数调节方法。
一、PID控制器原理PID控制器是基于反馈原理的控制算法,通过不断测量目标系统的状态,并根据实际误差来调节输出控制信号,以使系统的输出尽可能接近期望值。
PID控制器由三个参数组成:比例增益Kp、积分时间Ti和微分时间Td。
它们分别对应于控制器的三部分:比例部分、积分部分和微分部分。
1. 比例部分(Proportional)比例控制部分根据系统当前的误差进行调节。
比例增益Kp越大,系统的响应速度越快,但过大的增益可能导致系统产生超调或振荡的现象。
2. 积分部分(Integral)积分控制部分根据系统历史误差的累积值进行调节。
积分时间常数Ti越大,系统越稳定,但过大的积分时间可能导致系统对误差的响应过慢。
3. 微分部分(Derivative)微分控制部分根据当前误差的变化率进行调节。
微分时间常数Td 越大,系统对误差的变化越敏感,但过大的微分时间可能导致系统产生过冲。
综上所述,PID控制器的输出可以表示为:C(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,C(t)为控制器的输出,e(t)为系统当前误差,Kp、Ki、Kd为控制器的参数。
二、PID控制器的参数调节PID控制器的参数调节是为了优化系统的控制性能,通常可以通过试验、实验和理论分析等方法得出最佳参数。
常用的参数调节方法包括以下几种:1. 手动调节法手动调节法是最直观和简单的方法。
通过观察系统的响应曲线,逐步调节比例增益Kp、积分时间Ti和微分时间Td,使系统的超调量、响应速度和稳定性达到最佳状态。
但这种方法需要经验和耐心,并且耗费时间。
2. Ziegler-Nichols方法Ziegler-Nichols方法是一种经验性的整定方法,通过系统的开环响应曲线来确定参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京航空航天大学
学生姓名:__芮俊俊_ ___
班级学号:__SZ1605061______
学科名称:_航空发动机控制与测试
所在学院:___机电学院______
2017年3月27日
一、题目及要求:
列举适用于航空发动机控制律参数设计方法(至少列举一种),以
)7949.0)(31.16()
4435.0(0047.0)(+++=s s s s G
为被控对象,设计一组PID 控制参数,使上升时间不大于1s ,超调量不大于2%,幅值裕量不小于9dB ,相位裕量不小于60︒,要求提供可以反馈稳定裕量的BODE 图(截图)及闭环仿真的SIMULINK 模型(截图),以及阶跃响应仿真曲线(表明上身时间及超调量)。
二、解题步骤及内容
1、航空发动机控制率参数设计方法
1)、全包线鲁棒变增益LPV 控制率设计
2)、双余度控制率设计方法
3)非线性反演控制率设计方法
2、建模并设计一组PID 参数,达到题目所述的响应要求
1)Simulink 建模
打开Simulink,将各模块添加到model 文件中,连接各模块组成闭环控制系统如下图(1)。
图(1) Simulink 模型
图中PID模块为Simulink自带的模块,本人使用的是matlab2011a版本,其中自带的PID模块默认为连续型的,无需更改类型。
2)设计PID参数。
模型建立后,双击PID模块,进入如下图(2)页面,
图(2)PID控制器参数调节界面
更改P、I、D三个参数的值即可调节PID,按照所给的控制要求,不断调整PID 参数。
在调整的过程中,每个参数的变化对响应的影响如下表(1)
一边调整,一边观察各项指标是否满足控制要求,各项指标如下表(2):
表(2)各项性能指标
由于系被控对象为O型系统,其相频特性ψ(ω)>-180︒,并且无限接近-180︒,故其幅值裕量肯定满足要求,即大于9dB。
调整过程中发现,很难达到设定的控制指标,但由于Simulink中的PID模块自带自动优化调整功能,故尝试应用此功能。
点击Tune进入优化调控页面如下图(3)
图(3)PID优化调整界面
点击Show parameters,如图(3)在图的右侧显示PID参数以及各项性能指标,优化调整时,各项参数及性能指标都在持续变化,当达到符合题意的性能指标时,停止调整,点击应用。
在model文件中点击菜单项中的tools->Control Design->Line Anaylsis,打开了图(4)
图(4)图形生成界面
选择要生成图形。
即可生成BODE图,和阶跃响应图。
如图(5),图(6)。
图(5)阶跃响应图
图(6)bode图
三、结论
通过设计,PID三项参数分别为P=1079,I=40387,D=-68。
此时各项要求的性能指标
都能满足,如下表(2)。