浅析电力设备的智能化发展现状
人工智能在电力行业的发展现状与未来趋势分析

人工智能在电力行业的发展现状与未来趋势分析在当今科技迅猛发展的时代,人工智能(AI)正在迅速渗透到各个行业,并且正逐渐改变电力行业的面貌。
人工智能技术的不断创新与应用推动了电力行业的高效运行和可持续发展。
一、人工智能在电力行业的现状人工智能在电力行业的应用已经取得了不俗的成绩。
首先,随着电网的智能化建设,人工智能技术被用于电力系统的监控和控制,实现了对电力设备的实时监测和故障预测。
通过大数据分析和机器学习算法,人工智能可以发现异常情况,并且可以预测设备的寿命和性能,提前采取维护措施,从而减少设备故障对电力供应的影响。
其次,人工智能还可以应用于电力负荷预测和能源调度,通过深度学习算法和优化方法,提高电力系统的供需平衡,降低电力供应的成本,增加电力能源的利用率。
此外,人工智能在电力安全防护和应急响应方面的应用也日益广泛,可以快速发现电力系统的隐患,并提供相应的解决方案。
二、人工智能在电力行业的未来趋势展望未来,人工智能在电力行业的应用将更加深入和广泛。
首先,随着清洁能源技术的不断发展,人工智能将在电力生产领域发挥重要作用。
例如,利用人工智能技术可以对太阳能和风能等不稳定的可再生能源进行精确预测和调度,提高清洁能源的利用效率。
其次,随着电力行业数字化转型的推进,人工智能在电力管理和能效优化方面也将发挥更大的作用。
通过实时监控和数据分析,人工智能可以提供电力系统的智能化管理和优化建议,降低电力消耗和浪费。
再次,人工智能技术在电力市场和用户服务方面的应用也将不断创新。
通过大数据分析和个性化推荐算法,人工智能可以根据用户的需求和偏好,为用户提供更便捷、高效的用电服务。
总而言之,未来人工智能将助推电力行业在能源转型、供应链管理和服务体验等方面迎来质的飞跃。
三、人工智能在电力行业发展中面临的挑战虽然人工智能在电力行业的应用前景广阔,但也面临一定的挑战。
首先,数据质量和数据安全问题是人工智能应用的重要挑战。
电力行业的数据庞大且复杂,如何准确和及时地收集、整理和分析这些数据是人工智能应用的首要任务。
人工智能在电力领域的发展现状与未来趋势分析

人工智能在电力领域的发展现状与未来趋势分析近年来,随着科技进步和人工智能技术的快速发展,电力领域也逐渐引入了人工智能,以提高电力系统的效率、准确性和安全性。
本文将从数据分析、设备协作、智慧能源管理和未来趋势等方面,探讨人工智能在电力领域的发展现状和未来趋势。
一、数据分析数据在电力行业中起着至关重要的作用。
然而,传统的数据处理方法并不能迅速有效地处理大规模数据。
人工智能技术的引入,则能够帮助电力行业高效地处理及分析大量的数据。
通过深度学习、机器学习等技术,人工智能可以对大数据进行分析,提取数据中的潜在关系,实现对电力系统运行情况的准确预测和故障诊断。
比如,利用人工智能技术,电力公司可以根据历史数据分析建立电力需求模型,进而预测未来电力需求的趋势,从而合理安排电力供应和需求的匹配。
二、设备协作在电力系统中,各种设备的协同工作是保障电力供应稳定的关键。
目前,人工智能技术已经开始应用于设备协作领域。
通过智能化的传感器和互联设备,人工智能可以实时监控设备的运行状态,并进行数据分析和决策。
例如,在电力输电系统中,人工智能可以通过监测输电线路的温度、气象条件和电力传输量等因素,预测及时发现潜在故障点,并采取相应的措施,提前修复,确保电力系统的可靠性和稳定性。
三、智慧能源管理智慧能源管理是人工智能在电力领域的又一重要应用。
通过人工智能技术,电力系统可以实现对能源的高效利用和分配。
例如,智能电能表可以通过人工智能技术进行能源计量和定价,并与智能家居设备连通,实现对家电能耗的实时监测和控制。
此外,人工智能还可以通过识别用户用电的习惯和需求,提供个性化的能源消费优化方案,帮助用户降低能源消耗成本。
四、未来趋势人工智能在电力领域的应用前景非常广阔。
未来,人工智能将进一步提高电力系统的智能化水平。
首先,人工智能技术将更加精细化地应用于供需配电系统,通过智能化的设备和系统协同工作,实现对电力系统的实时监测、故障检测与预测、优化配置等功能。
国内外智能电网的发展现状与分析

德国“工业4.0”战略的核心是建立一个高度数字化的生产平台,实现生产 过程的自动化、智能化、精益化。这个平台包括了生产设备、物流系统、控制系 统等各个方面,通过互联网、物联网等技术手段实现互联互通和数据共享。在这 个平台上,企业可以灵活地调整生产模式和生产流程,快速响应市场需求的变化。
2、美国
美国是全球科技创新的中心之一,也是智能制造发展的另一个领军者之一。 美国政府提出了“先进制造业”战略,旨在通过技术创新和数字化转型等手段, 提高制造业的竞争力和创新能力。美国在智能制造领域拥有很多领先的企业和技 术,如通用电气、惠普、苹果等企业都在积极推进智能制造的实践。
我国已经具备了一定的自主创新能力,如数控机床、工业机器人等智能装备 的研发和应用已经得到了广泛的应用。
然而,我国智能制造仍然存在一些问题和挑战。首先,我国制造业基础依然 薄弱,大部分企业的技术水平和管理水平还比较落后;其次,我国智能制造发展 不平衡,东部地区发展较快,中西部地区相对滞后;最后,我国智能制造发展还 面临着人才短缺和技术瓶颈等问题。
国内外智能电网的发展现状与 分析
目录
01 一、国际智能电网的 发展现状
03
三、智能电网发展的 挑战与未来趋势
02
二、中国智能电网的 发展现状
04 参考内容
智能电网是电力系统的一种现代化形态,通过采用先进的信息、通信和控制 技术,可以实现对电力系统的监测、控制、分析和优化。在国内外,智能电网的 发展正在不断推进,对于提高电力系统的效率、可靠性和安全性起到了重要作用。 本次演示将探讨国内外智能电网的发展现状及未来趋势。
其次,我们需要加强人才培养和技术创新。智能制造需要大量的高素质人才 和技术创新成果的支持。政府和企业应该加强人才培养和技术创新的投入力度, 建立更加完善的人才培养和技术创新体系。
电力系统自动化的现状与发展

电力系统自动化的现状与发展一、电力系统自动化的现状1. 设备自动化水平提升随着科技的进步,电力系统中各类设备的自动化水平不断提高。
例如,智能变电站、智能输电线路、智能开关设备等,这些设备的应用大大降低了人工操作的风险,提高了电力系统的安全性和稳定性。
2. 控制系统优化电力系统自动化技术在控制系统方面也取得了显著的成果。
通过采用先进的控制算法和设备,实现了对电力系统的实时监控和自动调节,使电力系统的运行更加高效、稳定。
3. 信息化建设成果显著电力系统自动化技术的发展离不开信息化建设的支持。
目前,我国电力行业已建立了较为完善的信息系统,实现了数据采集、处理、传输和分析的自动化,为电力系统自动化提供了有力保障。
4. 安全防护体系日益完善随着电力系统自动化程度的提高,电力系统的安全防护体系也日益完善。
通过采用加密技术、防火墙、入侵检测等手段,有效保障了电力系统的信息安全。
二、电力系统自动化的发展趋势1. 智能化升级2. 大数据应用随着大数据技术的发展,电力系统自动化将更加注重数据的挖掘和应用。
通过对海量数据的分析,实现对电力系统的精准预测和智能调度,提高电力系统的运行质量和经济效益。
3. 绿色环保在能源结构调整和环保要求的背景下,电力系统自动化将更加注重绿色环保。
通过推广清洁能源、优化电力系统结构,实现电力系统的低碳、绿色、可持续发展。
4. 分布式发电与微电网技术随着分布式发电和微电网技术的不断发展,电力系统自动化将逐步实现电力供应的多元化和个性化。
通过分布式发电和微电网的接入,提高电力系统的灵活性和可靠性。
5. 网络安全防护随着电力系统自动化程度的提高,网络安全防护将成为未来发展的重要课题。
通过建立完善的网络安全防护体系,确保电力系统的信息安全。
电力系统自动化技术在现状的基础上,将继续朝着智能化、大数据、绿色环保、分布式发电与微电网等方向发展。
在未来的发展中,电力系统自动化将为我国电力行业的持续发展提供有力支持。
人工智能在电力系统中的发展现状与未来趋势分析

人工智能在电力系统中的发展现状与未来趋势分析随着科技的不断进步,人工智能(Artificial Intelligence,AI)逐渐融入我们生活的方方面面。
在电力系统领域,人工智能的应用已经取得了一定的进展,并且在未来具有广阔的发展前景。
本文将探讨人工智能在电力系统中的发展现状和未来趋势。
一、人工智能在电力系统中的应用现状1.1 智能能源管理系统智能能源管理系统利用人工智能算法对电力系统进行性能优化和负荷管理,实现了对电力需求的准确预测和能源的合理调度。
通过分析历史数据和实时数据,人工智能可以预测电力需求高峰和低谷,并在高峰期间实施节能措施,从而降低用电峰值和节约能源。
1.2 智能电网智能电网利用人工智能技术实现对电力系统各环节的智能化监控和管理。
通过物联网技术,电力系统中的各类设备可以实现互联互通,形成智能化的电力系统网络,从而提升整个电力系统的运行效率和稳定性。
人工智能还可以对电力系统中的故障进行快速诊断和处理,提高电力系统的可靠性和安全性。
1.3 智能电力设备人工智能在电力设备方面的应用也日益广泛。
例如,智能电表可以通过人工智能算法实现对用户用电行为和用电数据的分析,从而帮助用户合理规划用电,并节约用电成本。
智能变压器可以根据负荷需求自动调整电压范围,提高电力设备的运行效率。
二、人工智能在电力系统中的未来趋势2.1 大规模数据驱动未来,随着电力系统中数据采集技术的进步,电力系统将会积累大规模的数据。
人工智能将在这些数据的驱动下发挥更加强大的作用,通过对大规模数据的分析和挖掘,实现对电力系统的精细化管理。
2.2 深度学习技术的应用当前,深度学习技术已经在图像识别、语音识别等领域取得重大突破。
未来,这些技术将会被应用到电力系统中,通过对电力设备运行状态的监测和分析,提前预测可能出现的故障,并采取相应的措施,减少故障带来的损失。
2.3 智慧能源互联网的构建智慧能源互联网是未来电力系统的发展趋势之一。
电力系统自动化现状及发展趋势

电力系统自动化现状及发展趋势引言概述:电力系统自动化是指通过现代信息技术和通信技术对电力系统进行监控、控制和管理的一种智能化手段。
随着科技的不断发展和电力系统的不断完善,电力系统自动化已经成为提高电力系统运行效率、降低能源消耗、保障电力供应安全的重要手段。
本文将从电力系统自动化的现状和发展趋势两个方面展开讨论。
一、电力系统自动化的现状1.1 系统监控水平不断提高现代电力系统自动化技术已经实现了对电力系统各个节点的实时监控,可以实时获取电力系统的运行状态、负荷情况、设备运行状况等信息,为电力系统的安全稳定运行提供了有力支持。
1.2 控制策略不断优化电力系统自动化技术不仅可以实现对电力系统的监控,还可以根据系统运行情况实时调整控制策略,保障电力系统的安全稳定运行。
控制策略的不断优化也为电力系统的节能减排提供了有力支持。
1.3 智能化水平不断提高随着人工智能、大数据等技术的不断发展,电力系统自动化技术的智能化水平也在不断提高。
智能化的电力系统可以更好地适应各种复杂的运行环境,提高电力系统的运行效率和可靠性。
二、电力系统自动化的发展趋势2.1 大数据与人工智能的深度融合未来电力系统自动化将更加注重大数据和人工智能技术的深度融合,通过对大量数据的分析和挖掘,实现对电力系统的智能化管理和优化控制。
2.2 云计算技术的广泛应用云计算技术的快速发展为电力系统自动化提供了更加灵活和高效的解决方案。
未来电力系统自动化将更加广泛地应用云计算技术,实现对电力系统的远程监控和管理。
2.3 物联网技术的深度应用物联网技术的普及将为电力系统自动化带来新的发展机遇,未来电力系统将更加智能化、自动化,实现对电力设备的远程监控和智能化管理。
结论:电力系统自动化技术的发展已经成为提高电力系统运行效率、降低能源消耗、保障电力供应安全的重要手段。
未来,随着大数据、人工智能、云计算、物联网等技术的不断发展和应用,电力系统自动化将迎来更加广阔的发展前景,为电力系统的智能化、高效化、可靠化提供更加有力的支持。
智能电网技术的发展现状及展望

智能电网技术的发展现状及展望随着全球经济的发展,能源需求不断增加,传统的电网系统已经无法满足人们对电力的需求。
因此,智能电网技术应运而生。
智能电网是一种通过数字化技术控制和监测电力系统的智能化系统,可以为用户提供更可靠、更高效、更安全的电力服务。
本文将探讨智能电网技术的发展现状及未来展望。
一、智能电网技术的发展现状1.市场现状随着人们对能源需求加剧,智能电网市场逐渐升温。
根据市场调研报告,全球智能电网市场规模已从2016年的110亿美元增至2020年的210亿美元,年复合增长率达到15%。
预计到2025年,智能电网市场规模将达到360亿美元,年复合增长率达到11%。
智能电网将成为未来能源行业的重要方向。
2.技术现状智能电网技术是多种科技领域的交叉融合,如通信技术、计算机技术、控制技术、电力系统技术等。
智能电网技术的发展主要有以下几个方面:(1)先进的计量设备计量设备是智能电网中最基础的技术,能够实现对电能的准确计量和监测,进而实现精细化管理和调度。
目前,先进的计量设备已经实现了对电能的高精度监测和实时数据传输,极大地提高了智能电网的运行效率。
(2)智能配电网技术智能配电网技术是智能电网的核心。
通过对配电网进行数字化、智能化改造,可以实现对电能的智能分配和管理。
目前,智能配电网技术已经实现了对电能的远程监控、故障自愈、负荷均衡等功能。
(3)新能源接入技术智能电网是新能源接入的基础,通过智能电网技术可以将新能源产生的电能高效地接入电网。
当前,新能源接入技术已经实现了对太阳能、风能等多种新能源的智能接入和管理。
(4)电力负荷预测技术通过对电力负荷的预测,可以实现对电能的精准配送和供需平衡。
目前,电力负荷预测技术已经实现了对电力负荷的智能预测和实时调度,有效保障了电力系统的安全稳定运行。
二、智能电网技术的未来展望智能电网技术未来的发展趋势主要表现在以下几个方面:1.数字化水平不断提高随着数字化技术的不断发展和升级,智能电网的数字化水平将不断提高。
智能电力设备的特点及发展现状

智能电力设备的特点及发展现状摘要:随着我国电网总体建设水平的提高,当前电力设备型电力系统的应用和关键技术已成为制约和制约电力工业发展的重要因素。
在技术应用的基础上,首先对智能电力设备的特性进行了分析,并探讨了智能电力设备技术在我国的发展中的一些关键技术及应用前景,以期能为我国国智能电力设备的发展创造一个新的环境。
关键词:智能电网;电力设备;技术发展近年来,由于高科技的发展和普及,在电力系统中的应用日益广泛,在国际上也得到了广泛的关注。
作为一种集成了智能信息技术和电网建设技术的技术,它不仅具有自动控制、分析决策、能源电力等方面的特性,而且是整个电力系统的一个关键环节。
目前,我国的智能电网尚处在起步阶段,与国外先进国家相比,无论是在建筑质量上,还是在覆盖面上,都有很大的差距。
1智能电力设备的特点当前,大部分电力设备是由功率电子器件构成,通过计算机技术、电磁技术和自动化控制技术对其进行优化。
现代的电力设备已经达到了“机电一体化”的目的,并且将自动化、节能、智能化的特点结合在一起,向着绿色、模块化、高频化的方向发展。
在电力系统中,最开始的传输功率一般是60Hz,但随着技术的进步,电力系统中的各种设备也越来越多,为满足各种不同的需求,电网中电力线通道的数量也越来越多,而且由于负荷的访问模式具有随机性,所以就形成了多个频段的输电线路通讯模式[1]。
2智能电力设备的发展现状智能电力设备的发展有一定的阶段性特点,各发展领域的应用也有很大差异,本文试从以下几个方面来说明。
2.1发电方面智能电网建设是指电力系统的智能化,它主要是通过电能的转化和可靠性来提高整个智能电网的建设。
(1)新能源发电设备。
在智能电网的建设和发展中,新能源发电设备和分布式发电设备是主要的技术设备,包括燃料电池、微型燃气轮设备、光伏设备、风能设备等,同时,地热发电设备和生物发电设备也是目前该领域的主要发展方向。
(2)智能保护与控制设备。
智能保护和控制装置的选用有利于提高整个智能电网的施工质量,其中包括数字保护继电器、分布式变流器、动态分布式电源控制器等[2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅析电力设备的智能化发展现状
发表时间:2018-12-06T21:41:32.043Z 来源:《电力设备》2018年第22期作者:张鹏宇
[导读] 摘要:随着社会的进步和经济的发展,人们的环境保护意识逐渐加强,能源行业也呈现出低碳化、清洁化、高效化的发展趋势,电力行业也是如此。
(国网太原供电公司山西省太原市 030009)
摘要:随着社会的进步和经济的发展,人们的环境保护意识逐渐加强,能源行业也呈现出低碳化、清洁化、高效化的发展趋势,电力行业也是如此。
为了实现更加清洁、高效的电力供应,智能电力设备走进了人们的视野,成为未来电力系统的重要发展方向。
关键词:电力设备;智能化;发展现状
引言
在电力设备智能化的背景下,我国开始着手建立有效的智能电网体系,整合传感技术、信息技术、计算机技术以及自动控制技术等,不仅能够实现分布式能源电源管理和可再生能源电源接入,也能建立更加系统化的网络架构体系,真正实现规划性系统平台,保证协调发展的基础上,也能为后续规划运行提供保障
1智能电力设备的特点
智能电力设备服务于智能电网的建设。
智能电网就是指在先进技术指导和应用下形成的高度智能化和高度自动化的新型现代化电力系统。
智能电力设备也就是智能电网建设过程中涉及到的硬件设备。
智能电力设备融合了先进科学的分析决策技术、人工智能技术、模式识别技术、传感测量技术、信息通信技术和自动控制技术等,具有不同于一般电力设备的特点和优势。
首先,智能电力设备可以实现故障的自我诊断,并在一定程度上进行自我恢复;其次,智能电力设备能够兼容多种发电方式和不同类型的储能设备,满足用户多样化的用电需求;第三,智能电力设备能够实现与用户的交互,及时响应用户需求;第四,智能电力设备具有非常高的稳定性,能够在极端环境下或者电网发生故障时,依然维持电网的安全运行;最后,智能电力设备能够优化资源配置,降低电力输运成本,提高能源的利用率和经济效益。
2电力设备智能化的技术要求
2.1设备互动技术
电力设备智能化需要完成设备互动管理,在电力设备智能化发展进程中,完成设备管理工作的智能化十分关键,相关部门也要对技术结构和运行参数予以分析,合理性判定相应的问题。
主要是借助设备事故风险评估过程对电网运行以及设备检修进行评述,合理性建立相应的诊断方案,以保证整体管理流程和管控效果更加贴合设备应用,减少设备运行故障,要一定程度上提升设备的可用效率,真正减少项目运行过程中的管理成本。
在电力设备智能化发展进程中,真正实现了经济成本和技术发展成本的合理性平衡,为智能电网建设和优化提供了保障。
2.2高级化应用
在电力设备智能化发展进程中,智能设备能摆脱传统结构和运行管理要求的束缚,合理性建立相应的管理标准和运行体系,并且能为传统设备进行可靠性转变,有效对电网进行实时的可靠性管理,确保能从根本上提高我国电网运行的智能化水平,也能对设备的使用寿命予以预测,合理性建构更加系统化的处理机制和运行维护体系,确保能从电网大视角的角度分析设备管理效果,也能提升寿命周期的成本管理价值,真正实现电力设备智能化的目标,确保管理流程和管控效果都能符合预期,也为电力设备智能化发展提供保障。
2.3集成化技术
在电力设备智能化体系内,智能化变压器的应用较为普遍,且能实现多种传感器集成化管理,其中,主变本体要配备相应的智能化接口,能一定程度上合理性采集主变本体的相关信息以及数据,完成数据处理工作。
与此同时,相应的设备元件也能完成主变非电量保护,并且能在传统非电量保护项目基础上建立有效的数字化保护机制,确保能借助相应的设备运行要求,合理性提升各个元件的应用效果。
其中主要包括变压器绕组、铁芯、套管以及有载开关等,能合理性建立变压器运行电压系统,为负荷电流运行工作提供保障,尤其是能合理性收集本体需要的自身状态诊断功能模块,为后续操作管理水平的优化奠定基础。
3智能电力设备的发展现状
3.1智能输电设备
传统的输电设备在进行远距离输电时具有可靠性差、输送效率低等缺点,难以适应新型能源发电的间歇性、分布式特点。
该需求直接推动了智能输电设备的产生、发展和应用。
智能输电设备主要包括以下3类。
首先是柔性交流输电设备。
该类设备能够对输电系统的运行参数(比如电压、阻抗、相位等)进行实时控制和调整,从而提高输电功率、降低输电成本、减少输电损耗。
目前已经应用的柔性交流输电设备有静止调相机、静止快速励磁器、串联补偿器以及无功补偿器等。
其次是超高压直流输电设备。
该类设备主要为换流站和换流阀,实现交直流电之间的能量转换,即首先将发电厂产生的高压交流电转换为高压直流电,然后进行远距离传输,到达目的地后,再将高压直流电转换为高压交流电。
与交流输电系统相比,直流输电系统具有稳定性高、损耗低等优势。
最后是高温超导设备。
主要包括超导磁储能设备、超导限流器和超导电缆。
该类设备利用超导体电力技术,减少关键部件的阻抗值,从而降低电力系统的损耗,提高电力系统的稳定性。
3.2智能配电设备
配电是电力系统中向用户分配电能的环节。
在智能电网的框架下,配电网正朝着高度自动化的方向发展,以适应分布式能源以及其它智能配电设备的即时插拔。
智能配电设备主要包括载波设备、无线设备等数据通信系统,以及光传感器、电子传感器、电缆温度检测器、电能质量监测设备、电力系统在线状态监测设备等数据采集系统。
因此,基于智能配电设备构建的配电网络能够实现数据的采集、通信以及配电网状态的实时监控。
3.3智能变电设备
变电是指电力系统中通过相关设备对电力能源进行的高低压转换。
变电环节的智能电力设备主要是对电子互感技术的运用,将变电站由简单的电力转换设备发展成为信息交换的共享平台。
目前在建的智能化变电站,主要是通过一次设备的智能化、二次设备的网络化来实
现变电站内设备间的信息数据交互。
在传统的变电站中,一次设备和二次设备之间通过电缆进行连接;而在智能变电站中,一次设备和二次设备之间使用光纤、电流互感器、电压互感器进行连接。
3.4智能用电设备
智能用电设备可以搭建电力企业与用户之间的沟通桥梁,促进电力市场实现竞争机制。
该类设备主要分为3种:其一,智能电表,可以实时计费,随时获取居民的用电信息,便于供电企业调配电力能源;其二,数据量测设备,能够测量电力运行的实际情况,监控电力交易数据;其三,智能通信设备,可以通过互联网技术扩大电网的管理范围,保证用户用电环节的安全和稳定。
3.5智能发电设备
智能发电设备主要包括3类。
首先是以分布式发电作为发电形式的新型能源发电设备,比如光伏发电设备、地热发电设备、潮汐能发电设备、生物质能发电设备、微型燃气轮机发电设备以及风能发电设备等;其次,智能发电设备还包括自动控制设备,比如数字型保护继电器、动态分布式电力控制设备以及智能分接头变换器等,能够保证电网的可靠运行;最后,智能发电设备还包括能量转换、能量存储设备,比如高能蓄电池、高容量储氢装置、飞轮以及燃料电池等。
结束语
电力设备智能化是顺应时代发展的必然趋势,相关部门要结合节约环保理念以及技术革新理念积极实现智能化项目研发,一定程度上提升电力设备的智能化水平,完善设计思路和方案的基础上,促进我国电网管理产业的和谐化发展。
参考文献:
[1]刘燕锋.浅谈电力设备智能化在风电场中的应用[J].通信电源技术,2014,31(04):138-139.
[2]唐李冰.电力设备方案设计系统的智能化自动化[J].电工文摘,2014(01):19-20.
[3]于海江.智能电网开启电力设备智能化时代[N].中国电力报,2013-11-07(005).
[4]李雪.我国输变电设备智能化发展对策研究[J].电子技术与软件工程,2013(18):165-166.
[5]邓敏.智能化成电力设备发展方向[N].中国电力报,2013-08-22(007).。