高中最全数学解题的思维策略资料全

合集下载

高中数学解题思维与策略

高中数学解题思维与策略

高中数学解题思维与策略【摘要】很多同学在上高中之后面临的最大的难关就是高中数学这个科目,因为高中数学的知识点非常的多,每个单元的联系性非常的小,而且高中的课业负担大,所以也就缺少学习的时间。

因此同学们一定要能够掌握高中数学的解题思维和策略,这能够更好的提高数学成绩。

下面就浅谈下关于数学解题思维与策略方面的知识。

【关键词】高中数学;解题;思维;策略高中数学的知识点和内容是非常的多,而且高中的课堂之上,无论是老师授课的内容还是授课的速度都是非常的快,所以很多的同学们都是无法接受,而导致了成绩的后退,尤其是在高中数学上面,因为高中数学之中的内容要比以往所学习的数学抽象的很多,所以同学们在学习的时候更加难以理解,而考试之中也就是问题百出了。

我在高中数学的讲台上面走过了多个年头,这些年以来,我一直都在反思和总结我自己的教学方法,在反思之中发现了很多的问题。

很多同学都无法理解高中数学之中的一些知识,但是他们还是能够拿到高分,而在高三总复习的时候也能获得好的成绩。

而很多的同学,明明是对知识点掌握的很好,但是就是在考试之中不会使用,最后还是获得不了高分,在总结和反思之中我发现,掌握高中数学的答题方法非常重要,只有能够掌握好的高中数学的解题方法,就算是无法掌握很多的知识内容,但是同学们还是可以获得高分,这对于要参加高考的考生们来说是十分的关键。

一、何为数学解题的思维过程所谓数学解题的思维过程是指从同学们理解问题开始,经过有思路的探索,转换问题,最终解决问题的思维活动。

关于数学问题的解题过程,以往有位名人提出了一套合理的过程。

分为四个阶段。

是弄清问题,拟定计划,实现计划,最后回顾的过程。

而古往今来,在很多数学学者或是教学工作者的总结之下,这四个步骤又被简化为:理解,转换,实施,反思。

理解问题首先就是要认真的读题,明白弄清题意,是解题思维活动这个过程的开始。

转换问题是解题思维这个活动的核心步骤,将问题进行转化,转化成自己曾经做过的问题的类型,或是在大脑之中搜索例题,进行转化,转化问题是探索解题方向和途径的积极尝试和探索发现的过程,是思维转化的过程。

备考高考数学最好用的策略与方法精选3篇

备考高考数学最好用的策略与方法精选3篇

备考高考数学最好用的策略与方法精选3篇【篇1】备考高考数学最好用的策略与方法1、课后一分钟回忆及时复习上完课的当天,必须做好当天的复习。

复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题;分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。

然后打开笔记与书本,对照一下还有哪些没记清的,赶紧补完,这样不仅能把当天上课内容巩固下来,而且也能检查当天课堂听课的效果如何,同时也可改进听课方法及提高听课效果。

我们可以简记为“一分钟的回忆法”。

2、避免“会而不对”的错误习惯解题时应仔细阅读题目,看清数字,规范解题格式,养成良好解题习惯。

部分同学(尤其是脑子比较好的同学)自我感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范。

但在正规考试中即使答案对了,由于过程不完整而扣分较多。

还有一部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。

这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,费时费力,影响整体得分。

这些问题很难在短时间得以解决,必须在平时养成良好解题习惯。

“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。

可结合平时解题中存在的具体问题,逐题找出原因,看其到底是行为习惯方面的原因,还是知识方面的缺陷,再有针对性地加以解决。

必要时要作些记录,也就是“错题笔记”。

每过一段时间,就把“错题笔记”或标记错题的试卷复习一遍。

在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。

3、重视“一题多解”“多题同解”学好数学要做大量的习题,但做了大量的题,数学都未必好,为何会出现这种反差呢?究其原因,是片面追求做题数量,而没有发挥做题的效果。

精品 2014-2015年 高中数学解题思维策略

精品 2014-2015年 高中数学解题思维策略
2
x2 y2 x2
3 2 1 9 x 3 x ( x 3) 2 , 2 2 2

当 x 3 时, x 2 y 2 取最大值,最大值为
9 2
这种解法由于忽略了 y 2 0 这一条件,致使计算结果出现错误。因此,要 注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽 条件,既要注意主要的已知条件, 又要注意次要条件,这样,才能正确地解题,提高思维的变通性。 有些问题的观察要从相应的图像着手。
1 1 1 1 . 1 2 2 3 3 4 n(n 1)
这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且
1 1 1 1 1 1 1 1 1 ,因此,原式等于 1 问题 1 n(n 1) n n 1 2 2 3 n n 1 n 1
这个方程指明两个数的和为 2 , 这两个数的积为 3 。 由此联想到韦达定理,
x 、 y 是一元二次方程 t 2 2t 3 0 的两个根, x 1 x 3 所以 或 .可见,联想可使问题变得简单。 y 3 y 1
1
高中数学
(3)善于将问题进行转化 数学家 G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。 可见,解题过程是通过问题的转化才能完成的。转化是解数学题的一种十分重 要的思维方法。 那么怎样转化呢?概括地讲, 就是把复杂问题转化成简单问题, 把抽象问题转化成具体问题,把未知问题转化成已知问题。在解题时,观察具 体特征,联想有关问题之后,就要寻求转化关系。 1 1 1 1 例如,已知 , (abc 0, a b c 0) , a b c abc 求证 a 、 b 、 c 三数中必有两个互为相反数。 恰当的转化使问题变得熟悉、简单。要证的结论,可以转化为:

高中数学解题思维策略

高中数学解题思维策略

第四讲 数学思维的开拓性一、概述数学思维开拓性指的是对一个问题能从多方面考虑;对一个对象能从多种角度观察;对一个题目能想出多种不同的解法,即一题多解。

“数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系。

我们在学习每一分支时,注意了横向联系,把亲缘关系结成一张网,就可覆盖全部内容,使之融会贯通”,这里所说的横向联系,主要是靠一题多解来完成的。

通过用不同的方法解决同一道数学题,既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极性,达到开发潜能,发展智力,提高能力的目的。

从而培养创新精神和创造能力。

在一题多解的训练中,我们要密切注意每种解法的特点,善于发现解题规律,从中发现最有意义的简捷解法。

数学思维的开拓性主要体现在:(1)一题的多种解法例如 已知复数z 满足1||=z ,求||i z -的最大值。

我们可以考虑用下面几种方法来解决:①运用复数的代数形式;②运用复数的三角形式;③运用复数的几何意义;④运用复数模的性质(三角不等式)||||||||||||212121z z z z z z +≤-≤-; ⑤运用复数的模与共轭复数的关系z z z ⋅=2||;⑥(数形结合)运用复数方程表示的几何图形,转化为两圆1||=z 与r i z =-||有公共点时,r 的最大值。

(2)一题的多种解释 例如,函数式221ax y =可以有以下几种解释: ①可以看成自由落体公式.212gt s = ②可以看成动能公式.212mv E = ③可以看成热量公式.212RI Q = 又如“1”这个数字,它可以根据具体情况变成各种形式,使解题变得简捷。

“1”可以变换为:x tg x a b x x xx a b a a 2222sec ),(log )(log ,cos sin ,,log -⋅+,等等。

1. 思维训练实例例1 已知.1,12222=+=+y x b a 求证:.1≤+by ax分析1 用比较法。

高中数学解题的思维策略

高中数学解题的思维策略

四.数学 思维 的开拓性

对 一个 问题从多方面考虑 对
个对象从 多种角 度观 察,对 一个题 目 运 用多种不同的解法
数 学 思维开 拓性指 的是 对一 个 问题 能从 多方 面考虑 ,对

化呢 ?概 括地讲 ,就是把复 杂问题转化成简单 问题 ,把 抽象问
题转 化成具体 问题 ,把 未知问题 转化成 已知 问题 .在解 题时, 观察具体特征 ,联想有 关问题之后 ,就要 寻求 转化 关系. 思维变通性 的对立 面是思维的保守性,即思维定势。思维
形式 。它是判断和判断 的联 合,任何一个论证都 是 由推理来实
( 三 )善于将 问题进行转化 数学 家G・波利亚在 《 怎样解题 》中说过 :数学解题 是命 题 的连 续变 换 。可见 ,解题 过程 是通 过 问题 的转 化才 能完 成 的。转 化是解数学题 的一种 十分重要的思维方法 。那 么怎样转
( 一 )善 于 观 察
精细地检查思 维过程 ,不盲从 、不轻信 。在解决 问题时能不 断
地验证所拟定 的假 设,获得独特 的解 决问题 的方法 ,它和创造
性思维存在着 高度 相关 。受思维定势 或别人提示 的影 响,解 题
时盲 目附和 ,不能提出 自己的看法 ,这 不利于增强思维 的反思
性 .因此 ,在解 决 问题时 ,应积极地独 立思考 ,敢于对题 目解
造性思维 。
心理学告诉我们:感觉和知觉是认识事物 的最初级形式 , 而观察则是知觉 的高级状态 ,是一种有 目的、有计划、 比较持 久的知觉 .观察 是认识 事物最基本 的途径 ,它是了解 问题 、发 现 问题和解决 问题的前提 . 任何一道数学题 ,都包含一定的数学条件和关系 .要想解 决它 ,就必须依据题 目的具体特征 ,对题 目进 行深入 的、细致

数学解决高中数学难题的四大思维技巧

数学解决高中数学难题的四大思维技巧

数学解决高中数学难题的四大思维技巧在高中数学学习中,我们经常会遇到各种各样的数学难题,有些难题看起来很棘手,令人困惑。

然而,只要我们掌握一些有效的思维技巧,就能够更轻松地解决这些难题。

本文将介绍数学解决高中数学难题的四大思维技巧,帮助我们在数学学习中取得更好的成绩。

一、问题分解法解决数学难题的第一个思维技巧就是问题分解法。

当我们面对一个复杂的数学问题时,首先要学会将其分解为几个简单的部分。

可以通过分析问题的结构和特点,将问题逐步分解为更小的子问题,然后逐个解决这些子问题,最终得到整个问题的解答。

通过问题分解法,我们可以将原来看起来复杂的数学难题变得更易于理解和解决。

二、模式识别法数学解决高中数学难题的第二个思维技巧是模式识别法。

在数学学习中,我们经常会遇到一些类似的问题或者模式。

通过观察和思考,我们可以将这些问题归纳为一般性的规律和模式。

当我们遇到类似的问题时,可以运用已经掌握的模式和规律,更加迅速地解决问题。

通过模式识别法,我们可以从大量例题中提取出数学问题的共性,培养出敏锐的观察力和抽象思维的能力。

三、逆向思维法逆向思维法是解决高中数学难题的第三个思维技巧。

有时候我们在正常的思维定势中很难找到问题的解决方法,这时可以尝试从相反的角度来思考。

通过逆向思维,我们可以从问题的解答出发,倒推回问题的出发点,找到其中的规律和关系。

逆向思维法可以帮助我们打破固有的思维模式,开阔思路,找到解决问题的新思路和方法。

四、实践反思法解决高中数学难题的第四个思维技巧是实践反思法。

数学学习需要不断的实践和反思。

当我们解决一个数学难题时,即使我们得到了正确的答案,也要对解题过程进行仔细的反思。

我们可以思考自己使用了哪些方法和规律,是否可以运用其他方法来解决,当中是否存在简化计算的技巧等等。

通过实践反思,我们可以不断总结经验,积累解题技巧,提高解决数学难题的能力。

结语数学解决高中数学难题并不是一件容易的事情,但通过掌握一些有效的思维技巧,我们可以更加轻松地应对各种难题。

高中数学解题思维策略3

高中数学解题思维策略3

第四讲 数学思维的开拓性一、概述数学思维开拓性指的是对一个问题能从多方面考虑;对一个对象能从多种角度观察;对一个题目能想出多种不同的解法,即一题多解。

“数学是一个有机的整体,它的各个部分之间存在概念的亲缘关系。

我们在学习每一分支时,注意了横向联系,把亲缘关系结成一张网,就可覆盖全部内容,使之融会贯通”,这里所说的横向联系,主要是靠一题多解来完成的。

通过用不同的方法解决同一道数学题,既可以开拓解题思路,巩固所学知识;又可激发学习数学的兴趣和积极性,达到开发潜能,发展智力,提高能力的目的。

从而培养创新精神和创造能力。

在一题多解的训练中,我们要密切注意每种解法的特点,善于发现解题规律,从中发现最有意义的简捷解法。

数学思维的开拓性主要体现在:(1) 一题的多种解法例如 已知复数z 满足1||=z ,求||i z -的最大值。

我们可以考虑用下面几种方法来解决:①运用复数的代数形式; ②运用复数的三角形式; ③运用复数的几何意义;④运用复数模的性质(三角不等式)||||||||||||212121z z z z z z +≤-≤-;⑤运用复数的模与共轭复数的关系z z z ⋅=2||;⑥(数形结合)运用复数方程表示的几何图形,转化为两圆1||=z 与ri z =-||有公共点时,r 的最大值。

(2) 一题的多种解释例如,函数式221ax y =可以有以下几种解释:①可以看成自由落体公式.212gt s =②可以看成动能公式.212mv E =③可以看成热量公式.212RI Q =又如“1”这个数字,它可以根据具体情况变成各种形式,使解题变得简捷。

“1”可以变换为:x tg x a b x x xxa b a a 2222sec ),(log )(log ,cos sin ,,log -⋅+,等等。

1. 思维训练实例例1 已知.1,12222=+=+y x b a 求证:.1≤+by ax分析1 用比较法。

本题只要证.0)(1≥+-by ax 为了同时利用两个已知条件,只需要观察到两式相加等于2便不难解决。

高中数学解题思维策略及思想

高中数学解题思维策略及思想
用换元法解题,关键在于根据问题的结构特征,选择能以简驭繁,化难为易的代 换 f(x)=y 或 x=g(t)。就换元的具体形式而论,是多种多样的,常用的有有理式代换, 根式代换,指数式代换,对数式代换,三角式代换,反三角式代换,复变量代换等, 宜在解题实践中不断总结经验,掌握有关的技巧。
例如,用于求解代数问题的三角代换,在具体设计时,宜遵循以下原则:(1) 全面考虑三角函数的定义域、值域和有关的公式、性质;(2)力求减少变量的个数, 使问题结构简单化;(3)便于借助已知三角公式,建立变量间的内在联系。只有全 面考虑以上原则,才能谋取恰当的三角代换。
1o 考察实际问题的基本情形。分析问题所及的量的关系,弄清哪些是常量,哪些是 变量,哪些是已知量,哪些是未知量;了解其对象与关系结构的本质属性,确定问题 所及的具体系统。
2o 分析系统的矛盾关系。从实际问题的特定关系和具体要求出发,根据有关学科理论, 抓住主要矛盾,考察主要因素和量的关系。 3o 进行数学抽象。对事物对象及诸对象间的关系进行抽象,并用有关的数学概念、符 号和表达式去刻画事物对象及其关系。如果现有的数学工具不够用,可以根据实际情 况,建立新的数学概念和数学方法去表现数学模型。 (2)推理、演算。在所得到的数学模型上,进行逻辑推理或数学演算,求出相应的 数学结果。 (3) 评价、解释。对求得的数学结果进行深入讨论,作出评价和解释,返回到原来
消元法是解方程组的基本方法,在推证条件等式和把参数方程化成普通方程等问 题中,也有着重要的应用。
用消元法解题,具有较强的技巧性,常常需要根据题目的特点,灵活选择合适的 消元方法。
三、待定系数法
按照一定规律,先写出问题的解的形式(一般是指一个算式、表达式或方程), 其中含有若干尚待确定的未知系数的值,从而得到问题的解。这种解题方法,通常称 为待定系数法;其中尚待确定的未知系数,称为待定系数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、《高中数学解题的思维策略》很抱歉这么晚才来给大家讲课,因为今年暑假刚去安徽写生画图,昨天下午坐了 24 个小时的火车过来,误了 4 天的课程,最后咱们下午物理上完之后再给大家补课,再给大家补 5 天的课程,去年高考难,很多学生数学考得也很不错,,很多人可能会问补课有用吗。

给大家举个例子,那几年留学很流行,大家可能会说,留学很贵,实际上很多海归回来后一年的工资就把多花的挣回来了,补课也是,讲到的某些知识点能被大家用到高考中,增加分数,高考中分数的重要性,,我姐是个老师,我姐经常说孩子们考好了,家长就说,,考不好,家长就说老师和郭师哥教的不好,实际上主体还是我们学生,次要的才是老师,家长,环境,据去年那批学生反映最后对我们 3 个教的还不错,我先讲一下我补课大概基本要讲的内容,把大家数学必修的知识点基本过一遍,再做相应的习题,中间穿插还有很多我个人感觉很多好题;很多我归纳的知识和一些数学技巧;在最后 2 天我要给大家讲一下数学解题策略,如果最后还有时间的话,还会给大家讲一下一些英语,语文和其他科目的技巧。

导读数学教学的目的在于培养学生的思维能力,培养良好思维品质的途径,是进行有效的训练,本策略结合数学教学的实际情况,从以下四个方面进行讲解:一、数学思维的变通性(举例子过几天再给他们讲,考试的时候有些难题大家容易钻牛角尖,这个变通不只是说思维,也可以说是大家对数学卷子的一种变通,高考 120 分钟,12 道选择,4 道填空,基本用时不超过 50 分钟,选这题一般最后 2 个比较难,填空题一般最后一个比较难,大家很容易被这卡主,流汗,紧张,看到你旁边的人第 2 道大题都快做完了,这下就慌了,心想肯定完了,最后整个卷子全部慌了,后面计算正确 率也不高了,整个考试最后也可想而知。

应该怎么办呀,先做会的,把整个卷子会做的 做完了,再去做会做的,即使有些题不会做也没关系,大题都是按步骤给分,步骤对了, 也会给分。

)根据题设的相关知识,提出灵活设想和解题方案 二、数学思维的反思性 (大家以后会遇到很多你不会的题,也会遇到很多你会但 是做错了的但是又拿很少分的题,大家错了后又该怎么办呢,改错本的应用,改错本的 技巧,应该记下什么样的错题或者什么样的题,举例比如我高考前有一段时间发现我计 算老是出问题,因为计算老是丢分,而且还丢不少分,物理也是,,那该怎么办呢,,考 试卷子后面答案练习计算能力,不但数学计算能力提高,物理也提高,(物理比如说磁场 和能量那很多计算题,),一举两得,分析原因,是计算问题,还是粗心问题,还是基础 知识掌握不牢固,公式没记住,都要对每一道错题反思) 提出独特见解,检查思维过程,不盲从、不轻信。

三、数学思维的严密性 考察问题严格、准确,运算和推理精确无误。

五.数学思维的归纳总结性 在日后的学习中也会交给大家对一些常用如对数例,解析几何(解释),等很多的举 例,也会在日后交给大家一些高考的答题技巧。

六.学习习惯的培养 我感觉任何一个想学好考好的学生,习惯是很重要的,去年有几个学生我感觉挺聪 明的,但是最后考的不理想,平时老是玩手机,玩 qq,玩空间,什么样的角色做什么样 的事。

还有上课该怎么利用,有些同学感觉上课老师讲的知识点我下来再记,主要的时 间还是在课堂,能在课堂记住的课堂一定要记住,大家肯定有学习好一点的,也有不好 一点的,大家到这的目的只有一个,那就是来学习了,平时学习要坚持,谁坚持到最后谁笑的最美,有不会的就要问,七.考试的心态。

不是先告诉大家要自信,在考场上我感觉最重要的要有一种紧迫感但是又不慌(就 好像有人在后面催的你了),举例,,,接下来的才是自信。

(万万不可因为有点成绩就骄 傲,大家眼光一定要放远,你的竞争对手是宣化一中,张家口一中,很水一中,咱们阳 原一中有个特点,我感到很不可思议,就是每年高考前半个月或者一个星期,学校就给 大家放假,我看去年补课的学生,很多块高考呀,都开始照相,玩 qq,转呀,直到高考最 后移门大家那颗紧绷心都不能放下)第一讲 数学思维的变通性一、概念 数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。

根据数学思维变通性的主要体现, 本讲将着重进行以下几个方面的训练:(1)善于观察 心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种 有目的、有计划、比较持久的知觉。

观察是认识事物最基本的途径,它是了解问题、发现问题和解决 问题的前提。

任何一道数学题,都包含一定的数学条件和关系。

要想解决它,就必须依据题目的具体特征,对 题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。

例如,求和 1 1 1 1 .12 23 34n(n 1)这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且 1 1 1 ,因 n(n 1) n n 1此,原式等于1 1 1 1 1 1 1 1 问题很快就解决了。

223n n1 n1(2)善于联想联想是问题转化的桥梁。

稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。

因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。

例如,解方程组x xyy2 3.这个方程指明两个数的和为 2 ,这两个数的积为 3 。

由此联想到韦达定理, x 、 y 是一元二次方程 t 2 2t 3 0 的两个根,所以xy31或 x 3 .可见,联想可使问题变得简单。

y 1(3)善于将问题进行转化数学家 G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。

可见,解题过程是通过 问题的转化才能完成的。

转化是解数学题的一种十分重要的思维方法。

那么怎样转化呢?概括地讲, 就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。

在解题 时,观察具体特征,联想有关问题之后,就要寻求转化关系。

思维变通性的对立面是思维的保守性,即思维定势。

思维定势是指一个人用同一种思维方法解决 若干问题以后,往往会用同样的思维方法解决以后的问题。

它表现就是记类型、记方法、套公式,使 思维受到限制,它是提高思维变通性的极大的障碍,必须加以克服。

综上所述,善于观察、善于联想、善于进行问题转化,是数学思维变通性的具体体现。

要想提高思维变通性,必须作相应的思维训练。

二、思维训练实例(1) 观察能力的训练虽然观察看起来是一种表面现象,但它是认识事物内部规律的基础。

所以,必须重视观察能力的训练,使学生不但能用常规方法解题,而且能根据题目的具体特征,采用特殊方法来解题。

例 1 已知 a,b, c, d 都是实数,求证 a2 b2 c2 d 2 (a c)2 (b d)2 . 思路分析 从题目的外表形式观察到,要证的结论的右端与平面上两点间的距离公式很相似,而左端可看作是点到原点的距离公式。

根据其特点,y A(a,b)可采用下面巧妙而简捷的证法,这正是思维变通的体现。

证明 不妨设 A(a,b), B(c, d) 如图 1-2-1 所示,B(c, d )则 AB (a c)2 (b d)2 . OA a2 b2 , OB c2 d 2 ,O 图 1-2x-1在 OAB 中,由三角形三边之间的关系知: OA OB AB 当且仅当 O 在 AB 上时,等号成立。

因此, a2 b2 c2 d 2 (a c)2 (b d)2 . 思维障碍 很多学生看到这个不等式证明题,马上想到采用分析法、综合法等,而此题利用这些方法证明很繁。

学生没能从外表形式上观察到它与平面上两点间距离公式相似的原因,是对这个公式不熟,进一步讲是对基础知识的掌握不牢固。

因此,平时应多注意数学公式、定理的运用练习。

例2 已知 3x2 2 y 2 6x ,试求 x 2 y 2 的最大值。

解 由 3x2 2y2 6x 得y 2 3 x 2 3x. 2 y 2 0, 3 x2 3x 0, 0 x 2. 2又 x2 y 2 x2 3 x2 3x 1 (x 3)2 9 ,222当 x 2 时, x2 y 2 有最大值,最大值为 1 (2 3)2 9 4.22思 路 分 析 要 求 x2 y2 的 最 大 值 , 由 已 知 条 件 很 快 将 x2 y2 变 为 一 元 二 次 函 数f (x) 1 (x 3)2 9 , 然后求极值点的 x 值,联系到 y 2 0 ,这一条件,既快又准地求出最大值。

上22述解法观察到了隐蔽条件,体现了思维的变通性。

思维障碍 大部分学生的作法如下:由 3x2 2 y 2 6x 得 y 2 3 x2 3x, 2 x2 y 2 x2 3 x2 3x 1 (x 3)2 9 ,222 当 x 3时, x2 y 2 取最大值,最大值为 9 2这种解法由于忽略了 y 2 0 这一条件,致使计算结果出现错误。

因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,这样,才能正确地解题,提高思维的变通性。

有些问题的观察要从相应的图像着手。

例3 已知二次函数 f (x) ax2 bx c 0(a 0), 满足关系f (2 x) f (2 x) ,试比较 f (0.5) 与 f ( ) 的大小。

思路分析 由已知条件 f (2 x) f (2 x) 可知,在与 x 2 左右等距离的点的函数值相等,说明该函数的图像关于直线 x 2 对称,又由y已知条件知它的开口向上,所以,可根据该函数的大致图像简捷地解出此题。

解 (如图 1-2-2)由 f (2 x) f (2 x) ,知 f (x) 是以直线 x 2 为对称轴,开口向上的抛物线 它与 x 2 距离越近的点,函数值越小。

O2x图 1-2- 2 2 0.5 2 f (0.5) f ( )思维障碍 有些同学对比较 f (0.5) 与 f ( ) 的大小,只想到求出它们的值。

而此题函数 f (x) 的表达式不确定无法代值,所以无法比较。

出现这种情况的原因,是没有充分挖掘已知条件的含义,因而思维受到阻碍,做题时要全面看问题,对每一个已知条件都要仔细推敲,找出它的真正含义,这样才能顺利解题。

提高思维的变通性。

(2) 联想能力的训练.(练想法一般用到什么时候,感觉用一般的想法算不出来的时候用联想法)例4 在 ABC中,若 C 为钝角,则 tgA tgB 的值(A) 等于 1(B)小于 1(C) 大于 1(D) 不能确定思路分析 此题是在 ABC中确定三角函数 tgA tgB 的值。

相关文档
最新文档