算法设计与分析复习题
《算法设计与分析》复习题

填空1.直接或间接地调用自身的算法称为 递归 。
2.算法的复杂性是 算法效率 的度量,是评价算法优劣的重要依据。
3.以广度优先或以最小耗费方式搜索问题解的算法称为 分支限界法。
4.回溯法解题的显著特点是在搜索过程中动态产生问题的解空间。
在任何时刻,算法只保存从根结点到当前扩展结点的路径。
如果解空间树中从根结点到叶结点的最长路径的长度为h(n),则回溯法所需的计算空间通常为 o(h(n)) 。
5.人们通常将问题的解决方案分为两大类:一类是可以通过执行若干个步骤就能得出问题6.算法就是一组有穷的 规则 ,它们规定了解决某一特定类型问题的 一系列运算 。
7.在进行问题的计算复杂性分析之前,首先必须建立求解问题所用的计算模型。
3个基本计算模型是 随机存取机、 随机存取存储程序机 、 图灵机 。
8.快速排序算法的性能取决于 划分的对称性 。
9.计算机的资源最重要的是 内存 和 运算 资源。
因而,算法的复杂性有时间 和 空间 之分。
10.贪心算法总是做出在当前看来 最优 的选择。
也就是说贪心算法并不从整体最优考虑,它所做出的选择只是在某种意义上的 局部最优解 。
11.许多可以用贪心算法求解的问题一般具有2个重要的性质: 最优子结构的 性质和 贪心选择的 性质。
12.常见的两种分支限界法为 队列式 和 优先队列式 。
13.解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中需要排序的是 回溯法 ,不需要排序的是 动态规划和分支限界法 。
14.f ( n ) = 6 × 2n + n 2,f(n)的渐进性态f ( n ) = O ( 2^n )。
15.对于含有n 个元素的排列树问题,最好情况下计算时间复杂性为 ,最坏情况下计算时间复杂性为 n! 。
16.在忽略常数因子的情况下,O 、Ω和Θ三个符号中, Θ 提供了算法运行时间的一个上界。
17.回溯法的求解过程,即在问题的解空间树中,按 深度优先 策略从根结点出发搜索解空间树。
算法设计与分析试题库

《算法分析与设计》试题库(一)一、选择题1.应用Johnson 法则的流水作业调度采用的算法是(D )A. 贪心算法B. 分支限界法C.分治法D. 动态规划算法2.Hanoi 塔问题如下图所示。
现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置。
移动圆盘时遵守Hanoi 塔问题的移动规则。
由此设计出解Hanoi 塔问题的递归算法正确的为:(B )Hanoi 塔A. void hanoi(int n, int A, int C, int B) { if (n > 0) {hanoi(n-1,A,C, B); move(n,a,b);hanoi(n-1, C, B, A); } B. void hanoi(int n, int A, int B, int C) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }C. void hanoi(int n, int C, int B, int A) {if (n > 0) {hanoi(n-1, A, C, B); move(n,a,b);hanoi(n-1, C, B, A); }3. 动态规划算法的基本要素为(C)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用4. 算法分析中,记号O表示(B),记号Ω表示(A),记号Θ表示(D)。
A.渐进下界B.渐进上界C.非紧上界D.紧渐进界E.非紧下界5. 以下关于渐进记号的性质是正确的有:(A)A.f(n)(g(n)),g(n)(h(n))f(n)(h(n))=Θ=Θ⇒=ΘB. f(n)O(g(n)),g(n)O(h(n))h(n)O(f(n))==⇒=C. O(f(n))+O(g(n)) = O(min{f(n),g(n)})D. f(n)O(g(n))g(n)O(f(n))=⇔=6.能采用贪心算法求最优解的问题,一般具有的重要性质为:(A)A. 最优子结构性质与贪心选择性质B.重叠子问题性质与贪心选择性质C.最优子结构性质与重叠子问题性质D. 预排序与递归调用7. 回溯法在问题的解空间树中,按(D )策略,从根结点出发搜索解空间树。
算法设计与分析复习题

算法设计与分析复习题算法设计与分析是计算机科学中的一个重要领域,它涉及到如何高效地解决计算问题。
以下是一些复习题,可以帮助学生更好地理解和掌握算法设计与分析的基本概念和技巧。
1. 算法的基本概念:- 什么是算法?请列举算法的基本特性。
- 解释算法的时间复杂度和空间复杂度,并给出一个例子。
2. 算法设计策略:- 描述贪心算法的工作原理,并给出一个实际问题的例子。
- 解释分治算法的基本步骤,并用快速排序算法来说明。
3. 排序算法:- 比较选择排序、插入排序和冒泡排序的时间复杂度。
- 描述归并排序和快速排序的工作原理,并讨论它们的优缺点。
4. 搜索算法:- 解释线性搜索和二分搜索的区别。
- 描述哈希表的工作原理,并讨论其在搜索算法中的应用。
5. 图算法:- 解释深度优先搜索(DFS)和广度优先搜索(BFS)的工作原理。
- 描述迪杰斯特拉(Dijkstra)算法和贝尔曼-福特(Bellman-Ford)算法,并比较它们的使用场景。
6. 动态规划:- 解释动态规划与分治法的区别。
- 给出一个动态规划解决的问题,并描述其解决方案。
7. 复杂度分析:- 什么是大O记号、大Ω记号和大Θ记号?它们如何帮助我们分析算法的效率?- 给出一个算法,并使用大O记号来分析其时间复杂度。
8. 算法优化:- 描述一些常见的算法优化技巧,例如空间换时间或时间换空间。
- 讨论算法优化在实际应用中的重要性。
9. 算法应用:- 举例说明算法在不同领域的应用,如在网络路由、机器学习或数据压缩中。
10. 算法的局限性:- 讨论算法在解决特定问题时可能遇到的局限性。
- 解释为什么某些问题被认为是不可解的或计算上不可行的。
结束语:通过这些复习题的练习,学生应该能够加深对算法设计与分析的理解,掌握不同算法的原理和应用场景,以及如何评估和优化算法的性能。
希望这些题目能够帮助学生在考试或实际工作中更加自信和高效。
设计与算法分析考试题库

设计与算法分析考试题库一、选择题(每题2分,共20分)1. 在算法分析中,时间复杂度用来衡量算法的什么?A. 可读性B. 执行速度C. 资源消耗D. 可维护性2. 以下哪个排序算法的时间复杂度为O(n^2)?A. 快速排序B. 归并排序C. 选择排序D. 堆排序3. 动态规划与分治算法的主要区别是什么?A. 递归使用B. 子问题重叠C. 问题分解方式D. 算法效率4. 递归算法的基本原理是什么?A. 循环调用B. 重复执行C. 问题分解D. 迭代求解5. 在图算法中,深度优先搜索(DFS)和广度优先搜索(BFS)的主要区别在于?A. 搜索顺序B. 搜索深度C. 使用的数据结构D. 搜索效率6. 哈希表的冲突解决方法中,开放定址法和链地址法的主要区别是什么?A. 存储方式B. 冲突处理机制C. 访问速度D. 空间利用率7. 贪心算法在解决优化问题时,其选择的策略是?A. 随机选择B. 局部最优C. 全局最优D. 动态选择8. 以下哪个算法是解决最近公共祖先问题的?A. 二分查找B. 欧拉路径C. 弗洛伊德算法D. 树的深度优先搜索9. 算法的时间复杂度为O(1)表示该算法的执行时间与输入规模的大小?A. 成正比B. 成反比C. 无关D. 指数关系10. 在大O符号中,O(1)、O(log n)、O(n)、O(n log n)、O(n^2)、O(2^n),按算法效率从高到低排序正确的是?A. O(1), O(log n), O(n), O(n log n), O(n^2), O(2^n)B. O(2^n), O(n^2), O(n log n), O(n), O(log n), O(1)C. O(1), O(log n), O(n log n), O(n), O(n^2), O(2^n)D. O(1), O(n), O(log n), O(n log n), O(n^2), O(2^n)二、简答题(每题10分,共30分)11. 简述二分查找算法的基本思想及其时间复杂度。
算法设计与分析试卷及答案

算法设计与分析1、(1) 证明:O(f)+O(g)=O(f+g)(7分)(2) 求下列函数的渐近表达式:(6分)① 3n 2+10n;② 21+1/n;2、对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=θ(g(n)),并简述理由。
(15分)(1);5log )(;log )(2+==n n g n n f (2);)(;log )(2n n g n n f == (3);log )(;)(2n n g n n f == 3、试用分治法对数组A[n]实现快速排序。
(13分)4、试用动态规划算法实现最长公共子序列问题。
(15分)5、试用贪心算法求解汽车加油问题:已知一辆汽车加满油后可行驶n 公里,而旅途中有若干个加油站。
试设计一个有效算法,指出应在哪些加油站停靠加油,使加油次数最少。
(12分)6、试用动态规划算法实现下列问题:设A 和B 是两个字符串。
我们要用最少的字符操作,将字符串A 转换为字符串B ,这里所说的字符操作包括:(1)删除一个字符。
(2)插入一个字符。
(3)将一个字符改为另一个字符。
将字符串A 变换为字符串B 所用的最少字符操作数称为字符串A 到B 的编辑距离,记为d(A,B)。
试设计一个有效算法,对任给的两个字符串A 和B ,计算出它们的编辑距离d(A,B)。
(16分)⎣⎦2/)(;3)(i i g i i f ==。
对于给定的两个整数n 和m ,要求用最少的变换f 和g 变换次数将n 变为m 。
(16分)1、⑴证明:令F(n)=O(f),则存在自然数n 1、c 1,使得对任意的自然数n ≥n 1,有:F(n)≤c 1f(n)……………………………..(2分)同理可令G(n)=O(g),则存在自然数n 2、c 2,使得对任意的自然数n ≥n 2,有:G(n)≤c 2g(n)……………………………..(3分)令c 3=max{c 1,c 2},n 3=max{n 1,n 2},则对所有的n ≥n 3,有: F(n)≤c 1f(n)≤c 3f(n)G(n)≤c 2g(n)≤c 3g(n)……………………………..(5分) 故有:O(f)+O(g)=F(n)+G(n)≤c 3f(n)+c 3g(n)=c 3(f(n)+g(n)) 因此有:O(f)+O(g)=O(f+g)……………………………..(7分) ⑵ 解:① 因为;01033)103(lim 222=+-+∞→n n n n n n 由渐近表达式的定义易知: 3n 2是3n 2+10n 的渐近表达式。
算法分析与设计考试复习题及参考答案

15..最坏情况下快速排序退化成冒泡排序,需要比较n2次。 16. 是一种依据最优化量度依次选择输入的分级处理方法。基本思 路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n 个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加 入,不满足约束条件,则不把此输入加到这部分解中。 17.回溯法的解(x1,x2,……xn)的隐约束一般指个元素之间应满 足的某种关系。 18. 将数组一分为二,分别对每个集合单独排序,然后将已排序的 两个序列归并成一个含n个元素的分好类的序列。如果分割后子问题还 很大,则继续分治,直到一个元素。 19.快速排序的基本思想是在待排序的N个记录中任意取一个记录, 把该记录放在最终位置后,数据序列被此记录分成两部分。所有关键字 比该记录关键字小的放在前一部分,所有比它大的放置在后一部分,并 把该记录排在这两部分的中间,这个过程称作一次快速排序。之后重复 上述过程,直到每一部分内只有一个记录为止。 20.在定义一个过程或者函数的时候又出现了调用本过程或者函数 的成分,既调用它自己本身,这称为直接递归。如果过程或者函数P调 用过程或者函数Q,Q又调用P,这个称为间接递归。消除递归一般要用 到栈这种数据结构。 21.哈密顿环是指一条沿着图G的N条边环行的路径,它的访问每个 节点一次并且返回它的开始位置。 22.当前选择的节点X[k]是从未到过的节点,即X[k]≠X[i](i=1,2, …,k-1),且C(X[k-1], X[k])≠∞,如果k=-1,则C(X[k], X[1]) ≠∞。 23. 思路是:最初生成树T为空,依次向内加入与树有最小邻接边 的n-1条边。处理过程:首先加入最小代价的一条边到T,根据各节点到 T的邻接边排序,选择最小边加入,新边加入后,修改由于新边所改变 的邻接边排序,再选择下一条边加入,直至加入n-1条边。 二、复杂性分析 1、 递归方程
算法设计与分析期末复习题

算法设计与分析期末考试复习题1.算法有哪些特点?为什么说一个具备了所有特征的算法,不一定就是使用的算法?2.证明下面的关系成立:(参考例题1.5--1.6)(1)logn!=Θ(nlogn) (2)2n=Θ(2n+1)(3)n!=Θ(n n) (4)5n2-6n=Θ(n2)3.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void sort(int A[],int n)2. {3. int i,j,temp;4. for(i=0;i<n-1;i++)5. for(j=i+1;j<n;j++)6. if(A[j]<A[i]) {7. temp=A[i];8. A[i]=A[j];9. A[j]=temp;10. }11. }(1)什么时候算法所执行的元素赋值的次数最少?最少多少次?(2)什么时候算法所执行的元素赋值的次数最多?最多多少次?4.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void bubblesort(int A[],int n)2. {3. int j,i,sorted;4. i=sorted=0;5. while(i<n-1 && !sorted) {6. sorted=1;7. for(j=n-1;j>i;j--) {8. if(A[j]<A[j-1]) {9. temp=A[j];10. A[j]=A[j-1];11. A[j-1]=temp;12. sorted=0;13. }14. }15. i=i+1;16. }17. }(1)算法所执行的元素比较次数最少是多少次?什么时候达到最少?(2)算法所执行的元素比较次数最多是多少次?什么时候达到最多?(3)算法所执行的元素赋值次数最少是多少次?什么时候达到最少?(4)算法所执行的元素赋值次数最多是多少次?什么时候达到最多?(5)用О、和Ω记号表示算法的运行时间。
算法设计与分析复习题目及答案

分治法1、二分搜索算法是利用(分治策略)实现的算法。
9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略)实现的算法。
34.实现合并排序利用的算法是(分治策略)。
实现大整数的乘法是利用的算法(分治策略)。
17.实现棋盘覆盖算法利用的算法是(分治法)。
29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。
不可以使用分治法求解的是(0/1背包问题)。
动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。
下列算法中通常以自底向上的方式求解最优解的是(动态规划法)备忘录方法是那种算法的变形。
(动态规划法)最长公共子序列算法利用的算法是(动态规划法)。
矩阵连乘问题的算法可由(动态规划算法B)设计实现。
实现最大子段和利用的算法是(动态规划法)。
贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。
回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。
剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(分支界限法)的一搜索方式。
分支限界法解最大团问题时,活结点表的组织形式是(最大堆)。
分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。
(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(多选)1.算法必须满足哪些条件?算法是指解决问题的一种方法或一个过程。
算法是若干指令的有穷序列,满足条件:(1)输入:有零个或多个由外部提供的量作为算法的输入。
(2)输出:算法产生至少一个量作为输出。
(3)确定性:组成算法的每条指令是清晰,无歧义的。
(4)有限性:算法中每条指令的执行次数是有限的,执行每条指令的时间也是有限的。
2.哪些问题比较适合用递归算法?阶乘函数、Fibonacci数列、Ackerman函数、排列问题、整数划分问题、Hanoi塔问题分治策略(是高级的递归算法):(1)二分搜索技术、(2)大整数的乘法、(3)Strassen 矩阵乘法、(4)棋盘覆盖、(5)合并排序、(6)快速排序、(7)线性时间选择、(8)最接近点对问题、(9)循环赛日程表3. 哪些问题比较适合用贪心算法?(1)活动安排问题(2)最优装载问题(3)哈夫曼编码(4)单源最短路径(5)最小生成树(6)多机调度问题4. 哪些问题比较适合用回溯法?(1)装载问题(2)批处理作业调度(3)符号三角形问题(4)n后问题(5)0-1背包问题(6)最大团问题(7)图的m着色问题(8)旅行售货员问题(9)圆排列问题(10)电路板排列问题(11)连续邮资问题二、概念题1.递归的概念是什么?直接或间接地调用自身的算法称为递归算法。
用函数自身给出定义的函数称为递归函数。
2.什么是0-1背包问题?给定n种物品和一个背包:物品i的重量是wi,其价值为vi,背包的容量为C。
选择装入背包的物品,对于每种物品i只有两种选择,即装入背包或不装入背包,不能将物品i装入背包多次,也不能只装入部分的物品i,最终要使得装入背包中物品的总价值最大。
该问题被称为0-1背包问题。
3.什么是哈夫曼编码,它有什么优缺点?由哈夫曼提出构造最优前缀码的贪心算法,由此产生的编码方案称为哈夫曼编码。
哈夫曼编码是广泛地用于数据文件压缩。
用于数据的无损耗压缩。
其压缩率通常在20%~90%之间。
优点:给出现频率高的字符较短的编码,出现频率较低的字符以较长的编码,可以大大缩短总码长。
缺点:依赖于信源的统计特性,必须先统计得到信源的概率特性才能编码,而实际应用中,通常可在经验基础上预先提供Huffman码表,此时其性能有所下降。
4.什么是图的m着色问题?给定一个无向连通图G和m种不同的颜色。
用这些颜色为图G的各顶点着色,每个顶点着一种颜色。
是否有一种着色法使G中每条边的2的顶点着有不同颜色。
这个问题是图的m可着色判定问题。
若一个图最少需要m种颜色才能使图中每条边连接的2个顶点着不同颜色,则称现这个数m为该图的色数。
求一个图的色数m的问题称为图的m可着色优化问题。
5.什么是单源最短路径问题?给定一个带权有向图G =(V ,E),其中每条边的权是非负实数。
另外,还给定V 中的一个顶点,称为源。
现在要计算从源到所有其它各顶点的最短路的长度。
这里路的长度是指路上各边权之和。
这个问题通常称为单源最短路径问题。
6.分治法适用的条件有哪几个?分治法所能解决的问题一般具有以下几个特征:(1)该问题的规模缩小到一定的程度就可以容易地解决;(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质 (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
7.贪心算法有哪几个重要的性质,为什么可以适合处理某些问题?从许多可以用贪心算法求解的问题中可以看到它们具有两个重要的性质:贪心选择性质和最优子结构性质。
贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即由贪心选择来达到。
当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。
问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。
8.n 后问题是什么意思?在n ×n 格的棋盘上放置彼此不受攻击的n 个皇后。
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 后问题等价于在n ×n 格的棋盘上放置n 个皇后,任何2个皇后不放在同一行或同一列或同一斜线上。
9.什么是最大团问题?给定无向图G=(V ,E)。
如果U ⊆V ,且对任意u ,v ∈U 有(u ,v)∈E ,则称U 是G 的完全子图。
G 的完全子图U 是G 的一个团当且仅当U 不包含在G 的更大的完全子图中。
G 的最大团是指G 中所含顶点数最多的团。
10.回溯法的基本思想(1)针对所给问题,定义问题的解空间; (2)确定易于搜索的解空间结构;(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。
三、综合题1.给出n 个表达式,比较它们的阶?例:按照渐近阶从低到高的顺序排列以下表达式:4n 2、logn 、3n 、20n 、2、n 2/3又n!应该排在哪一位?按渐近阶从低到高答案为:2、logn 、n 2/3、20n 、4n 2、3n、n!2.对于下面几个递归算法写出伪代码 注意:递归条件和递归退出的条件? (1)阶层函数阶乘函数可递归地定义为:边界条件 递归方程边界条件与递归方程是递归函数的二个要素,递归函数只有具备了这两个要素,才能在有限次计算后得出结果。
阶层函数的自变量n 的定义域是非负整数。
递归式的第一式给出了这个函数的初始值,00)!1(1!>=⎩⎨⎧-=n n n n n是非递归地定义的。
每个递归函数都必须有非递归定义的初始值,否则,递归函数就无法计算。
递归式的第二式用较小自变量的函数值来表示较大自变量的函数值的方式来定义n 的阶层。
定义式的左右两边都引用了阶层记号,是一个递归定义式,可递归地计算如下:Int factorial(int n) {If (n= = n) return 1;Return n*factorial(n-1); }(2)Fibonacci 数列无穷数列1,1,2,3,5,8,13,21,34,55,……,称为Fibonacci 数列。
它可以递归地定义为:}边界条件 递归方程这是一个递归关系式,它说明当n >1时,这个数列的第n 项的值是它前面两项这和。
它用两个较小的自变量的函数值来定义一个较大自变量的函数值,所以需要两个初始值F(0)和F(1)。
第n 个Fibonacci 数可递归地计算如下:int fibonacci(int n) {if (n <= 1) return 1;return fibonacci(n-1)+fibonacci(n-2); }3.给定一张图,求出从源结点到目标结点的最短路径,用Dijkstra 算法,需画出表格 Dijkstra 算法是解单源最短路径问题的贪心算法。
基本思想是,设置顶点集合S 并不断地作贪心选择来扩充这个集合。
一个顶点属于集合S 当且仅当从源到该顶点的最短路径长度已知。
初始时,S 中仅含有源。
设u 是G 的某一个顶点,把从源到u 且中间只经过S 中顶点的路称为从源到u 的特殊路径,并用数组dist 记录当前每个顶点所对应的最短特殊路径长度。
Dijkstra 算法每次从V-S 中取出具有最短特殊路长度的顶点u ,将u 添加到S 中,同时对数组dist 作必要的修改。
一旦S 包含了所有V 中顶点,dist 就记录了从源到所有其它顶点之间的最短路径长度。
例如,对下图中的有向图,应用Dijkstra 算法计算从源顶点1到其它顶点间最短路径的过程列在下页的表中。
110)2()1(11)(>==⎪⎩⎪⎨⎧-+-=n n n n F n F n F(1)6皇后问题(3)10皇后问题5.关于汉诺塔的递归算法?设a,b,c是3个塔座。
开始时,在塔座a上有一叠共n个圆盘,这些圆盘自下而上,由大到小地叠在一起。
各圆盘从小到大编号为1,2,…,n,现要求将塔座a上的这一叠圆盘移到塔座b上,并仍按同样顺序叠置。
在移动圆盘时应遵守以下移动规则:规则1:每次只能移动1个圆盘;规则2:任何时刻都不允许将较大的圆盘压在较小的圆盘之上;规则3:在满足移动规则1和2的前提下,可将圆盘移至a,b,c中任一塔座上。
void hanoi(int n, int a, int b, int c){if (n > 0){hanoi(n-1, a, c, b);move(a,b);hanoi(n-1, c, b, a);}}6.分析给出几个矩阵,要求用加括号的方法,使矩阵连乘所使用的时间最少首先确定这几个矩阵是否可乘!完全加括号的矩阵连乘积可递归地定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C 的乘积并加括号,即A=(BC)QQQQQQQQQQQQQQQQQQQQ例:设有四个矩阵A,B,C,D,它们的维数分别是A=50*10 B=10*40 C=40*30 D=30*5总共有五种完全加括号的方式:(A((BC)D)) (A(B(CD))) ((AB)(CD)) (((AB)C)D) ((A(BC))D)解:①:BC:10*40*30=12000 (BC)*D=10*30*5=1500 A((BC)D)=50*10*5=2500 故(A((BC)D))=12000+1500+2500=16000②:CD=40*30*5=6000 B(CD)=10*40*5=2000 A(B(CD))=50*10*5=2500故(A(B(CD)))=6000+2000+2500=10500③:AB=50*10*40=20000 CD=40*30*5=6000 (AB)(CD)=50*40*5=10000故((AB)(CD))=20000+6000+10000=36000④:AB=50*10*40=20000 (AB)C=50*40*30=60000 ((AB)C)D=50*30*5=7500故(((AB)C)D)=20000+60000+7500=87500⑤:BC=10*40*30=12000 A(BC)=50*10*30=15000 (A(BC))D=50*30*5=7500故((A(BC))D)=12000+15000+7500=34500分别需要计算的次数为:16000, 10500, 36000, 87500, 34500以上用到穷举法,即列举出所有可能的计算次序,并计算出每一种计算次序相应需要的数乘次数,从中找出一种数乘次数最少的计算次。
7.给定一张图,利用贪心算法画出此图的最小生成树,共需两种方法Prim算法设G=(V,E)是连通带权图,V={1,2,…,n}。
构造G的最小生成树的Prim算法的基本思想是:首先置S={1},然后,只要S是V的真子集,就作如下的贪心选择:选取满足条件i∈S,j∈V-S,且c[i][j]最小的边,将顶点j添加到S中。