八年级数学下册 第十六章 二次根式 163 二次根式的加减第1课时课件 新版新人教版1
合集下载
16.3二次根式的加减课件+2023-—2024学年人教版数学八年级下册

同类项合并就是字母不变,系数相加减。
新课学习
二次根式的加减
7.5dm
现有一块长7.5dm、宽5dm的木板,
能否采用如图的方式,在这块木板
5dm
上截出两个分别是8dm2和18dm2的
dm
dm
正方形木板?
( + )dm
问题转化为比较7.5dm与( + )dm的大小。
新课学习
( + )
复习导入
2、把下列各根式化简
(1) 12
2
3
1
(5)
2
2
2
(2) 48
4
3
(6) 32
4
2
(3) 18
3
2
(4) 50
5
2
1
(7) 45 (8) 1
3
3
5
2
3
3
导入新课
计算下列各式:
(1)2x+3x
5x
(2)2x5-5x5+5x5
2x5
(3)3x+2x+3y
5x+3y
(4)3a2-2a2+a3
a2+a3
先化为最简二次根式
把同类二次根式合并。
二次根式的加减与整式的加减根据都是分配律,它们的
运算实质也基本相同。
拓展提升
1.解下列方程和不等式.
(1)
x+
−
=2x+1
+
(2) (x-1)>3(x+1)
分析:(1)先将分母有理化,再解方程即可解答本题;
(2)根据解不等式的步骤进行解答即可,注意不等号的方向。
《二次根式的加减》_完美课件

第三步的依据是:合并同类项.
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
例2 计算:
讲授新课
(1)( 2+3)( 2-5) ;(2)( 5+ 3)( 5- 3).
解:(2)( 5+ 3)( 5- 3)=( 5)2 -( 3)2
= 5-3= 2 .
思考1:(2)中,每一步的依据是什么?
(2)先算除,再化简,若有相同的二次根 式进行合并,把所有的二次根式化成最简二次根式.
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
讲授新课
例2 计算: (1)( 2+3)( 2-5) ;(2)( 5+ 3)( 5- 3).
8+ 18=2 2+3 2 =(2+3) 2=5 2
化为最简 二次根式
用分配 律合并
整式 加减
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载 【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
讲授新课
二次根 式性质
分配律
整式加 减法则
8+ 18=2 2+3 2 =(2+3) 2=5 2
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
讲授新课
算式 8+ 18与算式 3 2- 2 有什么相同点与不同
点? 请化简算式
8+
18 ,并说出每一步化简的理由.
【获奖课件ppt】《二次根式的加减》 _完美 课件1- 课件分 析下载
2019-2020人教版八年级数学下册第十六章二次根式章末复习课件(共59张)

相关题 4 当 t 取何值时,
35t-3-5 的值最小?最小值是多少?
3
3
解:∵ 5t-3≥0,∴当5t-3=0,即 t=5 时,
最小值是-5.
3 5t-3-5 的值最小,
第十六章 二次根式
专题三 二次根式的混合运算
【要点指导】 进行二次根式的混合运算时, (1)先将二次根式进行适当的化简;(2)二次
第十六章 二次根式
专题五 二次根式的化简
【要点指导】
灵活应用二次根式的性质和公式:( a)2=a(a≥0), a2 =|a|, a·b =
a· b (a≥0, b≥0),
ab=
a b
(a≥0, b>0), 可以将复杂的二次根式进
行化简, 从而帮助我们解决问题.
第十六章 二次根式
例 7 实数 a, b 在数轴上对应点的位置如图 16-Z-1 所示, 则
第十六章 二次根式
(2)比较 5+ 13与 7+ 11的大小
分析 先求出两个式子的平方, 再比较这两个式子的平方的大小.
解:( 5+ 13)2=18+2 65, ( 7+ 11)2=18+2 77. ∵65<77,∴ 65< 77,∴18+2 65<18+2 77, 即( 5+ 13)2<( 7+ 11)2. 又∵ 5+ 13>0, 7+ 11>0, ∴ 5+ 13< 7+ 11.
a ≥0( a≥0 )
a =a( a≥0 )
a2
=|a|=
a(a≥0), -a(a<0)
当a≥0时,( a)2= a2
人教版八年级下册数学《二次根式的加减》说课教学课件

第十六章 二次根式
二次根式的加减
目录
学习目标
01
LEARNING OBJEC
1、了解同类二次根式的意义。
2、能熟练进行二次根式的加减运算。
3、在探索中培养学生分析、转化、归纳、总结的能力。
02
03
重点
A KEY
二次根式加减法的运算。
难点
DIFFICUL
熟练进行二次根式加减法的运算。
学习目标
01
= (2 + 1) 3 + (2 − 1) 5
=3 3+ 5
02
练一练
1.下列各式中,与 是同类二次根式的是(
A.
B.
C.
D.
) 2.下列计算中正确的是( )
A. + =
C. ÷ =
B.
−
【答案】D
【详解】
【详解】
A、 9=3,与 3不是同类二次根式;
= 14 3
1
3
4)( 12+ 20)+( 3- 5)
+ 3 48
+ 3 48
6× 1
+ 3 16
3
6× 1× 3
+3
3× 3
×3
16 × 3
4)( 12+ 20)+( 3- 5)
= 12+ 20+ 3- 5
= 4 × 3+ 4 × 5 + 3- 5
= 2 3+2 5 + 3- 5
= 2 3 + 3 +2 5 - 5
3.14 −
42 =4
52 =5
2
二次根式的加减
目录
学习目标
01
LEARNING OBJEC
1、了解同类二次根式的意义。
2、能熟练进行二次根式的加减运算。
3、在探索中培养学生分析、转化、归纳、总结的能力。
02
03
重点
A KEY
二次根式加减法的运算。
难点
DIFFICUL
熟练进行二次根式加减法的运算。
学习目标
01
= (2 + 1) 3 + (2 − 1) 5
=3 3+ 5
02
练一练
1.下列各式中,与 是同类二次根式的是(
A.
B.
C.
D.
) 2.下列计算中正确的是( )
A. + =
C. ÷ =
B.
−
【答案】D
【详解】
【详解】
A、 9=3,与 3不是同类二次根式;
= 14 3
1
3
4)( 12+ 20)+( 3- 5)
+ 3 48
+ 3 48
6× 1
+ 3 16
3
6× 1× 3
+3
3× 3
×3
16 × 3
4)( 12+ 20)+( 3- 5)
= 12+ 20+ 3- 5
= 4 × 3+ 4 × 5 + 3- 5
= 2 3+2 5 + 3- 5
= 2 3 + 3 +2 5 - 5
3.14 −
42 =4
52 =5
2
新沪科版八年级数学下册第16章《二次根式》精品课件

•8、普通的教师告诉学生做什么,称职的教师向学生解释怎么做,出色的教师示范给学生,最优秀的教师激励学生。 2021/11/82021/11/82021/11/82021/11/8
梳理四.二次根的乘除
(1)、积的算术平方根的性质
a ba b (a 0 ,b 0 )
积的算术平方根,等于积中各因式的算 术平方根的积. (2)、二次根式的乘法法则
(5).既可表示开方运算,也可表示运算的 结果.
梳理二.二次根式的性质
(1). a0 ( a 0)
(2). ( a)2 a (a≥0, )
(3).
a2
a
{a,a0 a,a0
梳理三.代数式的定义
形如5,a,a b,ab, s , x2, 3, a(a≥ 0 )
t 的 式 子 , 它 们 都 是 用本基运 算 符 号 ( 基 本 运 算 包 括 加 、 减 、 乘除、、 乘 方 和 开 方 ) 把 数 和 表 示 数 的 字 母接连起 来 的 式 子 ,
则X的取值范围是___
9 计 算 (1): 0 2( 33)2 解:(1)0 2(33)2 1 0(3)2( 3)2 1027 17
10、式子 (a1)2 a1成立的条件
是( D )
A.a1
B.a1
C.a1 D.a1
11、已知三角形的三边长分别是a、b、c,
且 ac,那么 ca (acb)2
(3).判断几个二次根式是否是同类二次根式的关键是 将几个二次根式化成最简二次根式后,被开方数相同.
(4).二次根式的乘除运算可以考虑先进行被开方数的 约分问题,再化简二次根式,而不一定要先将二次
根式化成最简二次根式,再约分.
(5).对有关二次根式的代数式的求值问题一般应对已 知式先进行化简,代入化简后的待求式,同时还应注意 挖掘隐含条件和技巧的运用使求解更简捷.
梳理四.二次根的乘除
(1)、积的算术平方根的性质
a ba b (a 0 ,b 0 )
积的算术平方根,等于积中各因式的算 术平方根的积. (2)、二次根式的乘法法则
(5).既可表示开方运算,也可表示运算的 结果.
梳理二.二次根式的性质
(1). a0 ( a 0)
(2). ( a)2 a (a≥0, )
(3).
a2
a
{a,a0 a,a0
梳理三.代数式的定义
形如5,a,a b,ab, s , x2, 3, a(a≥ 0 )
t 的 式 子 , 它 们 都 是 用本基运 算 符 号 ( 基 本 运 算 包 括 加 、 减 、 乘除、、 乘 方 和 开 方 ) 把 数 和 表 示 数 的 字 母接连起 来 的 式 子 ,
则X的取值范围是___
9 计 算 (1): 0 2( 33)2 解:(1)0 2(33)2 1 0(3)2( 3)2 1027 17
10、式子 (a1)2 a1成立的条件
是( D )
A.a1
B.a1
C.a1 D.a1
11、已知三角形的三边长分别是a、b、c,
且 ac,那么 ca (acb)2
(3).判断几个二次根式是否是同类二次根式的关键是 将几个二次根式化成最简二次根式后,被开方数相同.
(4).二次根式的乘除运算可以考虑先进行被开方数的 约分问题,再化简二次根式,而不一定要先将二次
根式化成最简二次根式,再约分.
(5).对有关二次根式的代数式的求值问题一般应对已 知式先进行化简,代入化简后的待求式,同时还应注意 挖掘隐含条件和技巧的运用使求解更简捷.
人教版八年级数学下册二次根式的加减

(1)( 8 3) 6 (2)(4 2 - 3 6) 2 2
解:(1)( 8 3) 6 (2)(4 2 - 3 6) 2 2
8 6 3 6
4 2 2 2-3 6 2 2
巩固练习
16.3 二次根式的加减/
1.计算:(1) 2 3 5 (2) 80 40 5
解:(1)原式 2 3 2 5 (2)原式 80 5 40 5
∴在这块木板上可以截出两个分别是8dm2和18dm2的正 方形木板.
探究新知
二次根 式性质
16.3 二次根式的加减/
整式加 分配律 减法则
8+ 18=2 2+3 2 =(2+3) 2=5 2
化为最简 用分配 整式 二次根式 律合并 加减
依据:二次根式的性质、分配律和整式加减法则.
基本思想:把二次根式加减问题转化为整式加减问题.
(4)3 12 - 1 6 3- 1 6 3 3
27
33
9 15
巩固练习
16.3 二次根式的加减/
4.下列计算正确的是 ( C )
A. 2 2 2
B. 3 2 3 2
C. 12 3 3 D. 3 2 5
5.已知一个矩形的长为 48 ,宽为 12 ,则其 周长为_1_2__3__.
A. 8
1
B.3
C. 18
D.9
2.(2019•兰州)计算: 12 - 3 =( A )
A. 3
B.2 3
C.3
D.4 3
课堂检测
16.3 二次根式的加减/
基础巩固题
1. 与 12 能合并的二次根式是( D )
A. 32 B. 24
C.
12 5
2.下列计算正确的是 ( C )
解:(1)( 8 3) 6 (2)(4 2 - 3 6) 2 2
8 6 3 6
4 2 2 2-3 6 2 2
巩固练习
16.3 二次根式的加减/
1.计算:(1) 2 3 5 (2) 80 40 5
解:(1)原式 2 3 2 5 (2)原式 80 5 40 5
∴在这块木板上可以截出两个分别是8dm2和18dm2的正 方形木板.
探究新知
二次根 式性质
16.3 二次根式的加减/
整式加 分配律 减法则
8+ 18=2 2+3 2 =(2+3) 2=5 2
化为最简 用分配 整式 二次根式 律合并 加减
依据:二次根式的性质、分配律和整式加减法则.
基本思想:把二次根式加减问题转化为整式加减问题.
(4)3 12 - 1 6 3- 1 6 3 3
27
33
9 15
巩固练习
16.3 二次根式的加减/
4.下列计算正确的是 ( C )
A. 2 2 2
B. 3 2 3 2
C. 12 3 3 D. 3 2 5
5.已知一个矩形的长为 48 ,宽为 12 ,则其 周长为_1_2__3__.
A. 8
1
B.3
C. 18
D.9
2.(2019•兰州)计算: 12 - 3 =( A )
A. 3
B.2 3
C.3
D.4 3
课堂检测
16.3 二次根式的加减/
基础巩固题
1. 与 12 能合并的二次根式是( D )
A. 32 B. 24
C.
12 5
2.下列计算正确的是 ( C )
人教版八年级数学第十六章 二次根式课本

2、二次根式的性质具有双重非负性,即二次根式 中被开方数非负(a≥0),算 术平方根非负 ( ≥0).
3、利用
成一个数或式的平方的形式.如
4、注意逆用二次根式的性质,即
得到
成立,可以把任意一个非负数或式写 .
,
,利用这两个性质可以对二次根式进行化简.
5、运用二次根式的性质化简时,最后结果中的二次根式要化为最简二次根式或整 式.最简二次根式必须满足两个条件:(1)被开方式中不含分母;(2)被开方式中不 含能开得尽方的因数或因式. 三、典型例题讲解
2 / 12
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
3、利用
成一个数或式的平方的形式.如
4、注意逆用二次根式的性质,即
得到
成立,可以把任意一个非负数或式写 .
,
,利用这两个性质可以对二次根式进行化简.
5、运用二次根式的性质化简时,最后结果中的二次根式要化为最简二次根式或整 式.最简二次根式必须满足两个条件:(1)被开方式中不含分母;(2)被开方式中不 含能开得尽方的因数或因式. 三、典型例题讲解
2 / 12
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
最新人教版八年级数学下册全册完整课件

初中数学
全册精品PPT课件 (2套)
每一课都有两套课件!
第十六章 二次根式
17.1.2利用勾股定理解 决简单的实际问题
16.1 二次根式
17.1.2 数轴表示根号13
16.2.1 二次根式的乘法 16.2.2 二次根式的除法 16.3.1 二次根式的加减运算 16.3.2 二次根式的混合运算
17.2.1 勾股定理的逆定 理
知识回顾 问题探究 课堂小结 随堂检测
点击“互动训练” 选择“《二次根式(1)》随堂检测”
回忆
活动一:定向导学
⑴什么叫做一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则
这个数就叫做a的平方根。
a的平方根是 aa
⑵什么是一个数的算术平方根?如何表示?
若一个正数的平方等于a,则这个数就 叫做a的算术平方根。
2.一长方形围栏,长是宽的2倍,
面积为130,则它的宽为 __6_5___
h 3.h=5t2,则t=___5____
20.1.1平均数
20.1.2中位数与众数
20.2 数据的波动程度
20.3 课题学习 体质健康 测试中的数据分析 小结、构建知识体系、复 习题20
《二次根式》第一课时
知识回顾 问题探究 课堂小结 随堂检测
(1)平方根:25的平方根是±5,3的平方根是 3 , 0的平方根是0,-5没有平方根.
二次根式具备哪些特点?
(1)有二次根号;
(2)被开方数不能小于0.
知识回顾 问题探究 课堂小结 随堂检测
探究一:什么样的式子是二次根式?
重点知识★
活动3 牛刀小试,初步运用
1
例1.式子:
2,
,
x
全册精品PPT课件 (2套)
每一课都有两套课件!
第十六章 二次根式
17.1.2利用勾股定理解 决简单的实际问题
16.1 二次根式
17.1.2 数轴表示根号13
16.2.1 二次根式的乘法 16.2.2 二次根式的除法 16.3.1 二次根式的加减运算 16.3.2 二次根式的混合运算
17.2.1 勾股定理的逆定 理
知识回顾 问题探究 课堂小结 随堂检测
点击“互动训练” 选择“《二次根式(1)》随堂检测”
回忆
活动一:定向导学
⑴什么叫做一个数的平方根?如何表示?
一般地,若一个数的平方等于a,则
这个数就叫做a的平方根。
a的平方根是 aa
⑵什么是一个数的算术平方根?如何表示?
若一个正数的平方等于a,则这个数就 叫做a的算术平方根。
2.一长方形围栏,长是宽的2倍,
面积为130,则它的宽为 __6_5___
h 3.h=5t2,则t=___5____
20.1.1平均数
20.1.2中位数与众数
20.2 数据的波动程度
20.3 课题学习 体质健康 测试中的数据分析 小结、构建知识体系、复 习题20
《二次根式》第一课时
知识回顾 问题探究 课堂小结 随堂检测
(1)平方根:25的平方根是±5,3的平方根是 3 , 0的平方根是0,-5没有平方根.
二次根式具备哪些特点?
(1)有二次根号;
(2)被开方数不能小于0.
知识回顾 问题探究 课堂小结 随堂检测
探究一:什么样的式子是二次根式?
重点知识★
活动3 牛刀小试,初步运用
1
例1.式子:
2,
,
x