三角函数诱导公式学案(一)
1.3.1 三角函数的诱导公式(一)学案

1.3.1三角函数的诱导公式(一)课前预习学案预习目标:回顾记忆各特殊锐角三角函数值,在单位圆中正确识别三种三角函数线。
预习内容:1、背诵30度、45度、60度角的正弦、余弦、正切值;2、在平面直角坐标系中做出单位圆,并分别找出任意角的正弦线、余弦线、正切线。
提出疑惑:我们知道,任一角α都可以转化为终边在)2,0[π内的角,如何进一步求出它的三角函数值?我们对)2,0[π范围内的角的三角函数值是熟悉的,那么若能把)2,2[ππ内的角β的三角函数值转化为求锐角α的三角函数值,则问题将得到解决。
那么如何实现这种转化呢?课内探究学案一、学习目标:(1).借助单位圆,推导出正弦、余弦和正切的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数,并解决有关三角函数求值、化简和恒等式证明问题(2).通过公式的应用,了解未知到已知、复杂到简单的转化过程,培养学生的化归思想,以及信息加工能力、运算推理能力、分析问题和解决问题的能力。
二、重点与难点:重点:四组诱导公式的记忆、理解、运用。
难点:四组诱导公式的推导、记忆及符号的判断; 三、学习过程:(一)研探新知1. 诱导公式的推导由三角函数定义可以知道:终边相同的角的同一三角函数值相等,即有公式一:)(tan )2tan()(cos )2cos()(sin )2sin(Z k k Z k k Z k k ∈=+∈=+∈=+απααπααπα (公式一) 诱导公式(一)的作用:把任意角的正弦、余弦、正切化为)2,0[π之间角的正弦、余弦、正切。
【注意】:运用公式时,注意“弧度”与“度”两种度量制不要混用,如写成︒=+︒80sin )280sin(πk ,3cos)3603cos(ππ=︒⋅+k 是不对的【讨论】:利用诱导公式(一),将任意范围内的角的三角函数值转化到)2,0[π角后,又如何将)2,0[π角间的角转化到)2,0[π角呢?除此之外还有一些角,它们的终边具有某种特殊关系,如关于坐标轴对称、关于原点对称等。
诱导公式导学案

1.2.4诱导公式 导学案(一)【学习目标】1. 知道诱导公式的推导过程;能概括诱导公式的特点。
2. 能灵活运用诱导公式熟练正确地进行求值、化简及变形。
: 【学习重难点】重点:对诱导公式的熟练应用 难点:对诱导公式的理解记忆。
【预习案:】1.求下列三角函数的值,你都能解决吗?是否有必要研究新的公式?7sin____,cos_____33ππ==第一组: sin1110°= 8105sin_____,cos _____,t n()_____.333a πππ===第二组: 2.回顾单位圆与三角函数线1234______.______.______.______.P P P P x P P y P P y x P =3.设点的坐标为(x,y),则点关于原点的对称点的坐标为点关于轴的对称点的坐标为点关于轴的对称点的坐标为点关于直线的对称点的坐标为【探究案】探究一:角α与)(2Z k k ∈+πα的三角函数间的关系sin(2)_____,cos(2)_____,tan(2)_____.k k k k z απαπαπ+=+=+=∈()小结:诱导公式(一)的作用:例1:求下列各三角函数的值: (1)313sinπ (2)4103cos π (3)417tan π (4)247cos π探究二:角α与α-的三角函数间的关系4.如图,设α为一任意角,α的终边与单位圆的交点为P (x,y), 角πα+的终边与单位圆的交点为P 0, 由于角πα+的终边与角α的终边关于原点成中心对称,所以点P 0与点P关于原点成中心对称,因此点P 0的坐标是(-x,-y),于是,我们有:诱导公式二: 用弧度制可表示如下:类比公式二的得来,得:探究三:角α与)()12(Z k k ∈++πα的三角函数间的关系α与απ+α与απ-小结:上述公式的作用:课堂训练:1、将下列三角函数转化为锐角三角函数,并求值(1)cos210º; (2))1665cos(︒- (3)11sin6π; (4)17sin()3π-. 2、化简:)4(tan )3sin()2(cos )2tan()5cos()(sin 333παπαπααπαπα-----++-3、化简 )180sin()180cos()1080cos()1440sin(︒--⋅-︒-︒-⋅+︒αααα能力训练:1、化简:(1)sin(α+180º)cos(—α)sin(—α—180º)(2)sin 3(—α)cos(2π+α)tan(—α—π)2、化简:790cos 250sin 430cos 290sin 21++3、已知cos(π+α)=-21,23π<α<2π,则sin(2π-α)的值是( ).(A )23 (B)21 (C)-23 (D)±23【课后案】 一、选择题1、4255sincos tan364πππ的值是 ( ) A .-43 B .43 C .-43D .43 2、若A 、B 、C 为△ABC 的三个内角,则下列等式成立的是( )A 、A CB sin )sin(=+ B 、AC B cos )cos(=+ C 、A C B tan )tan(=+D 、A C B cot )cot(=+3、在△ABC 中,若最大角的正弦值是22,则△ABC 必是( ) A 、等边三角形 B 、直角三角形 C 、钝角三角形 D 、锐角三角形 4、下列不等式中,不成立的是 ( )A 、︒︒>140sin 130sinB 、︒︒>140cos 130cos C 、︒︒>140tan 130tan D 、︒︒>140cot 130cot 5、已知函数2cos)(xx f =,则下列等式成立的是 ( ) A 、)()2(x f x f =-π B 、)()2(x f x f =+π C 、)()(x f x f -=- D 、)()(x f x f =-6、已知,,,a b αβ均为非零常数,函数4)cos()sin()(++++=βπαπx b x a x f ,若5)2001(=f ,则)2002(f 的值是 ( )A 、5B 、3C 、8D 、不能确定二、填空题7、若12sin(125)13α︒-=,则sin(55)α+︒= .8、23456coscoscos cos cos cos 777777ππππππ+++++= .9、已知 3)tan(=+απ, 求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.三、解答题10、化简())cos(])1sin[(])1cos[(sin απαπαπαπ+⋅++--⋅-k k k k (Z k ∈)解:11、设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值. 解:12、若关于x 的方程22cos ()sin 0x x a π+-+= 有实根,求实数a 的取值范围。
学案3:5.3 诱导公式(一)

5.3 诱导公式(一)【课程标准】(1)借助单位圆的对称性,利用定义推导出诱导公式⎝⎛⎭⎫α±π2,α±π的正弦、余弦、正切. (2)掌握六组诱导公式并能灵活运用.【新知初探】知识点状元随笔 诱导公式一~四的理解(1)公式一~四中角α是任意角.(2)公式一概括为:终边相同的角的同名三角函数值相等.(3)公式一、二、三、四都叫诱导公式,它们可概括如下:①记忆方法:2k π+α,-α,π±α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号,概括为“函数名不变,符号看象限”.②解释:“函数名不变”是指等式两边的三角函数同名;“符号”是指等号右边是正号还是负号;“看象限”是指假设α是锐角,要看原函数名在本公式中角的终边所在象限是取正值还是负值,如sin(π+α),若α看成锐角,则π+α的终边在第三象限,正弦在第三象限取负值,故sin(π+α)=-sin α.[教材解难]利用公式一~公式四,可以把任意角的三角函数转化为锐角三角函数,一般可按下面步骤进行:【基础自测】1.对于诱导公式中的角α,下列说法正确的是( )A .α一定是锐角B .0≤α<2πC .α一定是正角D .α是使公式有意义的任意角2.sin 600°的值是( )A.12B .-12 C.32 D .-323.若sin(π+α)=-12,则sin(4π-α)的值是( ) A .-12B.12 C .-32D.32 4.化简:cos (-α)tan (7π+α)sin (π+α)=________. 【课堂探究】题型一 给角求值问题[经典例题]例1 (1)sin 43π·cos 56π·tan ⎝⎛⎭⎫-43π的值是( ) A.-343 B.343 C .-34 D.34(2)求下列三角函数式的值:①sin(-330°)·cos 210°. ②3sin(-1 200°)·tan(-30°)-cos 585°·tan(-1 665°).状元随笔 负角化正角,大角化小角,直到化为锐角求值.方法归纳利用诱导公式解决给角求值问题的方法(1)“负化正”;(2)“大化小”,用公式一将角化为0°到360°间的角;(3)“小化锐”,用公式二或四将大于90°的角转化为锐角;(4)“锐求值”,得到锐角的三角函数后求值.跟踪训练1 (1)sin 4π3+tan 7π6的值为( ) A.36 B .-33 C .-36D.33 (2)sin 2120°+cos 180°+tan 45°-cos 2(-330°)+sin(-210°)=________.解题要点 首先利用诱导公式把角化为锐角再求值.题型二 已知三角函数值求相关角的三角函数值[经典例题]例2 若sin(π+α)=12,α∈⎝⎛⎭⎫-π2,0,则tan(π-α)等于( ) A.-12 B .-32C .- 3 D.33状元随笔 将已知条件利用诱导公式化简,建立要求的因式与已知条件的联系从而求值. 方法归纳解决条件求值问题的方法(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.跟踪训练2 已知α为第二象限角,且sin α=35,则tan(π+α)的值是( ) A.43B.34 C .-43 D .-34解题要点 先由正弦求余弦时,注意α的范围,最后利用诱导公式求值.题型三 三角函数式的化简与证明例3 化简cos (180°+α)sin (α+360°)tan (-α-180°)cos (-180°+α).状元随笔 用诱导公式消除角的差异→用同角三角函数关系消除名称差异方法归纳利用诱导公式一~四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的;(2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切.跟踪训练3 证明:sin (α-2018π)cos (α+2019π)sin (-α)cos (α-2π)cos (α+2018π)sin (α+2018π)=tan α.解题要点 证明三角恒等式时,要针对恒等式左、右两边的差异,有针对性地进行变形,以消除其差异. 能用诱导公式的先用诱导公式将不同角化为相同角,再统一函数名称,从而实现左右统一.思路方法 分类讨论思想在三角函数中的应用例 证明:2sin (α+n π)cos (α-n π)sin (α+n π)+sin (α-n π)=(-1)n cos α,n ∈Z .点评:解答此类题目的关键在于正确应用诱导公式化简,如果被化简式子中的角是k π±α (k ∈Z )的形式,往往对参数k 进行讨论.常见的一些关于参数k 的结论有sin(k π+α)= (-1)k sin α(k ∈Z );cos(k π+α)=(-1)k cos α(k ∈Z );sin(k π-α)=(-1)k +1sin α(k ∈Z ); cos(k π-α)=(-1)k cos α(k ∈Z )等.【学业达标】一、选择题1.sin 480°的值为( )A.12B.32 C .-12 D .-32 2.已知sin(π+θ)=45,则角θ的终边在( ) A .第一或第二象限B .第二或第三象限C .第一或第四象限D .第三或第四象限3.下列各式不正确的是( )A .sin(α+180°)=-sin αB .cos(-α+β)=-cos(α-β)C .sin(-α-360°)=-sin αD .cos(-α-β)=cos(α+β)4.若cos(π+α)=-12,32π<α<2π,则sin(2π+α)等于( ) A.12B .±32 C.32 D .-32 二、填空题5.求值:(1)cos 29π6=________;(2)tan(-225°)=________.6.若sin(-α)=13,α∈⎝⎛⎭⎫-π2,π2,则cos(π+α)=________. 7.若f (n )=sinn π3(n ∈Z ),则f (1)+f (2)+f (3)+…+f (2 018)=________. 三、解答题8.求下列各三角函数值:(1)sin 1 200°;(2)cos 476π;(3)sin ⎝⎛⎭⎫-7π3; (4)tan(-855°).9.若cos α=23,α是第四象限角,求 sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)的值.10.求sin ⎝⎛⎭⎫2n π+2π3·cos ⎝⎛⎭⎫n π+4π3(n ∈Z )的值.【参考答案】【新知初探】知识点sin α cos αtan α -sin α-cos α tan α -sin αcos α -tan α sin α-cos α -tan α 同名 锐角 原函数值【基础自测】1.解析:诱导公式中的角α是使公式有意义的任意角.答案:D2.解析:sin 600°=sin(600°-720°)=sin(-120°)=-sin 120°=-sin 60°=-32. 答案:D3.解析:∵sin(π+α)=-12,∴sin α=12,sin(4π-α)=-sin α=-12. 答案:A4.解析:原式=cos αtan α-sin α=-sin αsin α=-1. 答案:-1【课堂探究】题型一 给角求值问题[经典例题]例1【解析】 (1)sin 43π·cos 56π·tan ⎝⎛⎭⎫-43π =sin ⎝⎛⎭⎫π+π3cos ⎝⎛⎭⎫π-π6tan ⎝⎛⎭⎫-2π+2π3 =-sin π3·⎝⎛⎭⎫-cos π6tan ⎝⎛⎭⎫π-π3 =-32·⎝⎛⎭⎫-32·(-3)=-334. (2)①sin(-330°)·cos 210°=sin(30°-360°)cos(180°+30°) =sin 30°·(-cos30°)=12×⎝⎛⎭⎫-32=-34.②3sin(-1 200°)·tan(-30°)-cos 585°·tan(-1 665°) =-3sin 1 200°·⎝⎛⎭⎫-33-cos(720°-135°)·tan(-9×180°-45°) =sin(1 080°+120°)-cos 135°·tan(-45°)=32-⎝⎛⎭⎫-22×(-1)=3-22. 答案:(1)A (2)①-34 ②3-22 跟踪训练1解析:(1)原式=-sin π3+tan π6=-32+33=-36.故选C. (2)原式=sin 260°+(-1)+1-cos 230°+sin 30°=⎝⎛⎭⎫322-⎝⎛⎭⎫322+12=12. 答案:(1)C (2)12题型二 已知三角函数值求相关角的三角函数值[经典例题]例2【解析】 因为sin(π+α)=-sin α,根据条件得sin α=-12, 又α∈⎝⎛⎭⎫-π2,0,所以cos α= 1-sin 2α=32. 所以tan α=sin αcos α=-13=-33. 所以tan(π-α)=-tan α=33.故选D. 【答案】 D跟踪训练2解析:因为sin α=35且α为第二象限角,所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(π+α)=tan α=-34.故选D. 答案:D题型三 三角函数式的化简与证明例3解析:tan(-α-180°)=tan[-(180°+α)]=-tan(180°+α)=-tan α,cos(-180°+α)=cos [-(180°-α)]=cos(180°-α)=-cos α,所以原式=-cos αsin α(-tan α)(-cos α)=-cos α. 跟踪训练3解析:证明:sin (α-2018π)cos (α+2019π)sin (-α)cos (α-2π)cos (α+2018π)sin (α+2018π)=sin α(-cos α)(-sin α)cos αcos αsin α=tan α.思路方法 分类讨论思想在三角函数中的应用例证明:当n 为偶数时,令n =2k ,k ∈Z ,左边=2sin (α+2k π)cos (α-2k π)sin (α+2k π)+sin (α-2k π)=2sin αcos αsin α+sin α=2sin αcos α2sin α=cos α. 右边=(-1)2k cos α=cos α,∴左边=右边.当n 为奇数时,令n =2k -1,k ∈Z ,左边=2sin (α+2k π-π)cos (α-2k π+π)sin (α+2k π-π)+sin (α-2k π+π)=2sin (α-π)cos (α+π)sin (α-π)+sin (α+π)=2(-sin α)(-cos α)(-sin α)+(-sin α)=2sin αcos α-2sin α=-cos α. 右边=(-1)2k -1cos α=-cos α,∴左边=右边.综上所述,2sin (α+n π)cos (α-n π)sin (α+n π)+sin (α-n π)=(-1)n cos α,n ∈Z 成立. 【学业达标】一、选择题1.解析:sin 480°=sin(360°+120°)=sin 120°=sin(180°-60°)=sin 60°=32. 答案:B2.解析:∵sin(π+θ)=45=-sin θ,∴sin θ<0,结合三角函数的定义,可知角θ的终边在第三或四象限,故选D.答案:D3.解析:由诱导公式知cos(-α+β)=cos[-(α-β)]=cos(α-β),故B 不正确.答案:B4.解析:由cos(π+α)=-12,得cos α=12,故sin(2π+α)=sin α=-1-cos 2α=-32(α为第四象限角).答案:D二、填空题5.解析:(1)cos 29π6=cos ⎝⎛⎭⎫4π+5π6=cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6=-32. (2)tan(-225°)=tan(360°-225°)=tan 135°=tan(180°-45°)=-tan 45°=-1.答案:(1)-32(2)-1 6.解析:∵sin(-α)=13,∴sin α=-13.∵α∈⎝⎛⎭⎫-π2,π2, ∴cos α=1-⎝⎛⎭⎫-132=223,∴cos(π+α)=-cos α=-223. 答案:-223 7.解析:f (1)=sin π3=32,f (2)=sin 2π3=32,f (3)=sin π=0,f (4)=sin 4π3=-32, f (5)=sin 5π3=-32,f (6)=sin 2π=0,f (7)=sin 7π3=sin π3=f (1),f (8)=f (2),……, ∵f (1)+f (2)+f (3)+…+f (6)=0,∴f (1)+f (2)+f (3)+…+f (2 018)=f (1)+f (2)+336×0= 3. 答案:3三、解答题8.解:(1)sin 1 200°=sin[120°+3×360°]=sin 120°=sin(180°-60°)=sin 60°=32. (2)cos 476π=cos ⎝⎛⎭⎫116π+6π=cos 116π=cos ⎝⎛⎭⎫2π-π6=cos π6=32. (3)sin ⎝⎛⎭⎫-7π3=-sin 7π3=-sin ⎝⎛⎭⎫2π+π3 =-sin π3=-32. (4)tan(-855°)=-tan 855°=-tan(2×360°+135°)=-tan 135°=-tan(180°-45°)=-tan(-45°)=tan 45°=1.9.解:由已知cos α=23,α是第四象限角得sin α=-53,故sin (α-2π)+sin (-α-3π)cos (α-3π)cos (π-α)-cos (-π-α)cos (α-4π)=sin α-sin αcos α-cos α+cos 2α=sin α(1-cos α)cos α(-1+cos α)=-sin αcos α=52. 10.解:方法一 ①当n 为奇数时,原式=sin 2π3·(-cos 4π3) =sin ⎝⎛⎭⎫π-π3·⎣⎡⎦⎤-cos ⎝⎛⎭⎫π+π3=sin π3·cos π3=32×12=34. ②当n 为偶数时,原式=sin 2π3·cos 4π3=sin ⎝⎛⎭⎫π-π3·cos ⎝⎛⎭⎫π+π3 =sin π3·⎝⎛⎭⎫-cos π3=32×⎝⎛⎭⎫-12=-34. 综上可知,原式=(-1)n +134. 方法二 原式=sin 2π3·(-1)n cos 4π3=sin ⎝⎛⎭⎫π-π3·(-1)n cos ⎝⎛⎭⎫π+π3 =sin π3·(-1)n ·(-cos π3)=(-1)n ×32×⎝⎛⎭⎫-12=(-1)n +134.。
《三角函数的诱导公式》教学设计方案

课题:三角函数的诱导公式(一)一、教学内容分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.二、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.三、学习者特征分析本节课的授课对象是本校高一(4)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.四、教学策略选择与设计数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.五、教学重点及难点理解并掌握诱导公式.正确运用诱导公式,求三角函数值,化简三角函数式.六、教学过程教师活动学生活动设计意图1.复习锐角300,450,600的三 1. 让学生发现300角的由特殊问题的引角函数值;2.复习任意角的三角函数定义;3.问题:由,你能否知道sin2100的值吗?引如新课.终边与2100角的终边之间有什么关系;2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;3.Sin2100与sin300之间有什么关系.入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.由sin3000= -sin600出发,用三角的定义引导学生求出sin (-3000),Sin150 0值,让学生联想若已知sin3000= -sin600,能否求出sin(-3000),Sin150 0)的值.1.探究任意角与的三角函数又有什么关系;2.探究任意角与的三角函数之间又有什么关系.遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.展示学生自主探究的结果七、教学评价设计三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)设计意图简便记忆公式.八、板书设计1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.2.体会数形结合、对称、化归的思想.3.“学会”学习的习惯.九.教学反思可以从如下角度进行反思(不少于200字):对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。
1.3 三角函数的诱导公式(1) 教案(优秀经典公开课比赛教案)

1.3 三角函数的诱导公式(1)一、教学目标:知识与技能:(1)识记诱导公式.(2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明.过程与方法:(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法.(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式.(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力.情感、态度与价值观(1)由诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神.(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想.二.重点难点重点:诱导公式的推导及应用。
难点:相关角边的几何对称关系及诱导公式结构特征的认识。
三、教材与学情分析1、本节课教学内容“诱导公式(二)、(三)、(四)”是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数基本关系式及诱导公式(一)等知识的延续和拓展,又是推导诱导公式(五)的理论依据。
2、求三角函数值是三角函数中的重要问题之一。
诱导公式是求三角函数值的基本方法。
诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90°角的三角函数值问题。
诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式。
这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大的意义。
-y)四、教学方法问题引导,主动探究,启发式教学.五、教学过程(一)创设问题情景,引导学生观察、联想,导入课题 1、初中我们已经会求锐角的三角函数值。
2、和30°、45°、60°终边相同的角如何表示?本节我们将研究任意角三角函数值之间的某中关系,以及如何求任意角的三角函数值。
《三角函数的诱导公式(一)》示范课教案【高中数学】

《三角函数的诱导公式(一)》教学设计◆教学目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题.◆教学重难点◆教学重点:推导出四组的诱导公式,能正确运用诱导公式将任意角的三角函数化为锐角的三角函数.教学难点:解决有关三角函数求值、化简和恒等式证明问题.◆课前准备PPT课件.◆教学过程一、新课导入对称美是日常生活中最常见的,在三角函数中-α、π±α、2π-α等角的终边与角α的终边关于坐标轴或原点对称,那么它们的三角函数值之间是否也存在对称美呢?引语:要解决这个问题,就需要进一步学习三角函数的诱导公式.(板书:7.2.3三角函数的诱导公式(一))设计意图:情境导入,引入新课。
【探究新知】问题1:当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数之间有什么关系?师生活动:学生分析解题思路,给出答案.预设的答案:它们的终边重合.由三角函数的定义知,它们的三角函数值相等.诱导公式一:sin(α+k·2π)=sinα,cos(α+k·2π)=cosα,tan(α+k·2π)=tanα,其中k∈Z.即终边相同的角的同一三角函数值相等.问题2:角π+α的终边与角α的终边有什么关系?角π+α的终边与单位圆的交点P1(cos(π+α),sin(π+α))与点P(cosα,sinα)呢?它们的三角函数之间有什么关系?师生活动:学生分析解题思路,给出答案.预设的答案:角π+α的终边与角α的终边关于原点对称,P1与P也关于原点对称,它们的三角函数关系如下:诱导公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.问题3:角-α的终边与角α的终边有什么关系?角-α的终边与单位圆的交点P2(cos(-α),sin(-α))与点P(cosα,sinα)有怎样的关系?它们的三角函数之间有什么关系?师生活动:学生分析解题思路,给出答案.预设的答案:角-α的终边与角α的终边关于x轴对称,P2与P也关于x轴对称,它们的三角函数关系如下:诱导公式三:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.问题4:角π-α的终边与角α的终边有什么关系?角π-α的终边与单位圆的交点P3(cos(π-α),sin(π-α))与点P(cosα,sinα)有怎样的关系?它们的三角函数之间有什么关系?师生活动:学生分析解题思路,给出答案.预设的答案:角π-α的终边与角α的终边关于y轴对称,P3与P也关于y轴对称,它们的三角函数关系如下:诱导公式四:sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα.追问1:如何记忆这四组诱导公式呢?预设的答案:2kπ+α(k∈Z),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号,可以简单地说成“函数名不变,符号看象限”.“函数名不变”是指等式两边的三角函数同名;“符号”是指等号右边是正号还是负号;“看象限”是指假设α是锐角,要看原三角函数值是取正值还是负值,如sin (π+α),若把α看成锐角,则π+α是第三象限角,故sin (π+α)=-sinα. 追问2:诱导公式一、二、三、四的作用是什么?预设的答案:公式一的作用在于把绝对值大于2π的任一角的三角函数问题转化为绝对值小于2π的角的三角函数问题;公式三的作用在于把负角的三角函数转化成正角的三角函数;公式二、公式四的作用在于把钝角或大于180°的角的三角函数转化为0°~90°之间的角的三角函数.设计意图:培养学生分析和归纳的能力.【巩固练习】例1. 求值:(1)sin (-60°)+cos 120°+sin 390°+cos 210°;(2师生活动:学生分析解题思路,给出答案.预设的答案:(1) 原式=-sin 60°+cos (180°-60°)+sin (360°+30°)+cos (180°+30°) =-sin 60°-cos 60°+sin 30°-cos 30°1122=+=(2 cos1012cos102︒=︒.反思与感悟:利用诱导公式求任意角三角函数的步骤: (1)“负化正”——用公式一或三来转化;(2)“大化小”——用公式一将角化为0°到360°间的角; (3)“小化锐”——用公式二或四将大于90°的角转化为锐角; (4)“锐求值”——得到锐角的三角函数后求值.设计意图:掌握利用诱导公式求任意角三角函数的方法。
高一数学《三角函数的诱导公式(第1课时)》教案示范三篇

高一数学《三角函数的诱导公式(第1课时)》教案示范三篇高一数学《三角函数的诱导公式(第1课时)》教案1教材分析:高一数学《三角函数的诱导公式(第1课时)》是一节基础性课程,课本中主要包含了三角函数诱导公式的定义、常见角度的三角函数值以及相应的推导方法等内容。
教师需要全面了解教材的内容,并对教材的组织结构、难易程度及与之相应的教学资源进行细致的分析和处理。
教学目标:通过本节课的教学,学生应该能够掌握诱导公式的基本概念、运用方法及其相关定理,能够熟练地计算一些常见角度的三角函数值,并能够对不同情况下的三角函数值进行求解。
教学重点:本节课教学的重点主要集中在诱导公式的定义及其相关定理的理解和运用上,同时也需要教师在教学过程中重点关注学生对于诱导公式的记忆和运用情况。
教学难点:本节课教学难点在于对于一些相对较为复杂的求解题目的讲解和理解,尤其是在涉及到三角函数值之间的相互替换问题时需要引导学生注重方法逻辑的分析和运用。
学情分析:本节课所涉及到的内容主要是在初中阶段所学习的三角函数知识的基础上进一步推广和延伸,对于新生来说可能需要花费一定的时间来加深对于三角函数概念的理解和记忆。
教学策略:教师可以通过引入案例以及图像的呈现等方式来促进学生对于三角函数概念以及诱导公式的理解和记忆,同时也需要关注学生在解题过程中的思维逻辑和分析方法的引导。
教学方法:本节课教学方法需要注重理论掌握和实践操作的结合,可以通过练习习题,讲解案例和互动讨论等方式来提高学生的思维能力和实际操作水平。
同时也可以通过个性化的辅导方式注重对于学生的学习经历和个体差异进行分析和处理。
高一数学《三角函数的诱导公式(第1课时)》教案2本节课的教学过程如下:一、导入环节(约5分钟)教学内容:复习三角函数的基本概念,介绍本节课的主题——三角函数的诱导公式。
教学活动:1.学生们通过手写练习纸,复习三角函数的基本公式和图像;2.老师引导学生们思考有哪些角的三角函数值已知,而另外一个角的三角函数值不易计算;3.通过引导,学生们提出了需要学习三角函数的诱导公式的需求;4.老师介绍三角函数的诱导公式的含义和作用,引发学生们兴趣。
诱导公式教案详案

普通高中课程标准实验教科书必修4 第一章第三节.§1.3 三角函数的诱导公式(第一课时)授课人:胡永刚授课对象:高一学生【教材分析】本节课位于数学必修4 第一章第三节——三角函数的诱导公式。
本节主要学习三角函数的诱导公式,并利用公式进行运算。
诱导公式是三角函数运算的重要工具。
从知识网络结构上看,三角函数的诱导公式是单位圆上任意角的三角函数的延续和拓展,也是三角函数运算的基础。
在研究和解决各种三角问题时,诱导公式都有其广泛应用。
其中,诱导公式的推导过程包含有诸多数学思想。
对于进一步探究三角函数的其他性质有很大帮助。
【教学目标】㈠知识与技能①从π±α,-α,π/2-α的图像出发,直观地认识三角函数的一些性质。
②从三角函数定义出发,完成对公式二~四的推导。
③利用公式二~四运算一些简单或复杂的三角函数㈡过程与方法通过观察π±α,-α,π/2-α的终边与任意角α的终边的对称关系,形成对三角函数性质的直观认识,再通过单位圆上任意角的三角函数定义,导出所有诱导公式。
从图形到数学语言,将″数″与″形″进行有机结合,得出三角函数的诱导公式的推导。
能让学生更快﹑更好地掌握诱导公式。
㈢情感态度与价值观学生经历从具体到抽象,从特殊到一般,从未知到已知,从感性到理性的探究过程,体验数学公式的推导过程。
培养了学生善于观察,勇于探索的良好习惯和严谨的科学态度。
【教学重难点】教学重点:诱导公式的推导以及诱导公式的应用教学难点:诱导公式的推导和化归思想的应用。
诱导公式的推导既是难点又是重点,因为它体现了较强的数形结合思想的应用,同时,化归思想在诱导公式的应用中复杂多变,这也增加了学习难度。
【教法学法】教法:启发探究、问题推动基于学生认知水平,学生就图像的对称性的发现并不感到困难,但困难在于怎样利用三角函数定义和对称性去推导一个个诱导公式,并用精确的数学语言描述出来,这里就需要老师以问题形式推动,引导学生积极动脑,主动参与知识的探究活动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.三角函数诱导公式学案(一)
预习案(限时20分钟) 学习目标: (1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式; (2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题 学习重点: 用联系的观点发现并证明诱导公式,体会把未知问题化归为已知问题的思想方法
学习难点:如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法. 预习指导:请根据任务提纲认真预习课本P23-25
❖ 任务一:探究三角函数诱导公式(二)
(三)(四) 思考:
(1)各象限内三角函数值的符号是什么?(只讨论正弦、余弦、正切)
(2)任意角的三角函数的定义是什么?
(3)公式一的内容与作用是什么?
探究一:任意角α与(π+α)三角函数值的关系.
①α与 (π+α)角的终边关系如何?
②设α与(π+α)角的终边分别交单位圆于点P 1,P 2,则点P 1与P 2位置关系如何?
③设点P 1(x ,y ),那么点P 2的坐标怎样表示?
④sin α与sin(π+α),cos α与cos(π+α),tan α与tan(π+α)的关系如何?
利用三角函数定义,自己探索,归纳成公式(二)
_______)tan(_______)cos(_______)sin(=+=+=+απαπαπ 探究二:任意角α与(-α)三角函数值的关系.
①α与(-α)角的终边位置关系如何?
②设α与(-α)角的终边分别交单位圆于点P 1,P 2点P 1与P 2位置关系如何?
③设点P 1(x ,y ),则点P'的坐标怎样表示?
④sin α与sin(-α),cos α与cos(-α) ,tan α与tan(-α)关系如何?
利用三角函数定义,经过探索,归纳成公式(三)
_______)tan(_______)cos(_______)sin(=-=-=-ααα
探究三:α与(π-α)的三角函数值的关系.
①α与(π-α)角的终边位置关系如何?
②设α与(π-α)角的终边分别交单位圆于点P 1,P 2点P 1与P 2位置关系如何?
③设点P 1(x ,y ),则点P'的坐标怎样表示?
④sin α与sin(π-α),cos α与cos(π-α) ,tan α与tan(π-α)关系如何?
经过探索,归纳成公式(四)
_______)tan(_______)cos(
_______)sin(=-=-=-απαπαπ 预习检测
1.cos 225︒=_________
2.)45sin( -=_________
3.)150tan(
=________ _______)180tan()cos()180sin(.4=--•+ ααα
5.若,31)tan(=+απ则=αtan __________________
随堂练习
1.计算:=)240sin( ( ) A.23 B.23- C.21 D.21
-
2.计算:)3sin(π
-的值为 ( ) A.23 B.23- C.21 D.21
-
+)150sin(.3 )390sin( _________)600sin(=-
4.已知55
sin -=α,则=-)sin(απ_____________
____
)(sin ,2)tan(.5=+=-παααπ在第二象限,则且已知
____
)(sin )
6tan()cos()3sin(2_______)900sin()
360tan()(cos 1.632=-+---=-+--ααππααπααα)()(
7、已知31
)32sin(=-πα,则=--)3sin(π
α_________
8、已知则),,(,43
)(tan 232-=-∈παππα=+ααcos sin _______________.
ααα
ααsin 3cos 5sin 2sin 403.9+-=-上,则的终边在直线已知角y x =____________
10..已知______)43tan(,53
)4sin(=-=+π
θπ
θθ则是第四象限角,且
,1)2017(,,,),cos()sin()(.11=+++=f b a x b x a x f 均为非零实数,且有期中设函数βαβπαπ ________)2018(=f 则
______sin 1010
cos ),3,.12==-ααα,则且(终边上一点已知角m m P
13.已知圆9)3()1(:221=-++y x O ,圆01124:2
22=-+-+y x y x O ,则这两个圆的公共弦长为(
) A .524 B .512 C .59 D .51。