七年级数学定理概念公式汇总

合集下载

七年级数学定理概念公式

七年级数学定理概念公式

一、基础概念:1.有理数:是整数和分数的统称,包括正有理数、负有理数和零。

有理数的运算规律包括加法、减法、乘法和除法。

2.整数:包括正整数、负整数和零。

整数的加法、减法、乘法运算规律和有理数一致。

3.分数:由一个整数作分子和一个不等于0的整数作分母所构成的数。

4.百分数:以百为基数的分数,如60%,表示为0.65.小数:有限小数和无限循环小数。

6.平方根:如果一个非负数a,使得a²=b,那么称b是a的平方,记作√b=a。

7.解方程:找出能使方程等式成立的未知数的值。

二、基本定理:1.任何一个正的实数都有正的平方根。

2.两个正有理数的平方和不可能再为一个正的有理数的平方。

3.不完全平方数,两个并不相等的质数相乘得到的数。

4.一个质数除以另一个质数的商不是整数,或者说,一个质数不是另一个质数的倍数。

三、常用公式:1.圆的周长C和面积S的公式:C=2πrS=πr²2.矩形的周长C和面积S的公式:C=2(a+b)S = ab其中,a和b为矩形的两条边的长度。

3.三角形的面积公式:S=1/2×底×高S = 1/2 × ab × sinC其中,a和b为三角形两边的长度,C为夹角。

4.直角三角形的勾股定理:a²+b²=c²其中,a、b为直角三角形两个直角边的长度,c为斜边的长度。

以上是七年级数学的一些基础定理、概念和公式,只是其中的一部分,数学是一个广阔的学科,还有很多其他的定理和公式需要学习和掌握。

希望以上内容对您有所帮助。

七年级数学定理概念公式大全

七年级数学定理概念公式大全

按有理数的性质符号分类: f 「正整数正有理数VI 正分数有理数{ 0 (负整数 负有理数V I 负分数2、正数和负数用来表示具有相反意 义的数。

(二)数轴1、 定义: 规定了原点、正方向和 单位长度的直线叫做数轴。

2、 数轴的三要素是:原点、正方向、 单位长度。

(三)相反数 1定义:只有符号不同的两个数互 为相反数。

2、几何定义: 在数轴上分别位于原点的两旁,至师点的距离相等的两个点所表示的数,叫做互为相反数。

3、代数定义: 只有符号不同的两个数叫做互 为相反数,0的相反数是0。

(四)绝对值1 定义:在数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值2、 几何定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

3、 代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

a (ap > 0), 即对于任何有理数a,都有|a| = *0 (a = 0)* -a(a v 0)4、绝对值的计算规律:(1互为相反数的两个数的 绝对值相等.(2) 若|a| = |b|,则 a = b 或 a 二一b.有理数 (一)有理数 1有理数的分类:按有理数的定义分类: f 「正整数 整数Y 零 有理数! I 负整数j 正分数*分数*•负整数(3)若|a|+|b| = 0,则|a| = 0,且|b| = 0.相关结论:(1) 0的相反数是它本身。

(2)非负数的绝对值是它本身。

(3)非正数的绝对值是它的相反数。

(4)绝对值最小的数是0。

(5)互为相反数的两个数的绝对值相等。

(6)任何数的绝对值都是它的正数或0,即|a|组。

(五)倒数1、定义:乘积为“ 1”的两个数互为倒数。

2、求法:颠倒这个数的分子和分母。

13、 a (a M 0)的倒数是-.a有理数的运算一、有理数的加法法贝1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值3、一个数同零相加,仍得这个数;4、两个互为相反数的两个数相加得0。

七年级数学公式大全表必背知识点

七年级数学公式大全表必背知识点

七年级数学公式大全表必背知识点一、代数1. 一元一次方程- 标准形式:ax + b = c- 解方程公式:x = (c - b) / a2. 一元一次不等式- 解不等式的方法:将不等式化为一元方程,然后解出值3. 一元二次方程- 标准形式:ax^2 + bx + c = 0- 解方程公式:x = (-b ± √(b^2 - 4ac)) / 2a4. 因式分解- 判断一个多项式是否能够因式分解的方法- 先将多项式分解为一次因式的乘积- 再判断每一个一次因式是否能够继续分解5. 公式:- (a + b)^2 = a^2 + 2ab + b^2- (a - b)^2 = a^2 - 2ab + b^2- a^2 - b^2 = (a - b)(a + b)二、几何1. 等腰三角形- 性质:两边相等,两底角相等- 面积公式:S = (底边长×高)/22. 直角三角形- 勾股定理:a^2 + b^2 = c^2- 三角函数公式:sinθ = 对边/斜边,cosθ = 邻边/斜边,tanθ = 对边/邻边3. 圆- 周长公式:C = πd,C = 2πr- 面积公式:S = πr^24. 平行四边形- 性质:对边相等,对角线互相平分- 面积公式:S = 底×高5. 三角形- 海伦公式:S = √[p(p-a)(p-b)(p-c)],其中p = (a + b + c)/2三、概率1. 事件的概率- 基本概率公式:P(A) = n(A)/n(S)- 互斥事件概率:P(A ∪ B) = P(A) + P(B)2. 条件概率- 条件概率公式:P(B|A) = P(A∩B)/P(A)四、统计1. 平均数- 算术平均数:平均数 = 总和/个数2. 中位数- 将一组数据从小到大排列,中间位置的数字就是中位数3. 众数- 一组数据中出现次数最多的数字- 众数可能有一个,也可能有多个以上便是七年级数学中常见的公式和必备知识点,希望同学们能够根据这些知识进行复习和总结,做到熟练记忆和灵活运用。

七年级上册数学几何公式及定理

七年级上册数学几何公式及定理

七年级上册数学几何的公式及定理主要包括以下内容:一、线的性质及定理:1.过两点有且只有一条直线。

2.两点之间,线段最短。

3.经过直线外一点,有且只有一条直线与这条直线平行。

4.如果两条直线都和第三条直线平行,这两条直线也互相平行。

二、角的性质及定理:1.同角或等角的补角相等。

2.同角或等角的余角相等。

3.同位角相等,两直线平行4.内错角相等,两直线平行。

5.同旁内角互补,两直线平行。

6.两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。

三、三角形的性质及定理:1.三角形两边的和大于第三边,三角形两边的差小于第三边。

2.三角形内角和定理:三角形三个内角的和等于180°。

3.直角三角形的两个锐角互余。

4.三角形的一个外角等于和它不相邻的两个内角的和。

5.三角形的一个外角大于任何一个和它不相邻的内角。

四、几何公式:1.长方形的周长= (长+ 宽) × 2,即C = (a + b) × 22.正方形的周长= 边长× 4,即C = 4a3.长方形的面积= 长× 宽,即S = ab4.正方形的面积= 边长× 边长,即S = a^25.三角形的面积= 底× 高÷ 2,即S = ah ÷ 26.平行四边形的面积= 底× 高,即S = ah7.梯形的面积= (上底+ 下底) × 高÷ 2,即S = (a + b)h ÷ 28.圆的周长= 圆周率× 直径,即C = πd9.圆的面积= 圆周率× 半径× 半径,即S = πr^2。

七年级数学定理概念公式

七年级数学定理概念公式

我很高兴为您提供七年级数学的定理、概念和公式。

以下是一个
1200字以上的总结:
1.定理
1.1平行线定理:如果两条直线被一条截线分成两个内角相等的部分,则这两条直线是平行的。

1.2直角三角形定理:在一个直角三角形中,两条直角边的平方和等
于斜边的平方。

1.3必要条件与充分条件定理:对于一个陈述,必要条件是指该陈述
成立时的条件,而充分条件是指该条件成立时的陈述。

1.4等腰三角形定理:在一个等腰三角形中,底边上的两个角相等。

2.概念
2.1平行线:在同一个平面上,永远不会相交的直线。

2.2垂直线:相互交于直角的两条直线。

2.3三角形:由三条线段构成的图形。

2.4直角三角形:一个角为直角的三角形。

2.5等腰三角形:具有两边相等的三角形。

3.公式
3.1平行线的性质:
-同位角:对于一对平行线与截线,同位角相等。

-内错角:对于一对平行线和截线,内错角相等。

-外错角:对于一对平行线和截线,外错角相等。

3.2三角形的性质:
-三角形的内角和:任何三角形的内角和都等于180°。

-直角三角形的特殊比例关系:
-边长关系:直角三角形的斜边平方等于两个直角边平方的和。

-角度关系:直角三角形的非直角角的正弦、余弦和正切值可以通过边长比例得到。

3.3等腰三角形的性质:
-边长关系:等腰三角形的两边相等。

-角度关系:等腰三角形的两个底角相等。

七年级数学定理定义总结大全

七年级数学定理定义总结大全

七年级数学定理定义总结大全七年级数学定理定义总结大全:1.一次函数的定义:一次函数是指数可为1的函数,通常表示为y = kx + b,其中k和b为常数,k称为斜率,b称为截距。

2.二次函数的定义:二次函数是指数为2的函数,通常表示为y = ax^2 + bx + c,其中a、b、c为常数,a≠0。

3.函数的定义:函数是一个或多个变量的关系,对于每一个自变量都有唯一的因变量与之对应。

4.全等三角形的定义:两个三角形,如果它们的三边对应相等,三角形的三个内角对应相等,则这两个三角形是全等三角形。

5.平行四边形的定义:两组对边平行且相等的四边形。

6.直角三角形的定义:含有一个直角(90°)的三角形。

7.等腰三角形的定义:两边相等的三角形。

8.等边三角形的定义:三边相等的三角形。

9.两角余弦定理:在三角形ABC中,a=BC,b=AC,c=AB,∠A对边a,∠B对边b,∠C对边c,则有以下公式:cosA = (b^2 + c^2 - a^2)/(2bc)cosB = (a^2 + c^2 - b^2)/(2ac)cosC = (a^2 + b^2 - c^2)/(2ab)10.两角正弦定理:在三角形ABC中,a=BC,b=AC,c=AB,∠A对边a,∠B对边b,∠C对边c,则有以下公式:sinA/a = sinB/b = sinC/c11.两角正切定理:在三角形ABC中,a=BC,b=AC,c=AB,∠A对边a,∠B对边b,∠C对边c,则有以下公式:tanA = (a/b)tanB = (b/a)tanC = (a/c)12.三角形中位定理:对于任意三角形ABC,连接三角形的中点得到三边中点形成的三角形MNP,MNP的中位线平行于ABC的三边,并且中位线的长度等于ABC的三角形的一半。

13.锐角三角函数的定义:在直角三角形ABC中,a=BC,b=AC,c=AB,∠A对边a,∠B对边b,∠C对边c,则有以下定义:sinA = a/ccosA = b/ctanA = a/b14.弧长的定义:圆的弧长是圆周上的一段距离,通常用弧长l表示。

七年级数学定律归纳总结

七年级数学定律归纳总结

七年级数学定律归纳总结一、整数的运算定律整数的运算有加法和乘法两种基本运算。

那么整数之间是否存在一些规律或者定律呢?接下来我们来进行整理和总结。

1. 加法运算定律(1)交换律:对于任意整数a和b,a + b = b + a。

(2)结合律:对于任意整数a、b和c,(a + b) + c = a + (b + c)。

(3)零元素:对于任意整数a,a + 0 = 0 + a = a。

(4)相反元素:对于任意整数a,存在一个整数-b,使得a + (-b) = (-b) + a = 0。

2. 乘法运算定律(1)交换律:对于任意整数a和b,a × b = b × a。

(2)结合律:对于任意整数a、b和c,(a × b) × c = a × (b × c)。

(3)幂运算法则:对于任意整数a,a的指数幂a^n可以进行以下变换:a^n = a × a × ... × a (n个a相乘)= a^(n-1) × a(4)零元素:对于任意整数a,a × 0 = 0 × a = 0。

(5)单位元素:对于任意整数a,a × 1 = 1 × a = a。

二、数学公式和规律1. 平方数与平方根(1)平方数:平方数是指一个数的平方,例如1、4、9、16等。

其中,平方数可以写成两个连续奇数之和。

(2)平方根:平方根是指一个数的算术平方根,例如√1 = 1、√4 = 2、√9 = 3等。

每个正整数都有一个正数平方根和一个负数平方根。

2. 质数与合数(1)质数:质数是指大于1且只能被1和自身整除的整数,例如2、3、5、7等。

(2)合数:合数是指大于1且除了1和自身外还有其他因数的整数,例如4、6、8、9等。

合数可以被分解成多个质数的乘积。

3. 排列与组合(1)排列:排列是从给定的元素中选取若干个进行有序的安排。

初一初中数学常用公式与定理

初一初中数学常用公式与定理

初一初中数学常用公式与定理数学作为一门基础学科,在初一和初中阶段,对于学生的发展至关重要。

掌握数学常用公式与定理,不仅可以提高数学分析和解决问题的能力,还有助于培养逻辑思维和数学思维能力。

下面是一些初一和初中数学常用的公式与定理以及它们的应用。

1. 代数运算公式代数运算是数学的基础,掌握一些常用的代数运算公式对于解决复杂的代数问题非常有帮助。

下面是一些常用的代数运算公式:1.1 加法和减法公式加法公式:(a+b)^2 = a^2 + 2ab + b^2减法公式:(a-b)^2 = a^2 - 2ab + b^21.2 乘法公式(a+b)(a-b) = a^2 - b^21.3 平方差公式(a+b)^2 - (a-b)^2 = 4ab2. 几何定理几何是数学的重要分支之一,许多几何定理可以帮助我们理解图形的性质和解决几何问题。

下面是一些初一和初中常用的几何定理以及它们的应用:2.1 皮亚诺定理皮亚诺定理表明,在一个平面上的n个点中,任意两点之间的连线的条数等于C(n, 2),即C(n, 2) = n(n-1)/2。

这个定理可以应用于计算几何图形中的线段数量。

2.2 正弦定理正弦定理表明,在一个三角形ABC中,三个内角A、B、C的正弦值与对边a、b、c之间的关系为:sinA/a = sinB/b = sinC/c。

这个定理可以帮助我们计算三角形的边长或角度。

2.3 余弦定理余弦定理表明,在一个三角形ABC中,三个内角A、B、C的余弦值与对边a、b、c之间的关系为:cosA = (b^2 + c^2 - a^2)/(2bc)。

这个定理可以帮助我们计算三角形的边长或角度。

3. 概率与统计概率与统计是数学中的实用工具,在解决排列组合、概率等问题时起着重要作用。

下面是一些初一和初中常用的概率与统计公式:3.1 排列公式排列公式表示从n个不同元素中选取r个元素进行排列的总数,表示为P(n, r) = n!/(n-r)!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、有理数(一)有理数1、有理数的分类:按有理数的定义分类:按有理数的性质符号分类:正整数正整数整数零正有理数有理数负整数正分数正分数有理数0分数负整数负整数负有理数负分数2、正数和负数用来表示具有相反意义的数。

(二)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。

2、数轴的三要素是:原点、正方向、单位长度。

(三)相反数1、定义:只有符号不同的两个数互为相反数。

2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数。

3、代数定义:只有符号不同的两个数叫做互为相反数,0的相反数是0。

(四)绝对值1、定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值。

2、几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。

3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

a (a>0),即对于任何有理数a,都有|a|=0(a=0)–a(a<0)4、绝对值的计算规律:(1)互为相反数的两个数的绝对值相等.(2)若|a|=|b|,则a =b或a =-b.(3)若|a|+|b|=0,则|a|=0,且|b|=0.相关结论:(1)0的相反数是它本身。

(2)非负数的绝对值是它本身。

(3)非正数的绝对值是它的相反数。

(4)绝对值最小的数是0。

(5)互为相反数的两个数的绝对值相等。

(6)任何数的绝对值都是它的正数或0,即|a|≥0。

(五)倒数1、定义:乘积为“1”的两个数互为倒数。

2、求法:颠倒这个数的分子和分母。

3、a(a≠0)的倒数是1a.有理数的运算一、有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、一个数同零相加,仍得这个数;4、两个互为相反数的两个数相加得0。

二、有理数的减法法则:减去一个数,等于加上这个数的相反数。

三、有理数的乘法法则:1、两数相乘,同号得正,异号得负,并把绝对值相乘;2、任何数同0相乘,都得0;3、乘积是1的两个数互为倒数。

四、有理数的除法法则:1、除以一个不等于0的数,等于乘以这个数的倒数;2、两个有理数相除,同号得正,异号得负,并把绝对值相除。

0除以任何一个不等于0的数,都得0。

五、乘方1、定义:求n个相同因数的积的运算,叫做乘方。

2、幂的符号法则:正数的任何次幂都是正数;负数的奇次幂是负数;负数的偶次幂是正数;0的任何次正整数次幂都是0。

六、有理数的混合运算顺序:1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

七、科学计数法、有效数字、近似数1、科学计数法(1)定义:把一个绝对值大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,即1≤|a|<10,n 是正整数),这种计数方法叫做科学计数法。

(2)用科学计数法表示一个n位整数,其中10的指数是这个数的整数位数减1。

2、有效数字的定义:四舍五入后的近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字。

3、近似数的定义:一个数与准确数相近(比准确数略多或者略少些),这一个数称之为近似数。

整式的加减一、单项式、多项式、整式的概念单项式:由数与字母的乘积组成的代数式叫做单项式。

单独的一个数或一个字母也是单项式。

多项式:几个单项式的和叫做多项式。

整式:单项式与多项式统称整式。

二、单项式的系数和次数单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数之和。

三、多项式的项、常数项、次数在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫常数项,多项式中次数最高项的次数,就是这个多项式的次数。

四、同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项,所有常数项都是同类项。

五、合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

六、合并同类项步骤:⑴.准确的找出同类项。

⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

⑶.写出合并后的结果。

七、升幂排列与降幂排列为便于多项式的运算,可以用加法的交换律将多项式各项的位置按某一字母指数大小顺序重新排列。

若按某个字母的指数从大到小的顺序排列,叫做这个多项式按这个字母降幂排列。

若按某个字母的指数从小到大的顺序排列,叫做这个多项式按这个字母升幂排列。

八、去括号的法则括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。

九、整式加减的一般步骤是:(1)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。

括号里各项都不变符号;括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号。

(2)合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。

一元一次方程一、一元一次方程的概念定义: 方程中只含有一个未知数(元),并且未知数的指数是1(次),未知数的式子都是整式,这样的方程叫做一元一次方程。

等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a = b , 那么a ±c = b ±c等式的性质2:等式两边乘以同一个数,或除以同一个不为0的数,结果仍相等。

如果a = b ,那么ac = bc ;如果a = b (c ≠0),那么a c = b c移项 :把方程中的某一项,改变符号后,从方程的左边(右边)移到右边(左边),这种变形叫做移项。

解一元一次方程的一般步骤:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;4.合并同类项:把方程化成ax=b(a ≠0)的形式;5.系数化成1:在方程两边都除以未知数的系数a ,得到方程的解x = b a图形认识初步一、常见的立体图形:柱形、锥体、球体1、柱体中有①圆柱:底面是圆,侧面是曲面;②棱柱:底面是多边形,侧面是长方形;2、锥体中有①圆锥:底面是圆,侧面是曲面;②棱锥:底面是多边形,侧面是三角形;二、几何图形都是由点、线、面、体组成的包围着体的是面,面与面相接的地方是线,线和线相交的地方是点。

点动成线,线动成面,面动成体,体、面、线、点都是几何图形。

三、直线、射线、线段1、直线(1)概念:向两方无限延伸的的一条笔直的线。

如代数中的数轴,就是一条直线(它只规定了原点、方向和长度单位)。

(2)基本性质:经过两点有一条直线,并且只有一条直线;也可以简单地说“两点确定一条直线”。

(3)特点:①直线没有长短,向两方无限延伸;②直线没有粗细;③两点确定一条直线;④两条直线相交有唯一一个交点。

2、射线(1)概念:直线上一点和它一旁的部分叫做射线。

(2)特点:只有一个端点,向一方无限延伸,无法度量。

3、线段(1)概念:直线上两点和它们之间的部分叫做线段。

线段有两个端点,有长度。

(2)基本性质:两点之间线段最短。

(3)特点:有两个端点,不能向任何一方延伸,可以度量,可以较长短。

4、线段的中点:把一条线段分成两条相等线段的点。

四、角1、角的概念:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。

3、角度制及换算(1)角度制的概念:以度、分、秒为单位的角的度量制,叫做角度制。

(2)角度制的换算:1°=60′1′=60″1周角=360°1平角=180°1直角=90°(3)换算方法:把高级单位转化为低级单位要乘进率;把低级单位转化为高级单位要除以进率;转化时必须逐级进行,“越级”转化容易出错。

4、角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。

5、角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

6、余角和补角:(1)余角:如果两个角的和等于90°(直角),那么这两个角互为余角,其中一个角是另一个角的余角;(2)补角:如果两个角的和等于180°(平角),那么这两个角互为补角,其中一个角是另一个角的补角;(3)余角的性质:等角的余角相等;等角的性质:同角的补角相等。

相交线1. 相交线的定义:在同一平面内,如果两条直线只有一个公共点,那么这两条直线叫做相交线。

2. 对顶角的定义:一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。

3. 对顶角的性质:对顶角相等。

4. 邻补角的定义:有公共顶点和一条公共边,并且互补的两个角称为邻补角。

5. 邻补角的性质:邻补角互补。

6、垂线的定义:垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

7、垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:垂线段最短。

8、点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。

9、同位角:两个角都在两条被截线同侧,并在截线的同旁,这样的一对角叫做同位角。

10、内错角:两个角都在两条被截线之间,并且在截线的两旁,这样的一对角叫做内错角。

11、同旁内角:两个角都在两条被截线之间,并且在截线的同旁,这样的一对角叫做同旁内角。

12、平行线的概念在同一平面内,不相交的两条直线叫做平行线。

13、平行公理:经过直线外一点,有且只有一条直线与已知直线平行。

14、平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线也平行。

15、平行线的判定方法:(1)判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单说成:同位角相等,两直线平行。

(2)判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

简单说成:内错角相等,两直线平行。

(3)判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

简单说成:同旁内角互补,两直线平行。

(4)两条直线都和第三条直线平行,那么这两条直线平行。

(5)在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行。

16、命题的概念:判断一件事情的语句叫做命题。

17、命题的形式:命题由题设和结论两部分组成,通常可以写成“如果……那么……”的形式。

“如果”后面的部分是题设,“那么”后面的部分是结论。

18、命题包括两种:判断为正确的命题称为真命题;判断为错误的命题称为假命题。

19、平移的定义:把一个图形整体沿某一方向移动一定的距离,叫做平移变换,简称平移。

相关文档
最新文档