人脸识别巡更系统设计方案

合集下载

人脸识别建设方案

人脸识别建设方案

人脸识别建设方案一、引言人脸识别技术近年来得到广泛应用,不仅在安全领域起到了重要作用,还在商业、教育、医疗等领域展现巨大潜力。

本文将针对人脸识别建设提出一套方案,旨在实现高效、准确、安全的人脸识别系统。

二、系统需求分析1. 系统功能要求(1)准确性:人脸识别系统应具备较高的准确性,能够准确地识别出目标人物。

(2)实时性:系统应能实时响应,实现快速的人脸检测和识别。

(3)可靠性:系统应具备良好的稳定性、可靠性,确保系统长期稳定运行。

(4)安全性:系统应加密人脸数据,确保个人隐私不被泄露。

2. 系统性能要求(1)响应速度:系统应能快速响应,提供实时的人脸识别服务。

(2)检测精度:系统应能够准确地检测人脸特征点,避免误判。

(3)识别准确率:系统应具备高准确率的人脸识别算法,确保识别的精度。

3. 系统硬件需求(1)摄像头:采用高清晰度、高帧率的摄像头,以获取清晰、稳定的人脸图像。

(2)服务器:配置高性能的服务器,满足实时处理大量人脸数据的需求。

4. 数据存储与管理要求(1)数据存储:建设一个安全、高效的数据库,用于存储人脸特征值和个人信息。

(2)数据管理:建立完善的数据管理系统,实现对人脸数据的管理和查询。

三、系统建设方案1. 系统架构设计(1)硬件架构:采用分布式架构,将摄像头部署在各个需要进行人脸识别的场所,通过网络连接到中央服务器。

(2)软件架构:搭建服务器端的人脸识别算法,通过与摄像头的实时数据交互,实现快速、准确的人脸识别。

2. 人脸数据采集与预处理(1)数据采集:配置高清摄像头,采集人脸图像并提取人脸特征点。

(2)数据预处理:对采集的人脸图像进行预处理,包括降噪、对齐、归一化等处理,提高后续处理的准确性和速度。

3. 人脸特征提取与比对(1)特征提取:使用先进的人脸特征提取算法,将人脸图像转化为人脸特征向量。

(2)人脸比对:通过计算两个人脸特征向量之间的相似度,实现人脸的比对和识别。

4. 数据存储与管理(1)数据库设计:设计人脸特征值和个人信息的数据库结构,采用加密算法保护数据安全。

刷脸的智慧系统设计方案

刷脸的智慧系统设计方案

刷脸的智慧系统设计方案刷脸的智慧系统是一种利用人脸识别技术实现身份验证和门禁控制的系统。

下面是一个基于人脸识别的智慧系统的设计方案,包括系统的硬件设备、软件应用和安全措施。

1. 硬件设备(1) 摄像头:选择一款高清晰度的摄像头,能够准确地捕捉人脸特征,例如分辨率达到1080P以上的摄像头。

(2) 服务器:配置高性能的服务器,用于存储人脸数据和进行人脸识别算法的计算。

(3) 门禁设备:连接到系统的门禁设备,例如电子门锁或出入口闸机,用于实现门禁控制的功能。

(4) 屏幕显示器:用于显示身份验证结果,例如显示通过或不通过的信息。

2. 软件应用(1) 人脸检测与识别算法:选择一种高效准确的人脸检测与识别算法,可以使用常见的人脸识别库,如OpenCV、Dlib等。

(2) 数据存储与管理:建立一个数据库,用于存储用户的人脸特征数据和身份信息。

每当新用户注册时,将其人脸特征数据和身份信息保存到数据库中。

(3) 身份验证逻辑:对于每个身份验证请求,系统将从数据库中检索相应用户的人脸特征数据,并与当前检测到的人脸进行比对,以确定其身份是否匹配。

(4) 防欺诈功能:可以引入活体检测技术,以确保用户提交的人脸是真实存在且活体的。

可以结合摄像头和红外线传感器等设备来完成活体检测。

3. 安全措施(1) 数据加密:将用户的人脸特征数据进行加密存储,确保数据的安全性。

(2) 角色授权:为不同的用户分配不同的权限,例如管理员具有更高的权限,普通用户只能通过门禁。

(3) 设备监控:监控系统的运行状况,及时发现并处理异常情况。

(4) 备份与恢复:定期备份人脸特征数据和系统配置文件,以便在系统故障或数据丢失时进行恢复。

4. 部署与管理(1) 部署位置:根据实际需要,将摄像头和门禁设备安装在适当的位置,通常是在每个入口点或需要权限控制的地方。

(2) 系统管理:建立一个后台管理界面,用于添加、删除和编辑用户,以及查看系统日志和报表等功能。

智慧自主巡逻系统设计方案

智慧自主巡逻系统设计方案

智慧自主巡逻系统设计方案智慧自主巡逻系统是一种基于人工智能和机器人技术的巡逻系统,能够自主执行巡逻任务,并通过对环境的感知和分析,实时监控和预警潜在的安全隐患。

下面是一个智慧自主巡逻系统设计方案的详细描述。

一、系统架构智慧自主巡逻系统的架构可以分为以下几个模块:1. 感知模块:包括传感器和摄像头等设备,用于感知环境中的人、车等物体,并将感知的信息传输给下一模块。

2. 识别模块:通过对感知信息的处理和分析,利用计算机视觉和模式识别等技术,识别出感知信息中的人、车等目标,并提取出关键特征。

3. 规划模块:基于识别模块的结果,利用路径规划算法和智能决策算法,生成巡逻路径,并确定巡逻策略。

4. 控制模块:将规划模块生成的路径和策略转化为机器人的运动控制指令,控制机器人执行巡逻任务。

5. 通信模块:负责与监控中心或其他设备进行数据的交换和通信。

二、关键技术智慧自主巡逻系统的设计和实现需要借鉴以下关键技术:1. 机器人导航和运动控制:利用机器人学和控制理论,设计机器人的导航算法和运动控制策略,实现机器人的自主导航和运动控制。

2. 计算机视觉和模式识别:通过图像处理和模式识别算法,识别环境中的目标物体,并提取出关键特征。

3. 路径规划和智能决策:利用路径规划算法和智能决策算法,生成巡逻路径,并根据环境的变化调整路径和策略。

4. 数据通信和协议:设计合适的通信协议和数据传输机制,实现与监控中心或其他设备的数据交互和通信。

三、系统功能智慧自主巡逻系统的主要功能包括:1. 自主巡逻:机器人能够自主执行巡逻任务,按照既定的巡逻路径和策略进行巡逻。

2. 目标识别和跟踪:机器人能够通过感知模块识别环境中的目标物体,并跟踪其运动轨迹。

3. 安全预警和报警:机器人能够对环境中的安全隐患进行实时监控和预警,一旦发现异常情况,能够及时发出报警信号。

4. 数据存储和分析:机器人能够将巡逻过程中获取到的数据进行存储和分析,为后续的安全评估和优化提供数据支持。

小区人脸识别抓拍系统设计方案

小区人脸识别抓拍系统设计方案

小区人脸识别抓拍系统第一部分.系统概述通过网络数字摄像机与人脸识别抓拍系统实现小区出入口人脸识别抓拍记录并显示,与此同时抓拍的人脸图片与视频录像关联起来,使在事后查询人脸识抓拍记录时可以回放当时的视频录像。

使小区出入安全管理更智慧,更好更快的定位可疑人员。

第二部分.方案设计2.1 需求经调研,本小区的实际需求如下:●小区出入口各一支摄像机,进行智能人脸识别抓拍记录,并24小时录像●其它重点位置两支摄像机,并进行普通视频监控与24小时录像2.2 系统设计2.2.1 设计原则为提高管理效率及视频人脸抓拍效果,我们的设计遵循以下原则1、技术先进:所选设备均应性能卓越、返修率低,尽可能降低了工程造价,产品广泛应用于各种技防领域,经过市场考验,技术性能居同类产品领先水平。

2、实用可靠:整个系统全天监视过往人脸及现场情况、录制监控图像,即保证7*24小时无间断工作。

3、护展性好:系统的设计应留存充分的余地,以方便需要时能进行扩充,因此主机设备选用考虑标准服务器结构,以应对以后大型多社区人脸识别与视频监控联网的集中智能监控系统的升级的数据准备,系统输入输出扩展时只需简单平台软件升级对接,避免不必要的另外采购设备导致财力浪费。

2.2.2 系统工作原理采用加强型1080p普通数字网络摄像机作为前端视频源采集设备,在社区保安室部署一台服务器用于视频人脸识别分析、抓拍、记录、报警、录像、显示等工作。

2.2.3 系统结构人脸识别监控服务器显示器交换机小区入口人脸识别网络摄像机小区出口人脸识别网络摄像机网络摄像机网络摄像机2.2.4 系统所需设备及配置要求2.3 系统功能2.3.1 摄像机管理接入支持接入普通监控网络摄像机,支持协议:厂家协议(融合永道、海康、大华、汉邦、TCL、天视通、海芯威视、中维、天地伟业、雄迈/巨峰、智诺、艾普视达、宇视的网络摄像机/DVR/NVR),稳定接入ONVIF标准的网络摄像机支持在线按ONVIF协议搜索网络摄像机搜索摄像机添加设置摄像机的人脸识别抓拍规则参数2.3.2 人脸检测抓拍系统支持人脸识别抓拍,最小人脸大小可支持20*20,最大人脸无限制,支持人脸跟踪连拍记录,最大可同时跟踪人脸50个人脸,支持1080p分辩率下视频源进行人脸探测抓拍,支持人脸探测精度可调。

人脸识别运维服务方案设计

人脸识别运维服务方案设计

人脸识别运维服务方案设计一、项目背景随着人工智能技术的发展,人脸识别技术逐渐应用到了各个领域。

在大型企业、政府机构、学校等场所,人脸识别成为了非常重要的安全手段。

然而,人脸识别系统的运维工作相对繁琐和复杂,因此需要一个完善的人脸识别运维服务方案来帮助企业或机构解决相关问题。

二、方案设计1. 基础设施搭建为了保证人脸识别系统的正常运行,首先要搭建一套稳定可靠的基础设施。

包括服务器、存储设备、网络设备等硬件设备的选购、搭建和部署工作。

同时,还需要部署数据库、操作系统和相关软件,以支持人脸识别系统的运行。

2. 系统监控与维护为了保证人脸识别系统的稳定性和安全性,需要对系统进行实时监控和维护。

通过监控系统,可以实时了解系统的运行情况,及时处理异常情况。

同时,还需要及时更新系统的补丁和升级软件版本,以保持系统的安全和稳定。

3. 数据库管理人脸识别系统需要存储大量的人脸数据和相关的信息。

因此,需要建立一个完善的数据库管理系统,对人脸数据进行存储和管理。

包括数据备份、恢复、迁移等工作。

同时,还需要定期清理数据库中无用的数据,以提高系统的性能和效率。

4. 故障处理和维修人脸识别系统的故障处理和维修是非常重要的。

一旦系统出现故障,会严重影响系统的正常运行。

因此,需要建立一个专门的故障处理和维修团队,及时响应和处理故障,并制定相关的维修方案和流程,保证系统的快速恢复和正常运行。

5. 数据安全和隐私保护人脸识别系统涉及到大量的个人隐私数据,必须严格保护数据的安全和隐私。

为此,需要建立完善的数据安全和隐私保护措施,包括数据加密、访问控制、安全审计等。

同时,还需要遵守相关法律法规,确保个人隐私的合法使用。

三、服务目标1. 提供稳定可靠的人脸识别系统运行环境,保证系统的正常运行。

2. 提供系统监控和维护服务,及时发现和处理系统中的异常情况。

3. 提供数据库管理服务,保证人脸数据的安全性和完整性。

4. 提供故障处理和维修服务,及时响应和处理系统的故障。

人脸识别巡更系统设计方案

人脸识别巡更系统设计方案

人脸识别巡更系统设计方案动态人脸识别巡更系统设计方案北京博睿视科技有限责任公司8月18日目录第一章人脸识别巡更系统设计要求一、人脸识别巡更系统社会意义略第二章系统概述人脸识别智能巡更系统为基于深度学习算法的经过式人脸记录巡检系统。

根据需要将用于人脸抓拍的监控摄像机安装在需要巡逻的线路或执勤岗位上,人员对该地进行巡更经过时摄像机自动抓拍巡更人员的人脸照片同时将抓拍时间与对应的巡更人员人脸库进行比对结果经过局域网存入系统数据库。

此记录将成为巡更人员何时到达该地巡更的依据。

管理人员经过系统管理系统软件可清晰地了查询巡更人员巡更的实际情况,如漏查、误点、非本人带班等信息,方便管理人员有效管理。

1、人脸识别巡更系统构成该系统由人脸静态建库、人脸动态入库、人脸信息修改、实时人脸抓拍、人脸检索、人脸图像聚类、以图搜图、联动报警八大部分组成。

整个软件的逻辑体系结构如下图所示。

软件结构体系(C/S结构)图3-3 软件逻辑体系示意图3.3.1、人脸静态建库实现布控人员建库,提供用户建立临时人脸库的功能,使用者可自行注册,批量导入人脸照片,静态人脸库包括黑名单、白名单。

图3.3.1人脸静态建库动态人脸监控人 脸动 态入 库 人 脸信 息修 改 实 时人 脸抓 拍 人脸图像检 人脸图像聚类 人脸以图搜图 人脸联动报警人 脸静 态建 库3.3.2、人脸动态入库将摄像机抓拍的人脸图片,建立动态抓拍人脸库,不断累积抓拍数据,为后期进行人脸管理和提升识别率提供必要的支撑。

图3.3.2人脸动态入库3.3.3、人脸信息修改人脸信息修改模块主要是针对各个不同的人脸库,查询符合条件下的人员信息,并对其中的信息进行修改删除等操作,同时也可针对选择的人脸库进行新人员信息的注册。

小区人脸识别系统解决方案设计

小区人脸识别系统解决方案设计

小区人脸识别系统解决方案设计人脸识别技术是一种通过分析和识别人脸特征进行身份验证或身份识别的技术。

在小区管理中,人脸识别系统可以应用于门禁管理、车辆出入管理、物品寄存管理等多个方面,提高小区的安全性和管理效率。

下面是一个针对小区人脸识别系统的解决方案设计。

一、系统需求分析:1.门禁管理:通过人脸识别系统替代传统钥匙和卡片,提高小区的门禁管理安全性和便捷度。

2.车辆出入管理:通过识别车辆司机的人脸信息,快速准确地识别车辆的合法性和归属。

3.物品寄存管理:通过人脸识别系统,可以识别物品寄存人的身份信息,提高物品寄存管理的可追溯性和安全性。

二、系统设计与功能拆分:1.人脸采集与注册功能人脸采集设备:采用高清摄像头,支持多角度、多光线条件下的人脸采集。

人脸特征提取:通过算法提取人脸图像中的特征点和特征信息,生成人脸特征模板。

人脸注册:将人脸特征模板与个人信息绑定,存储在数据库中。

2.人脸识别功能人脸识别设备:摄像头、人脸识别算法等技术,通过采集人脸图像与已注册的人脸特征模板进行比对识别。

门禁控制:对通过认证的用户进行门禁控制,可实现刷脸开门、禁止陌生人进入等功能。

车辆出入管理:通过车载摄像头对车辆驾驶人进行识别,判断是否为小区的合法车辆。

物品寄存管理:当小区住户寄存物品时,识别物品寄存人的身份信息,确保物品管理的安全性和责任追溯。

3.平台管理功能人员管理:包括小区住户信息管理、访客记录管理等。

设备管理:对人脸采集设备、识别设备进行管理和维护。

数据管理:对人脸特征模板、人脸识别数据进行管理和存储。

权限管理:对系统用户的权限进行管理,明确各个角色的操作权限。

三、系统部署与测试:1.环境部署:确定人脸采集和识别设备的摆放位置,保证最佳采集效果。

2.人脸采集和识别算法调试:通过实际数据进行算法的模型训练和调试,提高识别的准确率。

3.功能测试:对各个功能进行验证测试,保证系统的稳定性和可用性。

四、系统运维与优化:1.系统运维:对系统进行定期的维护和升级,确保系统的稳定性和安全性。

人脸识别巡更系统设计方案

人脸识别巡更系统设计方案

人脸识别巡更系统设计方案一、系统架构1.前端硬件采集模块:主要包括摄像头、蓝牙、GPS等设备,用于采集巡更人员的人脸图像、位置信息等数据,并传输到后端服务器模块。

2.后端服务器模块:主要用于接收和处理前端采集的数据,包括人脸识别、路线分析、数据存储等功能。

3.客户端管理模块:巡更管理员可以使用该模块进行账号管理、巡更计划制定、巡更路线调整等操作。

二、功能模块1.人脸识别模块:基于深度学习的人脸识别算法,可以实时检测和识别巡更人员的人脸,确保只有合法的人员可以进行巡更任务。

2.路线规划模块:根据巡更管理员的要求和实际情况,自动规划最优巡更路线,确保巡更路径的覆盖率和巡更效率。

3.实时监控模块:通过摄像头实时监控巡更人员的工作情况和巡更路线,及时发现异常情况并采取相应的措施。

4.数据统计模块:对巡更人员的工作数据进行统计和分析,生成巡更报表,方便管理人员评估巡更效果和改进管理策略。

5.报警提醒模块:当发现巡更人员出现异常情况(如离线、偏离路线等),系统及时发送报警提醒,通知管理人员采取相应措施。

三、技术选型1.人脸识别算法:可以选择开源的人脸识别算法库,如OpenCV、Dlib等,或者使用商业化的人脸识别系统,如百度人脸识别、腾讯人脸识别等。

2.后端服务器开发:可以使用Python等语言进行后端服务器的开发,数据库可以选用MySQL、MongoDB等用于存储人脸数据和巡更记录。

3.前端开发:可以选择开发移动端APP或者Web端系统,使用React Native、Vue.js等前端框架进行开发。

4.硬件设备:选择具有高清摄像头、蓝牙和GPS功能的智能硬件设备,可以配备充电宝以保证巡更设备的工作时间。

四、系统流程1.巡更管理员使用客户端管理模块创建巡更计划和路线,并指派到巡更人员的账号上。

2.巡更人员佩戴巡更设备,包含摄像头、蓝牙和GPS等功能,开始巡更任务。

3.巡更设备通过蓝牙与后端服务器模块进行数据交互,上传巡更人员的人脸图像和位置信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态人脸识别巡更系统

北京博睿视科技有限责任公司
2017年8月 18日
目录
第一章人脸识别巡更系统设计要求
一、人脸识别巡更系统社会意义

第二章系统概述
人脸识别智能巡更系统为基于深度学习算法的通过式人脸记录巡检系统。

根据需要将用于人脸抓拍的监控摄像机安装在需要巡逻的线路或执勤岗位上,人员对该地进行巡更通过时摄像机自动抓拍巡更人员的人脸照片同时将抓拍时间与对应的巡更人员人脸库进行比对结果通过局域网存入系统数据库。

此记录将成为巡更人员何时到达该地巡更的依据。

管理人员通过系统管理系统软件可清晰地了
查询巡更人员巡更的实际情况,如漏查、误点、非本人带班等信息,方便管理人员有效管理。

1、人脸识别巡更系统构成
该系统由人脸静态建库、人脸动态入库、人脸信息修改、实时人脸抓拍、人脸检索、人脸图像聚类、以图搜图、联动报警八大部分组成。

整个软件的逻辑体系结构如下图所示。

软件结构体系( C/S 结构)
图3-3 软件逻辑体系示意图
实现布控人员建库,提供用户建立临时人脸库的功能,使用者可自行注册,批量导入人脸照片,静态人脸库包括黑名单、白名单。

人脸动态入库
将摄像机抓拍的人脸图片,建立动态抓拍人脸库,不断累积抓拍数据,为后
期进行人脸管理和提升识别率提供必要的支撑。

人脸信息修改
人脸信息修改模块主要是针对各个不同的人脸库,查询符合条件下的人员信息,并对其
中的信息进行修改删除等操作,同时也可针对选择的人脸库进行新人员信息的注册。

实时人脸抓拍
该子系统为监控画面和报警端的界面,主要分为4 个部分:视频设备列表,监控画面,现场抓拍图像和匹配报警图像。

图实时人脸监控子系统效果图
功能模块分别为
视频设备列表:列举所有可以使用的监控摄像头
图视频设备列表
监控画面:播放窗口显示该摄像机的实时监控
图监控画面
现场抓拍图像:显示摄像头所抓取的人脸图片
图现场抓拍图像
报警图像:根据抓拍到的人脸图像,与数据库中的人员进行比对查询。

图匹配报警图像
人脸图像检索
人脸图像检索即为对摄像头抓拍到的人员信息或系统识别比对结果进行进一步的查询。

该模块分为比对结果查询,抓拍人像查询和比对库人脸查询三个部分
比对结果查询:选择要查询的设备和黑白名单类型以及匹配的开始和结束时间,然后点击查询按钮。

显示的匹配结果以倒序方式进行排列,离结束时间最近的排在最
图比对结果查询
抓拍人像查询:选择抓拍起始时间和抓拍结束时间,然后点击查询按钮。

显示的内容以“抓拍时
间”中的内容倒序方式进行排列,即离结束时间最近的排在最前面。

图抓拍人像查询比对库人脸查询:选择入库的开始时间和入库结束时间,然后点击查询按钮。

显示的结果以“入库时间”中的内容倒序方式进行排列,即离结束时间最近的排在最前面。

图比对库人脸查询
聚类
根据历史抓拍的人脸图像和检索条件在抓拍人脸库中查询符合条件的人脸,输入需要的检索条件,如类别总数、单个类别总数、检索阈值,抓拍时间范围。

可进行条件范围内的查询,将符合条件的抓拍人脸聚类显示。

人脸以图搜图
人脸以图搜图模块主要是针对抓拍库和比对库的静态人脸识别,上传一张本地人脸图片,选择抓拍库或者比对库,然后输入比对阈值,点击搜索按钮。

显示的结果以匹配值高低倒序排列,即匹配值最高的显示在前面。

人脸联动报警
人脸识别匹配后,可以联动串口继电器报警输出。

系统总体设计
人脸系统总体架构包括前端设备、传输网络和监控中心三个部分,如下图:前端设备:主要是采集视频传回到中心。

传输网络:传输监控场景的视频。

监控中心:主要是部署各个服务,将传回来的视频数据进行分析,抓拍人脸显示结果,并进行实时分析比对。

4、系统主要功能
人脸建库
实现布控人员建库,提供用户建立临时人脸库的功能,使用者可自行注册,批量导入人脸照片。

人脸检测
自动检测视频中的人脸并进行跟踪与质量判断,提升系统的识别性能。

人脸检测比对只需要使用普通的网络摄像头即可。

支持摄像头实时抓取通过的人脸照片,在事后进行检索。

人脸识别
根据比对策略将采集到的视频中的人脸与布控名单进行比对,如果匹配上则进行预警,提示操作人员进行处置。

实时人脸监控
实时提供监控画面,并显示所有的人脸匹配结果。

保存所有经过摄像头的人脸照片,每张照片只有几K 到十几K大小。

人脸图像检索
人脸图像检索即为对摄像头抓拍到的人员信息或系统识别比对结果进行进一步的查询。

该模块分为比对结果查询,抓拍人像查询和比对库人脸查询三个部分。

人像信息修改
人脸信息修改模块主要是针对各个不同的人脸库,查询符合条件下的人员信息,并对其
中的信息进行修改删除等操作,同时也可针对选择的人脸库进行新人员信息的注册。

以图搜图
人脸以图搜图模块主要是针对抓拍库和比对库的静态人脸识别,上传一张本地人脸图
片,选择抓拍库或者比对库,然后输入比对阈值,点击搜索按钮。

显示的结果以匹配值高低倒序排列,即匹配值最高的显示在前面。

同人搜索
根据历史抓拍的人脸图像和检索条件在抓拍人脸库中查询符合条件的人脸,输入需要的
检索条件,如类别总数、单个类别总数、检索阈值,抓拍时间范围。

可进行条件范围内的查
询,将符合条件的抓拍人脸聚类显示。

5、影响因素及设备安装
、环境影响
光线变化是影响人脸识别性能的主要因素之一。

当照射人脸的光线是均匀照射的、没有阴影和闪光的散射光时,具有最好的比对性能。

因此系统的部署需要特别注意光线
处理,避免出现逆光、阴阳脸、光线过暗或过强等现象,为了提高系统识别性能,我们建议在系统部署的场所采用额外的光源进行补光
图光源及摄像机部署示意图
、设备架设
人脸识别需要采集人员的正面照片,在不影响人员通行,且满足人员姿态要求范围内的前提下,图像采集设备的架设地点在人员行进路线的前上方为最佳。

所以就需要对人员的行进路线进行规范,使人员流动方向单一。

所以我们建议在通道处部署具有更好的比对效果
背景颜色及图案尽量不要太复杂,单色、浅色为宜,尽量背景要求
不要有玻璃等强反光物体。

图摄像机与目标的距离示意图
监控距离U(米)≈镜头焦距f(mm)* 监控宽度W(米)/senser 粑面尺寸a(mm)
注意:摄像机架设位置主要目的是要抓拍到一张正面清晰人脸照片,且需要尽量避免前后人脸遮挡情况。

详细位置的选点和镜头选择有关系,可以查看镜头选择详细列表。

、性能指标。

相关文档
最新文档