磁控溅射靶材中毒
浅谈磁控溅射镀膜工艺中的反应溅射

浅谈磁控溅射镀膜工艺中的反应溅射信义玻璃(天津)有限公司陈大伟摘要:本文介绍了磁控溅射镀膜工艺、磁控溅射设备、非反应溅射与反应溅射:反应溅射是一个非常复杂的过程。
重点对反应溅射中的“直流氧化溅射”、“阳极消失效应”、“靶材中毒现象”、“磁滞效应现象”、“金属模式”、“过渡模式”、“反应模式”、“反应溅射磁滞效应特征曲线”进行分析。
在生产过程中,掌握反应溅射工艺的特点,合理控制溅射过程中的工艺参数,准确判断溅射工艺中的异常现象,利用有效的手段进行调整,才能达到高效的溅射速率以及高质量的膜层性能,防止不良溅射现象的出现。
0引言磁控溅射镀膜是目前离线镀膜玻璃生产最重要的方式之一.其生产溅射工艺非常复杂.其中包含直流和交流溅射的控制模式,平面阴极、旋转阴极的溅射设备,惰性和反应的工作气体以及适当的低气压环境等方面。
在生产过程中不同的磁控阴极、材料、气氛等又会有不同的工艺控制模式,其中包含非反应溅射以及反应溅射,而反应溅射中又涉及到靶材溅射的金属模式、磁滞效应、中毒模型等,这些均会影响到膜层组分、溅射效率、成膜质量及性能等方面。
在实际的生产过程中.掌握磁控溅射工艺的特点,合理控制溅射过程中的工艺参数,准确判断溅射工艺中的异常现象并做出及时的处理.对最终高质量高效率成膜控制具有重大意义。
1磁控溅射简介1.1溅射工艺磁控溅射是物理气相沉积(PVD)的一种,是一种十分有效的薄膜沉积方法。
上世纪70年代广泛发展起来的磁控阴极溅射法可以在玻璃上沉积出高质量的用于控制光线和太阳能的膜层。
简单地讲,就是在磁场约束及增强下的等离子体中的工作气体离子,在阴极电场的加速下,轰击刻蚀阴极上的靶材,使材料源的离子从靶材表面上脱离崩射出来,然后沉积附着在基片上。
溅射镀膜过程是将基片置-4-于有特殊设计的阴极和工作气体的真空腔室中来实现的,在阴极上施加负电压,当真空腔体内达到适当的条件进行等离子体辉光放电(图1)。
带正电的气体离子受到带负电的阴极靶材表面的吸引,正原子对负电位的靶材的撞击非常强烈,使得靶材上的原子从表面崩射出来并沉积在玻璃上,从而形成一层原子依次排列的薄膜(图2)。
ITO靶材的毒化机理研究现状

15 升 温速 率对 I O靶 材影 响 . T
时。随着保温时间增加 , 靶材的密度先增加后 降低 ,
在保 温 15h时相对 密度 达 到 最 大值 。这 可 能是 由 . 于保 温 时 间过 短 时 闭 孑 数量 较 多 , L 使得 烧 结 试 样 密 度 较 低 。随着 保温 时 间延 长 , 结 体 缓 慢 收缩 , 孔 烧 小 逐渐 消失 , 隙数 量减 少 , 孔 密度 增 大 。 当保 温 时 间超 过 15h时 , 度 开 始 下 降 , 可 能 是 由 于 在 160 . 密 这 0
在高温下发生 反应分 解。若在烧 结气 氛 中加入 臭 氧, 就能缓解 S O 分解 。 n2
1 3 烧结 温 度对 I O靶 材 影响 . T
实验表 明 【 , 结 温 度 对 I O靶 材 密 度 的影 响 烧 T 很大 , 相对 密度 随着 温度 的升高 而 增 大 , 而 影 响 到 从 靶 材 的毒化 时 间 。温 度 为 10 0c 对应 的密 度 达 0 C时
结时质点迁移距离较短 , 因而烧结体相对密度提高。 此 外 , 坯 中的气 孔对烧 结 体具 有 较大 的影 响 , 大 压 较
尺 寸气 孔 的存 在 一 方 面加 大 颗 粒 扩 散距 离 , 一 方 另 面减 小气 孑 收缩 的推动 力 , 而不利 于烧 结致 密 化 。 L 因 因此 , 形压 力 较 小 时 , 坯 的密 度 小 , 气 孔 直 径 成 压 且
1 1 I O粉体 中添加 P A对 I O靶材 的影 响 . T V T 王弱 J 的研 究 发 现 : V 添 加 越 多 , 坯 越 易 P A 素 脱模 。 10 . %的 P A获 得 的靶 材 最 致 密 。 P V VA为 05 .%时 , 素坯 外 沿 部分 颜 色 较 中心 浅 , 明压 力 损 说 失导 致 坯 体 内外 存 在 较 大 密 度 差 。 P VA 为 10 .% 时, 素坯 无 明显 色差 , 明坯 体密 度分 布 平均 。P 表 VA
磁控溅射原理

百科名片磁控溅射原理:电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。
氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,呈中性的靶原子(或分子)沉积在基片上成膜。
二次电子在加速飞向基片的过程中受到磁场洛仑磁力的影响,被束缚在靠近靶面的等离子体区域内,该区域内等离子体密度很高,二次电子在磁场的作用下围绕靶面作圆周运动,该电子的运动路径很长,在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在基片上。
磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。
电子的归宿不仅仅是基片,真空室内壁及靶源阳极也是电子归宿。
但一般基片与真空室及阳极在同一电势。
磁场与电场的交互作用( E X B drift)使单个电子轨迹呈三维螺旋状,而不是仅仅在靶面圆周运动。
至于靶面圆周型的溅射轮廓,那是靶源磁场磁力线呈圆周形状形状。
磁力线分布方向不同会对成膜有很大关系。
在E X B shift机理下工作的不光磁控溅射,多弧镀靶源,离子源,等离子源等都在次原理下工作。
所不同的是电场方向,电压电流大小而已。
磁控溅射的基本原理是利用 Ar一02混合气体中的等离子体在电场和交变磁场的作用下,被加速的高能粒子轰击靶材表面,能量交换后,靶材表面的原子脱离原晶格而逸出,转移到基体表面而成膜。
磁控溅射的特点是成膜速率高,基片温度低,膜的粘附性好,可实现大面积镀膜。
该技术可以分为直流磁控溅射法和射频磁控溅射法。
磁控溅射(magnetron-sputtering)是70年代迅速发展起来的一种“高速低温溅射技术”。
磁控溅射是在阴极靶的表面上方形成一个正交电磁场。
当溅射产生的二次电子在阴极位降区内被加速为高能电子后,并不直接飞向阳极,而是在正交电磁场作用下作来回振荡的近似摆线的运动。
磁控溅射法的工作原理

(R, A)n1MnnO3n+1
二、锰氧化物的结构及其庞磁电阻效应
1.钙钛矿锰氧化物基本的晶格
一般泛指的锰氧化物(Manganites)是基于钙钛矿结构来说 的,它的通式可以写为:(R, A)n1MnnO3n+1(其中R 为稀土元素, A 为碱土元素) ,通常也称作Ruddlesden-Popper(RP)相。在 RP化合物中,“n”代表MnO6 八面体顺着晶体[001]方向堆 垛的层数。如图1所示,单层 n = 1 的(R,A)2 MnO4化合物具有 二维的K2NiF4 结构,由一层MnO6八面体层和一层(R/A,O)交替 堆垛组成。n =2的双层(R,A)3Mn2O7和n = 3的三层(R,A)4Mn3O10化合 物分别有两层MnO6 八面体和三层 MnO6八面体与一层 (R/A,O)交 替堆垛组成。n =∞的化合物 (R,A)MnO3 具有无穷层的三维钙钛 矿结构。其中结构为(R,A)Mn2O7和 (R,A)MnO3的部分化合物表现出 CMR效应。
极化度 、电场E、诱导偶极矩m三者之间的关系:
E
拉曼和红外是否活性判别规则: (1) 相互排斥规则: 凡具有对称中心的分子,具
有红外活性(跃迁是允许),则其拉曼是非活性(跃迁是 禁阻)的;反之,若该分子的振动对拉曼是活性的,则 其红外就是非活性的。
层状晶格图形如下
2. CMR效应 CMR效应存在于钙钦矿结构的掺杂锰氧化物中。不
同于GMR和TMR依赖于人工制备的纳米结构,钙钦矿锰 氧化物的CMR效应是大块材料的体效应。由于其磁电 阻值特别巨大,为了区别于金属多层膜中的GMR效应, 人们将这种钙钦矿结构中的磁电阻效应冠之以超大磁 电阻效应(eolossalMagnetoresistanee),简称CMR效 应。CMR的一个显著特征是在磁相变的同时伴随着金 属到绝缘态的转变,并且磁电阻的陡然变化通常发生 在居里点()附近,一旦温度偏离居里点,磁电阻迅速 下降。这种极大的磁电阻效应实际上暗示了锰氧化物 材料中自旋一电荷间存在着强烈的关联性。现在己经 确认,锰氧化物具有电子的强关联特性,其CMR机理, 与铜氧化物的高温超导电性是一样的,是多电子强关 联系统中十分有趣和困难的问题。
磁控溅射靶材中毒

磁控溅射中靶中毒是怎么回事,一般的影响因素是什么?A:第一:靶面金属化合物的形成。
由金属靶面通过反应溅射工艺形成化合物的过程中,化合物是在哪里形成的呢?由于活性反应气体粒子与靶面原子相碰撞产生化学反应生成化合物原子,通常是放热反应,反应生成热必须有传导出去的途径,否则,该化学反应无法继续进行。
在真空条件下气体之间不可能进行热传导,所以,化学反应必须在一个固体表面进行。
反应溅射生成物在靶表面、基片表面、和其他结构表面进行。
在基片表面生成化合物是我们的目的,在其他结构表面生成化合物是资源的浪费,在靶表面生成化合物一开始是提供化合物原子的源泉,到后来成为不断提供更多化合物原子的障碍。
第二:靶中毒的影响因素影响靶中毒的因素主要是反应气体和溅射气体的比例,反应气体过量就会导致靶中毒。
反应溅射工艺进行过程中靶表面溅射沟道区域内出现被反应生成物覆盖或反应生成物被剥离而重新暴露金属表面此消彼长的过程。
如果化合物的生成速率大于化合物被剥离的速率,化合物覆盖面积增加。
在一定功率的情况下,参与化合物生成的反应气体量增加,化合物生成率增加。
如果反应气体量增加过度,化合物覆盖面积增加,如果不能及时调整反应气体流量,化合物覆盖面积增加的速率得不到抑制,溅射沟道将进一步被化合物覆盖,当溅射靶被化合物全部覆盖的时候,靶完全中毒。
第三:靶中毒现象(1)正离子堆积:靶中毒时,靶面形成一层绝缘膜,正离子到达阴极靶面时由于绝缘层的阻挡,不能直接进入阴极靶面,而是堆积在靶面上,容易产生冷场致弧光放电---打弧,使阴极溅射无法进行下去。
(2)阳极消失:靶中毒时,接地的真空室壁上也沉积了绝缘膜,到达阳极的电子无法进入阳极,形成阳极消失现象。
第四:靶中毒的物理解释(1)一般情况下,金属化合物的二次电子发射系数比金属的高,靶中毒后,靶材表面都是金属化合物,在受到离子轰击之后,释放的二次电子数量增加,提高了空间的导通能力,降低了等离子体阻抗,导致溅射电压降低。
磁控溅射技术原理、现状、发展及应用实例

磁控溅射技术原理、现状、发展及应用实例(薄膜物理大作业论文)班级:1035101班学号:1101900508姓名:孙静一、前言镀膜玻璃是一种在玻璃表面上镀一层或多层金属氧化物薄膜,使其具有一种或多种功能的玻璃深加工产品。
自七十年代开始,在世界发达国家和地区,传统的单一采光材料—普通建气琳璃,已逐步为具有节能、控光、调温、改变墙体结构以及具有艺术装饰效果的多功能玻璃新产品所替代,如茶色玻璃、中空玻璃、镀膜玻璃等,其中又以镀膜玻璃尤汐引人注目,发展也颇为迅速,如欧洲共同体国家在1985年建筑玻璃总量的三分之二用的是镀膜玻璃,美国镀膜玻璃的市场在八十年代就已达5000万平方米/年,在香港、新加坡、台湾等经济崛起的东南亚国家和地区,镀膜玻璃的使用也日渐盛行。
镀膜玻璃作为一种新型的建筑装饰材料已得到了人们普遍的肯定和喜爱。
目前生产镀膜玻璃所采用的方法大体上可分为浸渍法、化学气相沉积法、真空蒸发法、磁控溅射法以及在线镀膜等五种方法。
浸渍法是将玻璃浸人盛有金属有机化合物溶液的槽中,取出后送人炉中加热,去除有机物,从而形成了金属氧化物膜层。
由于浸渍法使玻璃两边涂膜,且低边部膜层较厚,同时可供水解盐类不多,因而在国内未得到很好推广。
化学气相沉积法是将金属化合物加热成蒸汽状,然后涂到加热后的玻璃表面上。
这种方法由于受到所镀物质的限制,且在大板上也难真空蒸发法是在真空条件下,通过电加热使镀膜材料蒸发,由固相转化为气相,从而沉积在玻璃表面上,形成稳定的薄膜。
此法的不足之处是所镀膜层不太均匀、有疵点、易脱落。
只能生产单层金属镀膜玻璃,颜色也难以控制。
磁控溅射法是在真空条件下电离惰性气休,气体离子在电场的作用下,轰击金属靶材使金属原子沉积到玻璃表面上。
在线镀膜一般是在浮法玻璃生产线上进行,如电浮法、热喷涂等方法,目前我国较少使用。
在这些方法中,磁控溅射镀膜法是七十年代末期发展起来的一种先进的工艺方法,它的膜层由多层金属或金属氧化层组成,允许任意调节能量通过率、能量反射率,具有良好的外观美学效果,它克服了其它几种生产方法存在的一些缺点,因而目前国际上广泛采用这一方法。
磁控溅射镀膜工艺介绍

TCO薄膜的种类及特性
• TCO薄膜为晶粒尺寸数百纳米的多晶层,晶粒取向单 一。目前研究较多的是ITO、FTO和AZO。电阻率达 10-4 •cm量级,可见光透射率为80%~90%。 • FTO(SnO2︰F):电阻率可达5.0×10 -4 •cm,可见光 透过率ቤተ መጻሕፍቲ ባይዱ80%。 • ITO(In2O3︰Sn):电阻率可达7.0×10-5 •cm ,可见光 透过率>85% 。 • AZO(ZnO︰Al):电阻率可达1.5×10-4 •cm ,可见光 透过率>80% 。
反应溅射模拟图
中频孪生反应溅射
反应溅射的特点
反应磁控溅射所用的靶材料(单位素靶或多元素 靶)和反应气体(氧、氮、碳氢化合物等)通常 很容易获得很高的纯度,因而有利于制备高纯度 的化合物薄膜。 反应磁控溅射中调节沉积工艺参数,可以制备化 学配比或非化学配比的化合物薄膜,从而达到通 过调节薄膜的组成来调控薄膜特性的目的。 反应磁控溅射沉积过程中基板温度一般不会有很 大的升高,而且成膜过程通常也并不要求对基板 进行很高温度的加热,因而对基板材料的限制较 少。 反应磁控溅射适合于制备大面积均匀薄膜,并能 实现对镀膜的大规模工业化生产。
真空的定义:压力低于一个大气压的任何气态空间,采用 真空度来表示真空的高低。 真空单位换算:1大气压≈1.0×105帕=760mmHg(汞柱) =760托 1托=133.3pa=1mmHg 1bar=100kpa 1mbar=100pa 1bar=1000mbar
TCO玻璃 玻璃=Transparent Conductive Oxide 镀有透明导电氧 玻璃 化物的玻璃 TCO材料: 材料: 材料 SnO2:F(FTO fluorine doped tin oxide氟掺杂氧化锡 氟掺杂氧化锡) 氟掺杂氧化锡 ZnO:Al(AZO aluminum doped zinc oxide铝掺杂氧化锌 铝掺杂氧化锌) 铝掺杂氧化锌 In2O3:Sn(ITO indium tin oxide 氧化铟锡 氧化铟锡)
磁控溅射原理

Making the IMPOSSIBLE possible
➢中频(MF)磁控溅射
15
中频交流磁控溅射可用在单个阴极靶系统中。 工业上一般使用孪生靶溅射系统。
让不可能成为可能
Making the IMPOSSIBLE possible
16
➢中频(MF)磁控溅射
中频交流孪生靶溅射的两个靶位上的工作波形
让不可能成为可能
Making the IMPOSSIBLE possible
➢磁控溅射分类
11
• 射频(RF)磁控溅射 • 直流(DC)磁控溅射 • 中频(MF)磁控溅射
让不可能成为可能
Making the IMPOSSIBLE possible
➢射频(RF)磁控溅射
12
右图为射频磁控溅射实验装 置示意图。
易打弧,不稳定 工作稳定,
在反应溅射中要严格 无打弧现象, 控制反应气体流量 溅射速率快
让不可能成为可能
Making the IMPOSSIBLE possible
➢Al背电极工艺参数
24
制备方法的选择:采用DC溅射铝平面矩形靶
工艺参数: • 本底真空2~3×10-3Pa
• 工作气压~0.3~0.6 Pa
21
➢中频(MF)磁控溅射
中频孪生旋转靶磁控溅射
让不可能成为可能
Making the IMPOSSIBLE possible
22
➢中频(MF)磁控溅射
中频反应磁控溅射中的“迟滞回线”现象
Process control:
high deposition rate
unstable transition mode.
• 电子运动路径变长,与Ar原子碰撞几率增加, 提高溅射效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁控溅射中靶中毒是怎么回事,一般的影响因素是什么?
A:第一:靶面金属化合物的形成。
由金属靶面通过反应溅射工艺形成化合物的过程中,化合物是在哪里形成的呢?由于活性反应气体粒子与靶面原子相碰撞产生化学反应生成化合物原子,通常是放热反应,反应生成热必须有传导出去的途径,否则,该化学反应无法继续进行。
在真空条件下气体之间不可能进行热传导,所以,化学反应必须在一个固体表面进行。
反应溅射生成物在靶表面、基片表面、和其他结构表面进行。
在基片表面生成化合物是我们的目的,在其他结构表面生成化合物是资源的浪费,在靶表面生成化合物一开始是提供化合物原子的源泉,到后来成为不断提供更多化合物原子的障碍。
第二:靶中毒的影响因素
影响靶中毒的因素主要是反应气体和溅射气体的比例,反应气体过量就会导致靶中毒。
反应溅射工艺进行过程中靶表面溅射沟道区域内出现被反应生成物覆盖或反应生成物被剥离而重新暴露金属表面此消彼长的过程。
如果化合物的生成速率大于化合物被剥离的速率,化合物覆盖面积增加。
在一定功率的情况下,参与化合物生成的反应气体量增加,化合物生成率增加。
如果反应气体量增加过度,化合物覆盖面积增加,如果不能及时调整反应气体流量,化合物覆盖面积增加的速率得不到抑制,溅射沟道将进一步被化合物覆盖,当溅射靶被化合物全部覆盖的时候,靶完全中毒。
第三:靶中毒现象
(1)正离子堆积:靶中毒时,靶面形成一层绝缘膜,正离子到达阴极靶面时由于绝缘层的阻挡,不能直接进入阴极靶面,而是堆积在靶面上,容易产生冷场致弧光放电---打弧,使阴极溅射无法进行下去。
(2)阳极消失:靶中毒时,接地的真空室壁上也沉积了绝缘膜,到达阳极的电子无法进入阳极,形成阳极消失现象。
第四:靶中毒的物理解释
(1)一般情况下,金属化合物的二次电子发射系数比金属的高,靶中毒后,靶材表面都是金属化合物,在受到离子轰击之后,释放的二次电子数量增加,提高了空间的导通能力,降低了等离子体阻抗,导致溅射电压降低。
从而降低了溅射速率。
一般情况下磁控溅射的溅射电压在400V-600V之间,当发生靶中毒时,溅射电压会显著降低。
(2)金属靶材与化合物靶材本来溅射速率就不一样,一般情况下金属的溅射系数要比化合物的溅射系数高,所以靶中毒后溅射速率低。
(3)反应溅射气体的溅射效率本来就比惰性气体的溅射效率低,所以反应气体比例增加后,综合溅射速率降低。
第五:靶中毒的解决办法
(1)采用中频电源或射频电源。
(2)采用闭环控制反应气体的通入量。
(3)采用孪生靶
(4)控制镀膜模式的变换:在镀膜前,采集靶中毒的迟滞效应曲线,使进气流量控制在产生靶中毒的前沿,确保工艺过程始终处于沉积速率陡降前的模式。
C:靶中毒是由于在溅射过程中带正电的离子聚集在靶表面,没有得到中和,出现靶表面负偏压逐步下降,最后干脆罢工不工作了,这就是靶中毒现象。
E:污渍影响不大~打火是有绝缘部位造成的,一般是局部中毒或者赃物。
靶材中毒是因为功率密度太低,相对于过量的反应气体不能及时蒸发掉(或溅射),会残留靶材表面,造成导电性能下降,从而进入中毒状态。
轻者无法起辉光,重者报废电源~。