大学物理仿真刚体的转动惯量实验报告

合集下载

刚体的转动惯量(实验报告数据处理)

刚体的转动惯量(实验报告数据处理)

刚体的转动惯量(实验报告数据处理)一、实验目的1.测量不同形状物体的转动惯量;2.了解刚体的转动惯量的概念和意义;3.掌握利用转动惯量公式计算转动惯量的方法。

二、实验原理刚体在绕固定轴线上做匀速转动时,其转动惯量的大小决定了它所受的转动惯量矩的大小,转动惯量定理表明,在恒定力矩作用下,物体的角加速度与物体的转动惯量成反比。

对于一个刚体,既可以沿着它的轴线旋转,也可以沿着一个平行于轴线的过质心的轴线旋转,而它的转动惯量则与这两个轴之间的距离有关。

三、实验内容3.比较计算值与实验值之间的误差并讨论原因。

四、实验过程1.实验器材:转速表,万能电机,测量尺子,各种不同形状的物体(如实验室提供的铁球,铝棒等)。

2.实验步骤:(1)将铝棒的一端用万能电机固定在转动轴上;(2)用测量尺子测定铝棒的长度和直径;(3)打开电源,开启电机,让铝棒匀速旋转起来,并测量转速;(4)利用转速表测量铝棒旋转的周期时间,再根据转速和周期时间计算角速度;(5)停止电机后,用测量尺子逐个测量铝棒各个位置的距离,并记录下来;(6)利用测量结果以及铝棒的密度和尺寸数据,计算其转动惯量。

(7)重复上述步骤,测量其他形状的物体。

五、实验数据处理以一个球状物体为例,测量数据如下:1.球的质量m=0.6kg;3.球的转动周期T=0.536s;4.转速表读数n=114rpm;根据公式I=1/4 * m * d2 ,可以计算出该球的转动惯量为:I=1/4 * m * d2 =1/4 * 0.6kg * (0.1m)2 =0.003kg*m2另外,根据转速和周期时间可以计算出球的角速度ω:ω=2π/T = 2π/0.536s = 11.704rad/sr(m) I(kg*m2)0.05 0.0015上述数据是计算出球的转动惯量的过程中所得到的。

通过以上的数据可以看出,当距离球心较远时,转动惯量较大;当距离球心较近时,转动惯量较小。

同时,也可以验证公式I=1/4 * m * d2 的正确性。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。

2、加深对转动惯量概念的理解。

3、掌握用游标卡尺和秒表等仪器的使用方法。

二、实验原理三线摆是由三根等长的悬线将一水平圆盘悬挂在一个固定的支架上构成的。

当圆盘绕中心轴 OO' 作扭转摆动时,圆盘的运动可以看作是圆盘绕通过其重心且垂直于盘面的轴线的转动和平动的合成。

设圆盘的质量为 m,半径为 R,对于通过其重心且垂直于盘面的轴线的转动惯量为Ic。

当圆盘扭转一个小角度θ 时,圆盘的势能变化为:ΔEp = mgh其中,h 为圆盘重心上升的高度。

由于θ 很小,所以可以近似认为:h ≈ Rθ²根据能量守恒定律,圆盘的势能变化等于其动能的变化,即:ΔEp =1/2 Iω²其中,ω 为圆盘的角速度。

又因为圆盘的摆动周期为 T,所以ω =2π/T。

联立上述式子可得:Ic =(mgR²T²) /(4π²h)实验中通过测量圆盘的质量 m、半径 R、摆动周期 T 以及圆盘扭转角度θ 对应的重心上升高度 h,即可计算出圆盘对于通过其重心且垂直于盘面的轴线的转动惯量 Ic。

三、实验仪器三线摆、游标卡尺、米尺、秒表、待测刚体(圆环、圆柱等)、托盘天平。

四、实验步骤1、用托盘天平测量圆盘和待测刚体的质量。

2、用游标卡尺测量圆盘和待测刚体的直径,分别测量多次,取平均值。

3、调整三线摆的悬线长度,使上下圆盘之间的距离约为 50cm 左右。

4、轻轻转动上圆盘,使圆盘作小角度的扭转摆动,用秒表测量圆盘摆动 50 个周期的时间,重复测量多次,取平均值,计算出摆动周期T。

5、将待测刚体放在圆盘上,使两者的中心轴线重合,按照上述方法测量系统(圆盘和待测刚体)的摆动周期 T'。

五、实验数据记录与处理1、圆盘质量 m =______ g,直径 D =______ cm,半径 R =D/2 =______ cm。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。

实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。

实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。

根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。

2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。

实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。

(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。

(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。

(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。

(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。

(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。

(3)移动转轴的位置,直到平衡木重新平衡。

(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。

实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。

(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。

2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。

实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。

分析实验数据的偏差和不确定度,讨论实验结果的可靠性。

大学物理实验报告 测量刚体的转动惯量

大学物理实验报告 测量刚体的转动惯量

测量刚体的迁移转变惯量【1 】实验目标:1.用实验办法验证刚体迁移转变定律,并求其迁移转变惯量;2.不雅察刚体的迁移转变惯量与质量散布的关系3.进修作图的曲线改直法,并由作图法处理实验数据.二.实验道理:1.刚体的迁移转变定律具有肯定转轴的刚体,在外力矩的感化下,将获得角加快度β,其值与外力矩成正比,与刚体的迁移转变惯量成反比,即有刚体的迁移转变定律:M = Iβ (1)运用迁移转变定律,经由过程实验的办法,可求得难以用盘算办法得到的迁移转变惯量. 2.运用迁移转变定律求迁移转变惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物构成.刚体将在砝码的拖动下绕竖直轴迁移转变.设细线不成伸长,砝码受到重力和细线的张力感化,从静止开端以加快度a下落,其活动方程为mg – t=ma,在t时光内下落的高度为h=at2/2.刚体受到张力的力矩为Tr和轴摩擦力力矩Mf.由迁移转变定律可得到刚体的迁移转变活动方程:Tr - Mf = Iβ.绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:m(g - a)r - Mf = 2hI/rt2 (2)Mf与张力矩比拟可以疏忽,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:mgr = 2hI/ rt2 (3)式中r.h.t可直接测量到,m是实验中随意率性选定的.是以可依据(3)用实验的办法求得迁移转变惯量I.3.验证迁移转变定律,求迁移转变惯量从(3)动身,斟酌用以下两种办法:A.作m – 1/t2图法:伸杆上配重物地位不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变成:M = K1/ t2 (4)式中K1 = 2hI/ gr2为常量.上式标明:所用砝码的质量与下落时光t的平方成反比.实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线.即若所作的图是直线,便验证了迁移转变定律.从m – 1/t2图中测得斜率K1,并用已知的h.r.g值,由K1 = 2hI/ gr2求得刚体的I.B.作r – 1/t图法:配重物的地位不变,即选定一个刚体,取砝码m和下落高度h为固定值.将式(3)写为:r = K2/ t (5)式中K2 = (2hI/ mg)1/2是常量.上式标明r与1/t成正比关系.实验中换用不合的塔轮半径r,测得统一质量的砝码下落时光t,用所得一组数据作r-1/t图,应是直线.即若所作图是直线,便验证了迁移转变定律.从r-1/t图上测得斜率,并用已知的m.h.g值,由K2 = (2hI/ mg)1/2求出刚体的I.刚体迁移转变仪,滑轮,秒表,砝码.1.调节实验装配:调节转轴垂直于程度面调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面.选定砝码下落起点到地面的高度h,并保持不变.取塔轮半径为,砝码质量为20g,保持高度h不变,将配重物逐次取三种不合的地位,分离测量砝码下落的时光,剖析下落时光与迁移转变惯量的关系.本项实验只作定性解释,不当准据盘算.3.测量质量与下落时光关系:测量的根本内容是:改换不合质量的砝码,测量其下落时光t.用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定命为每个;用秒表记载下落时光.将两个配重物放在横杆上固定地位,选用塔轮半径为某一固定值.将拉线平行围绕纠缠在轮上.逐次选用不合质量的砝码,用秒表分离测量砝码从静止状况开端下落到达地面的时光.对每种质量的砝码,测量三次下落时光,取平均值.砝码质量从5g开端,每次增长5g,直到35g止.用所测数据作图,从图中求出直线的斜率,从而盘算迁移转变惯量.测量的根本内容是:对统一质量的砝码,改换不合的塔轮半径,测量不合的下落时光.将两个配重物选在横杆上固定地位,用固定质量砝码施力,逐次选用不合的塔轮半径,测砝码落地所用时光.对每一塔轮半径,测三次砝码落地之间,取其平均值.留意,在改换半径是要响应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面.由测得的数据作图,从图上求出斜率,并盘算迁移转变惯量.五.实验数据及数据处理:r-1/t的关系:⨯103-kg 2m ⋅m-(1/t)2的关系:由此关系得到的迁移转变惯量I=231087.1m kg ⋅⨯-六.实验成果:⨯103-kg 2m ⋅;由m-1/t 2的关系得到迁移转变惯量I=231087.1m kg ⋅⨯-.七.实验留意事项:1.细心调节实验装配,保持转轴铅直.使轴尖与轴槽尽量为点接触,使轴迁移转变自如,且不克不及扭捏,以削减摩擦力矩.2.拉线要围绕纠缠平行而不重叠,切忌乱绕,以防各匝线之间挤压而增大阻力.3.掌控好启动砝码的动作.计时与启动一致,力图防止计时的误差.4.砝码质量不宜太大,以使下落的加快度a不致太大,包管a<<g前提的知足.八.实验思虑题:1.定性剖析实验中的随机误差和可能的体系误差.答:随机误差重要出如今计时与启动的一致性上面还有,拉线的平行情形.体系误差主如果轴的摩擦及空气阻力.。

工作报告之转动惯量测量实验报告

工作报告之转动惯量测量实验报告

转动惯量测量实验报告【篇一:大学物理实验报告测量刚体的转动惯量】测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有ag,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

b.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。

将式(3)写为:r = k2/ t (5)式中k2 = (2hi/ mg)是常量。

上式表明r与1/t成正比关系。

实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。

即若所作图是直线,便验证了转动定律。

1/21/2从r-1/t图上测得斜率,并用已知的m、h、g值,由k2 = (2hi/ mg)求出刚体的i.三.实验仪器刚体转动仪,滑轮,秒表,砝码。

测量刚体的转动惯量实验报告

测量刚体的转动惯量实验报告

测量刚体的转动惯量实验报告篇一:刚体转动惯量的测定实验报告刚体转动惯量的测定物本1001班张胜东(201009110024)李春雷(201009110059)郑云婌(201009110019)刚体转动惯量的测定实验报告实验目的1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。

2.用扭摆测定弹簧的扭转常数K和几种不同形状的物体的转动惯量,并与理论值进行比较。

3.验证转动定理和平行轴定理。

实验仪器(1)扭摆(转动惯量测定仪)。

(2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。

(3)天平。

(4)游标卡尺。

(5)HLD-TH-II转动惯量测试仪(计时精度)。

实验原理1. 扭摆扭摆的构造如图所示,在垂直轴 1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。

在轴的上方可以装上各种待测物体。

垂直轴与支座间装有轴承,以降低磨擦力矩。

3 为水平仪,用来调整系统平衡。

将物体在水平面内转过一角度θ 后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。

根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即b M=-Kθ (1)式中,K为弹簧的扭转常数,根据转动定律M=Iβ 式中,I为物体绕转轴的转动惯量,β为角加速度,由上式得? 令?2?M (2)?K,忽略轴承的磨擦阻力矩,由(1)、(2)得d2?K2(3)??2Idt上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。

此方程的解为:θ=Acos (4)式中,A为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为T?2???2?I(5)K由(5)可知,只要实验测得物体扭摆的摆动周期,并在I和K中任何一个量已知时即可计算出另一个量。

本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K值。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a&lt;&lt;g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a&lt;&lt;g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理仿真实验——刚体转动惯量的测量
班级:
姓名:
学号:
实验名称:刚体转动惯量的测量
一、实验目的
在研究摆的重心升降问题时,惠更斯发现了物体系的重心与后来欧勒称之为转动惯量的量。

转动惯量是表征刚体转动惯性大小的物理量,它与刚体的质量、质量相对于转轴的分布有关。

本实验将学习测量刚体转动惯量的基本方法,目的如下:
1.用实验方法验证刚体转动定律,并求其转动惯量;
2.观察刚体的转动惯量与质量分布的关系
3.学习作图的曲线改直法,并由作图法处理实验数据。

二、实验原理
1.刚体的转动定律
具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:
M = Iβ (1)
利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量
如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a 下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at2/2。

刚体受到
张力的力矩为T
r 和轴摩擦力力矩M
f。

由转动定律可得到刚体的转动运动方程:T
r
- M
f
= Iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:
m(g - a)r - M
f
= 2hI/rt2 (2)
M
f
与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,
所以可得到近似表达式:
mgr = 2hI/ rt2 (3)
式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量I。

3.验证转动定律,求转动惯量
从(3)出发,考虑用以下两种方法:
A.作m –1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:
M = K
1
/ t2 (4)
式中K
1
= 2hI/ gr2为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

从m – 1/t2图中测得斜率K
1,并用已知的h、r、g值,由K
1
= 2hI/ gr2
求得刚体的I。

B.作r –1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h为固定值。

将式(3)写为:
r = K
2
/ t (5)
式中K
2
= (2hI/ mg)1/2是常量。

上式表明r与1/t成正比关系。

实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t 图,应是直线。

即若所作图是直线,便验证了转动定律。

从r-1/t图上测得斜率,并用已知的m、h、g值,由K
2
= (2hI/ mg)1/2求出刚体的I。

三、实验仪器
刚体转动仪,滑轮,秒表,砝码
刚体转动仪:
包括:
A.、塔轮,由五个不同半径的圆盘组成。

上面绕有挂小砝码的细线,由它对刚体施加外力矩。

B、对称形的细长伸杆,上有圆柱形配重物,调节其在杆上位置即可改变转动惯量。

与A和配重物构成一个刚体。

C.、底座调节螺钉,用于调节底座水平,使转动轴垂直于水平面。

此外还有转向定滑轮,起始点标志,滑轮高度调节螺钉等部分
四、实验内容
1.调节实验装置:调节转轴垂直于水平面
调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。

选定砝码下落起点到地面的高度h,并保持不变。

2.观察刚体质量分布对转动惯量的影响
取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。

本项实验只作定性说明,不作数据计算。

3.测量质量与下落时间关系:
测量的基本内容是:更换不同质量的砝码,测量其下落时间t。

用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个5.0g;用秒表记录下落时间。

将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。

将拉线平行缠绕在轮上。

逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态开始下落到达地面的时间。

对每种质量的砝码,测量三次下落时间,取平均值。

砝码质量从5g开始,每次增加5g,直到35g止。

用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。

4.测量半径与下落时间关系
测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。

将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。

对每一塔轮半径,测三次砝码落地之间,取其
平均值。

注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。

由测得的数据作图,从图上求出斜率,并计算转动惯量
五、实验数据和处理
(1)刚体质量分布对转动惯量的影响
大。

(2)测量质量与下落时间关系
(3)测量半径与下落时间关系
六、实验结论
两次实验虽然结果略有不同,但都客观上反映了刚体的转动惯量的特征,它与刚体的质量、质量相对于转轴的分布有关。

用实验方法验证刚体转动定律通过本次实验,我们能更清楚地认识到刚体的转动惯量,并用实验方法验证刚体转动定律。

误差分析:在实验中用到了一些忽略计算,例如M f与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,故使g-a近似以为g。

七、思考题:
1.课前思考题
(1)本实验要求的条件是什么?如何在实验中实现?
答:本实验要求是转轴铅直,拉线水平;在实验中通过调节底座调节螺钉使底座保持水平来确保转轴铅直的,通过调节滑轮高度来确保拉线水平的。

(2)试分析两种作图法求得的转动惯量是否相同?
答:不同,因为实际的关系式是m(g - a)r - M f = 2hI/rt2。

改变m和改变t带来的误差是不同的,会导致所求转动惯量发生变化。

(3)从实验原理,计算方法上分析,那种方法所得结果更合理?
答:第一种方法,即绘制m-1/t图像求转动惯量更合理。

因为即使考虑摩擦力,m与1/t仍是一次线性关系,故不会造成系统误差。

2.课后思考题
(1)由实验数据所作的m-(1/t)2图中,如何解释在m轴上存在截距?
答:因为在测量中忽略了摩擦力的作用。

= 2hI/rt可知当1/t为0时,m并不为0,即图像由m(g - a)r - M
f
在m轴存在截距。

(2)定性分析实验中的随机误差和可能的系统误差。

答:随机误差有时间的测量,砝码质量的测量;摩擦力的存在会带来系统误差。

相关文档
最新文档