人教版-数学-八年级上册-人教版数学八上 作轴对称图形 教案

合集下载

人教版初中八年级上册数学《作轴对称图形》精品教案

人教版初中八年级上册数学《作轴对称图形》精品教案

13.2 画轴对称图形第1课时作轴对称图形【知识与技能】1.通过动手操作体验如何作轴对称图形.2.能作出一个图形经一次或二次轴对称变换后的图形.3.能利用轴对称变换设计一些简单的图案.【过程与方法】通过实际操作获取作轴对称图形的方法,并应用于简单的图案设计.【情感态度】通过图案设计等活动,培养学生的动手操作能力\,审美及数学兴趣,发展学生的空间观念.【教学重点】作一个图形经轴对称变换后的图形.【教学难点】通过动手操作总结轴对称变换的特征.一、情境导入,初步认识利用多媒体向学生展示剪纸图片,供学生欣赏,并请学生交流:如此漂亮的剪纸是如何剪出的呢?问题1 请学生拿出画有一个简单风筝(如图形状)的半透明纸,把这张纸对折后描图,学生画好后打开对折的纸,观察并回答下列问题:(1)画出的图形与原来的图形有什么关系?(2)两个图形成轴对称有什么特征?问题 2 如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?【教学归纳】由学生画图、操作、观察后总结出:(1)由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.(2)新图形上的每一点,都是原图形上的某一点关于直线l的对称点,连接任意一对对应点的线段被对称轴垂直平分.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知【教学说明】成轴对称的两个图形中的任何一个可以看作由另一个图形经轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.问题除上面所用的描图法;还可用什么方法画出轴对称变换后的图形?请学生间交流探讨.例1(1)如图1,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.(2)将△ABC的位置移至图2,图3,图4时,再作出关于直线l对称的图形.并验证画法.【归纳总结】一个平面图形都是由一些点组成,点动成线,故要画一个图形经轴对称后的图形,只要找到一些特殊点,作出这些特殊点的对称点即可.【教学说明】利用轴对称变换,可以设计出精美的图案.有时,将平移和轴对称结合起来,可以设计出更美丽的图案.例2 操作并思考:如图所示,取一张薄的正方形纸,沿对角线对折后,得到一个等腰直角三角形,再沿斜边上的高线对折,将得到的三角形沿黑线剪开,去掉含90°角的部分,拆开折叠的纸,并将其铺开.(1)你会得到怎样的图案?先猜一猜,再做一做.(2)你能说明为什么会得到这样的图案吗?应用学过的轴对称的知识试一试.(3)如果将正方形纸按上面方式折3次,然后再去掉含90°角的部分展开后的结果又会怎样?为什么?解:(1)得到一个有2条对称轴的图形.(2)按照上面的做法,实际相当于折出了正方形的2条对称轴,因此图中得到的图案一定有2条对称轴.(3)按题中的方式将正方形对折3次,相当于折出了正方形的4条对称轴,因此得到的图案一定有4条对称轴.【教学说明】教师参与,与学生一起操作,力求使图案与花边完美.三、运用新知,深化理解1.把下列图形补成关于直线l对称的图形.2.如图,利用轴对称变换画出花瓶的另一半.3.如图,左边的旗子经过几次轴对称变换,可以变成右边的旗子?你能设计一种变换方案吗?4.如果我们把台球桌做成等边三角形形状,那么从AC中点D处出发的球,能否依次经BC,AB两条边反射后回到D处?如果认为不能,请说明理由;如果认为能,请作出球运动的路线.【教学说明】指导学生解答上述习题时,要注意引导学生:(1)画轴对称图形时,要先画好关键的对应点;(2)在已知成轴对称的图形时,利用成轴对称的图形的性质,找出对称轴.【答案】4.能.运动路线如图的D→E→F→D四、师生互动,课堂小结教师请学生回忆本节内容,学生发言谈收获,最后引导总结.1.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样.2.经轴对称变换后的图形与原图形上的对应点连线被对称轴垂直平分.3.画一个图形经轴对称变换后的图形,关键是找到图形上的一些点,作出这些点的对称点.1.布置作业:从教材“习题13.2”中选取.2.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系(如例2)调动课堂气氛,培养学生学习兴趣.作者留言:非常感谢!您浏览到此文档。

人教版初中数学八年级上册 作轴对称图形 初中八年级上册数学教案教学设计课后反思 人教版

人教版初中数学八年级上册 作轴对称图形 初中八年级上册数学教案教学设计课后反思 人教版

《画轴对称图形》教学设计五、教学过程教学过程(环节)媒体名称、起止时间(’”—’”)及作用教学活动学生活动一活动引入0’0”- 0’0”借助“Focusky ”课件出示剪纸活动中的思考问题。

引领学生进行剪纸活动并出示思考题。

思考:1、展开后的图形是什么图形?2、折痕所在的直线是图形的什么?3、折痕两旁的部分形状、大小和位置有怎样的关系?4、对应点连线和折痕的位置关系是什么?动手设计剪纸并用圆规扎出一对对应点,然后剪下来,学生代表借助“希沃授课助手”展示作品,并解决思考题。

二知识梳理0’0”- 0’0”运用“Focusky ”制作的exe 课件进行知识的梳理。

1.引领回顾本章知识体系,由“平面图形是有线围成的”、“点动成线”引入轴对称图形的作图方法。

2.板书3.引领分析画轴对称图形最关键的一步:画画特殊点的对称点。

并启发运用尺规作图和三角板两种方法进行作图。

1.回顾本章知识体系。

2.归纳画轴对称图形的步骤。

3.理解并掌握作图方法。

如图,已知△直线,画出与△于直线对称的图形1.引导找出图形的关键点。

2.设疑:改变图形顶点的位置,你能发现一个点的对称点的位置有什么规律吗?1.引导探究关于坐标轴对称的点的坐标特点。

2.指导作图。

3.引导巩固平面直角坐标系内点的平移的坐标变化规律(向左或右平移n个单位:横坐标+n或-n;向上或下平移n个单位:纵坐标+n2、如图,由小正方形组成的L形图中,请你用三种指导合作探究和作图。

当堂完成“作业盒子”在线批阅。

人教版八年级上册数学 13.2 第1课时 画轴对称图形教案1

人教版八年级上册数学   13.2  第1课时 画轴对称图形教案1

13.2画轴对称图形第1课时画轴对称图形1.理解图形轴对称变换的性质.(难点)2.能按要求画出一个图形关于某直线对称的另一个图形.(重点)一、情境导入观察下面的图形:(1)这些图案有什么共同特点?(2)能否根据其中一部分画出整个图案?二、合作探究探究点一:轴对称变换【类型一】剪纸问题将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是( )解析:严格按照图中的顺序先向右上翻折,再向左上翻折,剪去左上角,展开得到图形B.故选B.方法总结:此类题目主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【类型二】折叠问题如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=( )A.20° B.30° C.40° D.50°解析:根据图形翻折变换后全等可得△ADE≌△FDE,∴∠EAD=∠EFD=90°.∵∠EFB =60°,∴∠CFD=30°,故选B.方法总结:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,对应边和对应角相等.探究点二:作轴对称图形【类型一】画一个图形关于已知直线对称的另一个图形画出△ABC关于直线l的对称图形.解析:分别作出点A 、B 、C 关于直线l 的对称点,然后连接各点即可.解:如图所示:方法总结:我们在画一个图形关于某条直线对称的图形时,先确定一些特殊的点,然后作这些特殊点的对称点,顺次连接即可得到.【类型二】在方格中设计轴对称图形在3×3的正方形格点图中,有格点△ABC 和△DEF ,且△ABC 和△DEF 关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF .解析:对称轴可以随意确定,根据你确定的对称轴去画另一半对称图形即可.解:如图所示:方法总结:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.【类型三】利用轴对称设计图案某居民小区搞绿化,要在一块矩形空地(如下图)上建花坛,现征集设计方案,要求设计的图案由圆和正方形组成(圆与正方形的个数不限),并且使整个矩形场地成轴对称图形.请在下边矩形中画出你的设计方案.K解析:矩形是轴对称图形,而正方形和圆也是轴对称图形,设计出的图案只要折叠重合即可.解:如图所示:方法总结:利用轴对称可以设计出精美的图案,一个图形经过不同位置的几次变换,若再结合平移、旋转等,便可以得到非常美丽的图案.三、板书设计作轴对称图形1.如何由一个平面图形得到它的轴对称图形.2.利用轴对称设计图案.本节课尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容.重视动手操作,实践探究,但如果只有操作,而没有数学体验,数学课很容易上成劳技课,所以,本节课的设计在重视活动的同时,又重视知识的获取,因为动手操作的目的本身就在于更直观地发现新知识.练习的设计具有一定的层次性,使不同的学生在学习数学的过程中得到不同的发展.。

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

新人教版八年级上册初中数学 13.1.1 轴对称 教案(教学设计)

第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。

最新人教版八年级数学上册《第1课时作轴对称图形》优质教案

最新人教版八年级数学上册《第1课时作轴对称图形》优质教案

13.2画轴对称图形第1课时作轴对称图形一、新课导入1.导入课题:你们会利用轴对称进行简单的图案设计吗?今天我们就一起来学习怎样作轴对称图形.2.学习目标:(1)知道轴对称变换前后的两个图形是全等的,并且任意一对对应点所连线段被对称轴垂直平分.(2)已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形.3.学习重、难点:重点:已知一个图形和一条直线,会作出与这个图形关于这条直线对称的图形 .难点:能进行简单的轴对称变换设计对称性图案.二、分层学习1.自学指导:(1)自学内容:教材第67页到本页思考上面部分.(2)自学时间:5分钟.(3)自学方法:通过观察、动手操作、总结出成轴对称的两个图形的有关性质.(4)自学参考提纲:①结合图13.2-1,阅读教材第67页第一段,把重点语句做上记号.②将下列图案沿直线l折叠,用针尖沿着玉米图案扎出,再打开看看,得到了什么?连接对应点(找三对),看所连线与l有何位置关系?测量对应点所连线段被l分成的两段有何关系?解:得到一个与玉米图案一样的图形,所连线段被l垂直平分、相等.图1 图2③将你实验得出的结论用几何方法论证一下.④结论:a.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;b.新图形上的每一点,都是原图形上的某一点关于直线l的对称点;c.连接任意一对对应点的线段都被对称轴垂直平分.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:八年级学生已经具备一定观察能力,了解学生能否将实验操作得出的结论完整地用语言表达出来.②差异指导:结合学生画出的图形,引导学生表述实验发现的结论.(2)生助生:互助交流关于直线对称的两个图形的对应点与对称轴存在的关系.4.强化:(1)填空:①由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;②新图形上的每一点,都是原图形上的某一点关于直线l的对称点;③连接任意一对对应点的线段都被对称轴垂直平分.④两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.(2)交流学习成果:①轴对称前后两个图形的关系;②对应点连线与对称轴的关系.(3)总结:①轴对称前后两个图形全等;②对应点连线被对称轴垂直平分.1.自学指导:(1)自学内容:探究如何作出一个图形关于某直线的对称图形.(2)自学时间:5分钟.(3)自学方法:作一个图形关于某条直线的对称图形,应根据轴对称的性质作对称点.(4)探究提纲:①作已知一点关于某条直线的对称点的方法是怎样的?过点P作直线l的垂线,垂足为O,在垂线上截取OP′=OP,P′即为所求作的点.②作已知一条线段关于某条直线的对称线段的方法是怎样的?分别作点A,B关于直线l的对称点A′,B′,连接A′B′,A′B′即为所求作的线段.③作已知一个三角形关于某条直线对称的三角形的方法是怎样的?分别作点A,B,C关于直线l的对称点A′,B′,C′,顺次连接A′B′、A′C′、B′C′,△A′B′C′即为所求作的三角形.④作已知图形关于某条直线对称的图形的方法是怎样的?分别作点A,B,C,D关于直线l的对称点A′,B′,C′,D′,顺次连接A′B′,B′C′,C′D′,D′A′,四边形A′B′C′D′即为所求作的四边形.⑤改变对称轴的位置,然后画一画.2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解学生是否掌握画图的依据和方法.②差异指导:由点、线段、三角形再到复杂图形,一步一步引出关于直线对称的图形的画法,并让学生观察改变对称轴后图形的变与不变之处.(2)生助生:学生之间相互交流帮助.4.强化:(1)交流及总结:作一个图形关于某条直线的对称图形的方法.(2)结论:分别作出这些点关于对称轴的对应点再连接这些对应点,就可以得到原图形的轴对称图形(3)教材第68页“练习”.三、评价1.学生的自我评价(围绕三维目标):学生之间相互交流学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法和学习成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,重视学生的实际操作和观察发现与表述能力.教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.一、基础巩固(第1、2题每题10分,第3题20分,第4题30分,共70分)1.已知:直线AB与直线A′B′交于点P,并且这两条直线关于直线l成轴对称,下列说法正确的是(C )A.直线AB与直线A′B′的长度不相等B.直线AB、A′B′与直线l不一定能交于同一点C.直线AB、A′B′与直线l一定交于P点D.点P关于直线l的对称点不存在2.下列说法:①关于某直线对称的两个图形的面积相等;②平面内两个完全相同的图形一定关于某直线对称;③两个图形成轴对称,其对应点连线的垂直平分线就是它们的对称轴;④关于某直线对称的两个图形,对称点一定在该直线的两旁;其中正确的是(B)A.①②B.①③C.①②③D.①②③④3.如图,把下列图形补成关于直线l对称的图形.4.已知△ABC及点A的对称点A′,请作出对称轴直线l,并画出△ABC关于直线l的对称图形.(1)直线l 就是AA ′的垂直平分线;(2)作出B 、C 关于直线l 的对称点B ′、C ′.(3)连接A ′B ′、B ′C ′、C ′A ′,即得△ABC 关于直线l 的对称图形△A ′B ′C ′.二、综合应用(15分)5.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.解:一般三角形:沿中线折,没有重合的;沿高线折,底边重合,沿角平分线折,两邻边重合.等腰三角形:沿底边上的中线折,底边重合,两邻边也重合;沿底边上的高线折,底边重合,两邻边重合;沿顶角角平分线折,底边重合,两邻边也重合.三、拓展延伸(15分)6.如图所示,∠AOB 内一点P ,P1P2分别是P 关于OA 、OB 的对称点,P 1P 2=交OA 于M ,交OB 于N.若P 1P 2=8cm ,则△PMN 的周长是多少?解:∵P 1、P 关于OA 对称,P 2、P 关于OB 对称,∴OA 垂直平分P1P ,OB 垂直平分P 2P.∴MP 1=MP ,NP 2=NP.∴C △PMN=PM+MN+NP.=P 1M+MN+NP 2= P 1P 2==8cm.人生格言:我们要知道别人能做到的事,只要自己有恒心,坚持努力,就没有什么事是做不到的。

人教版八年级数学上册13.1.1《轴对称》一等奖优秀教学设计

人教版八年级数学上册13.1.1《轴对称》一等奖优秀教学设计

人教版义务教育课程标准实验教科书八年级上册13.1.1轴对称教学设计一、教材分析1、地位作用:《轴对称》与现实生活联系紧密,在小学已有初步的渗透,初中阶段,它既是前面全等三角形概念的拓展与延伸,又是图形全等的具体应用,是与平移、旋转等相关联的又一种图形变换方式,也是今后研究等腰三角形、特殊四边形等图形性质的重要依据和基础。

因此本节课起着承上启下的作用。

同时这节课对于培养学生的数学审美能力和动手能力,拓展学生的空间想象力也有十分重要的意义。

2、教学目标:①理解轴对称图形,两个图形关于某直线对称的概念;②掌握轴对称图形与两个图形关于某直线对称的区别和联系;③经历操作、观察、分析,探究思考轴对称的性质;④应用垂直平分线的定义和轴对称的性质解决简单的问题。

目标分析:由于学生对学过的平面图形有了初步的认识,对生活中一些常见的图案以及一些装饰都比较熟悉,在此基础上学习轴对称图形一般能达到水到渠成的效果。

但由于缺乏空间概念,学生在学习这部分内容时可能会遇到这样或那样的困难,尤其是一些学困生对剪、画轴对称图形会感到吃力。

因此,在教学过程中力求体现以下几方面的理念:为学生创设探究学习的情境;联系生活实际,让学生体会数学与生活的密切联系;改变学生的学习方式,运用合作学习,培养学生协作能力;运用电化教学手段增加教学的新颖性,引导学生以各种感官参与学习的全过程。

3、教学重、难点教学重点:①轴对称图形和两个图形关于某直线对称的概念;②经历探索轴对称的性质的过程。

教学难点:①比较观察轴对称图形和两个图形关于某直线对称的区别和联系。

②经历探索轴对称的性质的过程。

突破难点的方法:让学生在“观察----比较一操作一概括一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。

二、教学准备:多媒体课件、等腰直角三角板、几何图形纸片等三、教学过程一、创设情景引入课题我们生活在图形的世界中,利用图形的某种特征我们想像和创造了许多美丽的事物。

人教版数学八年级上册13.2用坐标表示轴对称教案

人教版数学八年级上册13.2用坐标表示轴对称教案
-实际应用:将轴对称的知识应用于解决实际问题,培养学生的实际操作能力和应用意识。
举例:在讲解轴对称的定义时,可以通过折纸等实际操作,让学生直观感受轴对称图形的特点。在坐标表示方面,可以结合具体图形,如矩形、正方形等,让学生学会如何找到对称轴并给出其坐标方程。
2.教学难点
-对称轴的确定:对于一些复杂的轴对称图形,如何准确地找到对称轴是学生学习的难点。
6.引导学生感悟数学的对称美,培养审美情趣和创新义:轴对称图形的基本概念是本节课的核心,教师需通过生动的实例,使学生理解轴对称图形的特征,明确对称轴在图形中的关键作用。
-掌握坐标表示轴对称的方法:教会学生如何利用坐标表示轴对称图形,以及如何通过坐标关系找到对称轴,这是本节课的重点。
在实践活动中,学生分组讨论的环节比较活跃,他们能够提出一些很有见地的观点。不过,我也观察到有些小组在讨论时,个别成员参与度不高,我适时地给予了鼓励和指导,让他们都能融入到讨论中来。
小组讨论后,学生们的成果展示让我感到惊喜。他们不仅能够理解轴对称在实际生活中的应用,还能创造性地设计出一些具有轴对称特点的图案。这一点说明学生们已经能够将所学知识内化并运用到实际中。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对轴对称的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂中,我发现学生们对轴对称的概念和坐标表示的理解程度参差不齐。我尝试通过引入日常生活中的实例来激发他们的兴趣,比如折纸和设计图案,这样做的效果还不错,大部分学生都能积极参与进来。

八年级数学上册 第十三章 轴对称 13.1 轴对称教案 (新版)新人教版-(新版)新人教版初中八年级

八年级数学上册 第十三章 轴对称 13.1 轴对称教案 (新版)新人教版-(新版)新人教版初中八年级

13.1 轴对称(第1课时)【教学目标】知识与技能1.在生活实例中认识轴对称图.2.分析轴对称图形,理解轴对称的概念、轴对称图形的概念.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.3.使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.【教学重难点】重点:理解轴对称的概念.难点:能够识别轴对称图形并找出它的对称轴.【教学过程】一、创设情境,引入新课1.举实例说明对称的重要性和生活中充满着对称.2.对称给我们带来多少美的感受!初步掌握对称的奥秒,不仅可以帮助我们发现一些图形的特征,还可以使我们感受到自然界的美与和谐.3.轴对称是对称中重要的一种,让我们一起走进轴对称世界,探索它的秘密吧!二、导入新课1.观察:几幅图片(出示图片),观察它们都有些什么共同特征.强调:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,甚至日常生活用品,人们都可以找到对称的例子.练习:从学生生活周围的事物中来找一些具有对称特征的例子.2.观察:课本图13.1-2,把一X纸对折,剪出一个图案(折痕处不要完全剪断),再打开这X对折的纸,就剪出了美丽的窗花.你能发现它们有什么共同的特点吗?3.如果一个图形沿一直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.我们也说这个图形关于这条直线(成轴)对称.4.动手操作:取一X质地较硬的纸,将纸对折,并用小刀在纸的中央随意刻出一个图案,将纸打开后铺平,你得到两个成轴对称的图案了吗?归纳小结:由此我们进一步了解了轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.5.练习:你能找出它们的对称轴吗?分小组讨论.思考:大家想一想,你发现了什么?小结:像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三、课时小结这节课我们主要认识了轴对称图形,了解轴对称图形及其有关概念,进一步探讨了轴对称的特点,区分了轴对称图形和两个图形成轴对称.13.1 轴对称(第2课时)【教学目标】知识与技能1.了解两个图形成轴对称的性质,了解轴对称图形的性质.2.探究线段垂直平分线的性质.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称的性质,线段垂直平分线的性质.难点:1.轴对称的性质.2.线段垂直平分线的性质.3.体验轴对称的特征.【教学过程】一、创设情境,引入新课1.什么样的图形是轴对称图形呢?2.轴对称图形有哪些性质,从图形中能得到结论?二、导入新课1.如图,△ABC和△A'B'C'关于直线MN对称,点A'、B'、C'分别是点A、B、C的对称点,线段AA'、BB'、CC'与直线MN有什么关系?为什么?(学生思考并做小X围讨论)对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.2.画一个轴对称图形,并找出一组对称点,看一下对称轴和对称点连线的关系.3.对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.归纳图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.下面我们来探究线段垂直平分线的性质.[探究1]如图,木条l与AB钉在一起,l垂直平分AB,P1,P2,P3,…是l上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?证法一:利用判定两个三角形全等.如图,在△APC和△BPC中,AC=BC,∠ACP=∠BCP,CP=CP⇒△APC≌△BPC⇒PA=PB.证法二:利用轴对称的性质.由于点C是线段AB的中点,将线段AB沿直线l对折,线段PA与PB是重合的,因此它们也是相等的.带着探究1的结论我们来看下面的问题.[探究2]如图,用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?探究结论:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.上述两个探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点到这条线段两个端点的距离相等;反过来,到这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是到线段两端点距离相等的所有点的集合.三、随堂练习如图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?四、课时小结这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.13.1 轴对称(第3课时)【教学目标】知识与技能1.探索作出轴对称图形的对称轴的方法,掌握轴对称图形对称轴的作法.2.在探索的过程中,培养学生分析、归纳的能力.过程与方法1.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯.2.在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步说理和进行简单推理的能力.情感、态度与价值观1.体会数学与现实生活的联系,增强克服困难的勇气和信心.2.会应用数学知识解决一些简单的实际问题,增强应用意识.【教学重难点】重点:轴对称图形对称轴的作法.难点:探索轴对称图形对称轴的作法.【教学过程】一、提出问题,引入新课1.有时我们感觉两个图形是轴对称的,如何验证呢?不折叠图形,你能比较准确地作出轴对称图形的对称轴吗?2.轴对称图形的性质.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.轴对称图形的对称轴,是任何一对对称点所连线段的垂直平分线.3.找到一对对应点,作出连结它们的线段的垂直平分线,就可以得到这两个图形的对称轴了.4.问题:如何作出线段的垂直平分线?二、导入新课要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点的距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.例1:如图(1),点A 和点B 关于某条直线成轴对称,你能作出这条直线吗?已知:线段AB[如图(1)].求作:线段AB 的垂直平分线.作法:如图(2).(1)分别以点A 、B 为圆心,以大于21AB 的长为半径作弧,两弧相交于C,D 两点; (2)作直线CD.直线CD 就是线段AB 的垂直平分线.例2:图中的五角星有几条对称轴?作出这些对称轴.作法:1.找出五角星的一对对应点A 和A',连接AA'.2.作出线段AA'的垂直平分线L .则L 就是这个五角星的一条对称轴.用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.三、课时小结本节课我们探讨了尺规作图,作出线段的垂直平分线.并据此得到作出一个轴对称图形的一条对称轴的方法:找出轴对称图形的任意一对对应点,连接这对对应点,作出线段的垂直平分线,该垂直平分线就是这个轴对称图形的一条对称轴.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作轴对称图形
(新授课)
丁所初中张礼建
【教学目标】
(一)知识技能:
1.通过具体实例学做轴对称图形,认识轴对称变形,探索它的基本性质和定义。

2.能按要求作出简单平面图形经过一次或两次轴对称后的图形。

3.能利用轴对称进行图案设计。

(二)教学思考:
从轴对称的角度去认识和构建几何图形,发展形象思维,并尝试用轴对称去从事推理活动。

(三)解决问题:
1.经历轴对称变形的画图、观察、交流等活动理解其基本特征。

2.通过利用轴对称作图和图案设计发展实践能力。

(四)情感态度与价值观:
1.通过欣赏轴对称图案,形成学生了解数学、应用数学的态度。

2.通过作轴对称画图,设计图案,锻炼学生克服困难的意志,培养创新精神。

【教学重难点】
1.轴对称变形的基本特征。

2.能够按要求作出简单平面图形经过轴对称后的图形。

【课时安排】
一课时
【教学设计】
课前延伸
一、基础作图
1.画出点A关于l 的对称点A’:
〖答案〗(1 )过点A作对称轴l 的垂线,垂足为B;
( 2 )延长A B至A’,使得BA’= A B.
( 3 )点A’就是点A关于l 的对称点.
2.画简单平面图形的对称图形:
(1) 如何画线段AB 关于直线 L 的对称线段A ’B ’?
〖答案〗找关键点作出其对称点!然后连结线段.
3. 如图,已知△ABC 和直线 ,作出与△ABC 关于直线 L 对称的图形
〖答案〗△C B A '''就是所求作的三角形
〖设计说明〗心理学认为:认知从感知开始,感知是认知的门户,是一切知识的来源。

让学生进行简单的模仿,从感性上初步认识可以用作对称点的方法来作轴
对称图形
课内探究
一、创设情景导入新课
1.播放课件,展示生活中与轴对称现象有关的美丽图案。

如:剪纸艺术、服饰文化、
几何图案、花边艺术等
2.观察思考:
欣赏美丽图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?(板书课题)
〖设计说明〗从学生熟悉的图形入手,感受轴对称图形在生活中的广泛应用,体会数
学就在身边,激发学生学习数学的兴趣。

l
B ’
二、检查预习情况:明确检查方法
学生口答后论证。

三、布置学生自主探究:
活动一:
动手画图1
(1).取一张长方形纸
(2)将纸对折,中间夹上复写纸;
(3)在纸上沿折叠线画出半只蝴蝶;;
(4).把纸展开
学生画图,教师关注:
(1)学生如何画出图形的基础部分;折痕两旁的部分是什么关系?
(2)折痕所在直线就是它的对称轴。

(3)找出一对对应点并连接,观察它与折痕的关系。

(4)思考这些图案是怎样形成的?归纳总结:一个轴对称图形可以看作由它的一部分为基础,按轴对称原理作图而得到。

成轴对称的两个图形也可以由其中的任何一个图形为基础,按轴对称原理作图而得到另一个图形。

〖设计说明〗让学生亲自动手学画轴对称图形,去感受、理解轴对称变形的过程。

观察所画图形,寻找对称点,便于总结轴对称作图的基本方法,培养学生独
立思考问题、解决问题的能力。

动手画图2
(1)再取一张长方形纸;
(2)将纸对折,中间夹上复写纸;
(3)在纸上远离折叠线画出一朵花;
(4)把纸展开。

思考:每组图案是怎样得到的?
(1)每组图案中相邻的两个图案是否都是对称的?
(2)每组图案各有几条对称轴,对称轴一定是水平或竖直的吗?
(3)这些图案由一个图形经一次轴对称作图就能得到吗?
展示学生的作品,听取学生的评价。

关注:
(1)学生画出的是一个什么图形。

(2)是否改变了折痕并重复了几次。

(分小组讨论后)总结:对称轴的方向和位置发生变化时,得到的图形的方向和位置也发生了变化。

活动二:
观察教科书P39中图12.2-2、12.2-3及12.2-4
思考:每组图案是怎样得到的?
(1)每组图案中相邻的两个图案是否都是对称的?
(2)每组图案各有几条对称轴,对称轴一定是水平或竖直的吗?
(3)这些图案由一个图形经一次轴对称作图就能得到吗?
〖设计说明〗培养学生的观察能力:许多美丽图案需要经过多次轴对称变换才能得到。

活动三:
(动手画图3)取一张白纸折叠夹上复写纸,任画一个你最喜欢的图形,打开纸看一下,然后改变折痕方向重新叠纸,在原来的图形上描图,再打开,你会发现什么结论?当对称轴的方向和位置发生变化时,得到图形的方向和位置会变吗?
展示学生的作品,听取学生的评价。

关注:
(1)学生画出的是一个什么图形。

(2)是否改变了折痕并重复了几次。

(分小组讨论后)总结:对称轴的方向和位置发生变化时,得到的图形的方向和位置也发生了变化。

〖设计说明〗进一步培养学生利用轴对称变换画图的能力,感受对称轴变化对图形的影响。

展示学生作品,让学生获得成功的体验
作轴对称图形的基本特征:
(1)由一个平面图形可以得到它关于一条直线L对称的图形,这个图形与原图形的形状大小完全一样。

(2)新图形上的每一点都是原图形上的某一点关于直线L的对称点。

(3)连接任意一对对应点的线段被对称轴垂直平分。

四、教师精讲点拨;
问题:
如果有一个图形和一条直线,如何作出与这个图形关于这条直线对称的图形呢?
思考:
如果这个图形就是一个点,如何作出与这个点关于这条直线对称的图形呢?
〖设计说明〗从最简单的几何图形做起,让学生明白做事都是从小做起,由简到繁;这样更加有利于学生理解、掌握如何作轴对称图形。

例1.已知△ABC和直线l,作出与△ABC关于直线l对称的图形。

思考:
(1)△ABC关于直线l的对称图形是什么形状?
(2)△ABC的轴对称图形可以由哪几个点确定?
学生口述作法。

分步设问,便于引导学生理解作图方法。

通过教师作图板书的示范,让学生体验作图的准确性和规范性。

组织学生讨论归纳:作已知图形关于已知直线对称的图形的一般步聚。

讨论、交流用自己的语言总结画图步骤:(1)找点(2)画点(3)连线。

〖设计说明〗分步设问,将复杂的问题化繁为简,便于引导学生理解作图方法。

进一步掌握如何快速、正确地作出轴对称图形。

通过教师作图板书的示范,让学生体验作图的准确性和规范性。

五、课堂反馈训练:
本节课你学了哪些知识,有什么收获?
点评:给予点评与鼓励。

思考并作答。

学生独立思考,表达自己的想法。

让更多的学生参与总结,也可以采取一个学生主要说明,其他学生补充的形式,主要有:(1)用轴对称作图的基本特征;
(2)作一个图形的轴对称图形的方法、步骤。

〖设计说明〗学生自我小结,加深对用轴对称作图的认识,逐步形成知识的网络结构,使所学的知识形成相对完整的体系,有利于后面知识的学习。

1.P41练习第2题
P45习题12.2 第1题
2.利用轴对称,自己设计一些图案。

〖设计说明〗及时巩固所学的新知识,培养学生的创新意识,让学生在学数学,用数学的过程中体会数学与实际生活的紧密联系。

体现数学的美。

课后提升
1.探究:要在燃气管道L上修建一个泵站,分别向A,B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?
2.把下列图形补成关于L对称的图形。

3.如图,A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线。

〖设计说明〗在学生充分理解的基础上,联系实际拓展轴对称图形的内涵,为解决实际问题建立模型做铺垫.。

相关文档
最新文档