新人教版数学八年级下册二次根式基础专项练习

合集下载

人教版八年级数学下第16章二次根式专项训练含答案(K12教育文档)

人教版八年级数学下第16章二次根式专项训练含答案(K12教育文档)

人教版八年级数学下第16章二次根式专项训练含答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版八年级数学下第16章二次根式专项训练含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版八年级数学下第16章二次根式专项训练含答案(word版可编辑修改)的全部内容。

第16章二次根式专项训练专训1.利用二次根式的性质解相关问题名师点金:对于二次根式错误!,有两个“非负”:第一个是a≥0,第二个是错误!≥0,这两个“非负”在解二次根式的有关题目中经常用到.二次根式的被开方数和值均为非负数,是常见的隐含条件.利用被开方数a≥0及二次根式的性质解决有关问题1.若式子错误!在实数范围内有意义,则x的取值范围是________.2.若3x-4-错误!=错误!错误!,则3x-错误!y的值为________.3.(中考·黔南州)实数a在数轴上对应点的位置如图,化简(a-12)+a=________。

(第3题)4.若x、y为实数,且y〉错误!+错误!+2,化简:错误!错误!+错误!.5.已知x,y为实数,且错误!+错误!=(x+y)2,求x-y的值.利用错误!≥0求代数式的值或平方根6.若错误!+|2a-b+1|=0,则(b-a)2 015=()A.-1 B.1 C.52 015D.-52 0157.若x-3与错误!互为相反数,求6x+y的平方根.利用错误!≥0求最值8.当x取何值时,错误!+3的值最小,最小值是多少?利用二次根式的非负性解决代数式化简求值问题9.设等式错误!+错误!=错误!-错误!=0成立,且x,y,a互不相等,求错误!的值.利用被开方数的非负性解与三角形有关的问题10.已知实数x,y,a满足:错误!+错误!=错误!+错误!,试问长度分别为x,y,a 的三条线段能否组成一个三角形?如果能,请求出该三角形的周长;如果不能,请说明理由.专训2.比较二次根式大小的八种方法名师点金:含二次根式的数(或式)的大小比较,是教与学的一个难点,如能根据二次根式的特征,灵活地、有针对性地采用不同的方法,将会得到简捷的解法.较常见的比较方法有:平方法、作商法、分子有理化法、分母有理化法、作差法、倒数法、特殊值法等.平方法1.比较6+错误!与错误!+错误!的大小.作商法2.比较错误!与错误!的大小.分子有理化法3.比较错误!-错误!与错误!-错误!的大小.分母有理化法4.比较错误!与错误!的大小.作差法5.比较错误!与错误!的大小.倒数法6.已知x=错误!-错误!,y=错误!-错误!,试比较x,y的大小.特殊值法7.用“<"连接x,错误!,x2,错误!(0〈x〈1).定义法8.比较错误!与错误!的大小.答案专训11.x≥-12.2 点拨:由题意知3x-4=0,x-错误!y=0,所以x=错误!,y=4,代入求值即可.3.14.解:由错误!得:x=2,∴y>2,∴原式=错误!错误!+错误!=错误!+2=-1+2=1。

2023-2024人教版八年级数学下册第16章二次根式专题训练 二次根式的运算与化简求值(含答案)

2023-2024人教版八年级数学下册第16章二次根式专题训练  二次根式的运算与化简求值(含答案)

第16章 二次根式 专题训练 二次根式的运算与化简求值类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 2.计算: (1)24+0.5-⎝ ⎛⎭⎪⎫18+6. (2)248-1813+318-818;(3)32-212-418+348. (4)239x +6x 4-2x 1x. (5)a 2b +ab a -b a b-ab 2. (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= . 4.计算:2318÷(-3)×1327.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 6.计算:(1)50-(-2)+8× 2. (2)12-1+3(3-6)+8. (3)15×3520÷⎝⎛⎭⎫-13 6.(4)(-3)2+18-6×22; (5)⎝ ⎛⎭⎪⎫72-412+32÷8. (6)⎝⎛⎭⎫318+15 50-40.5÷32.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2.(2)(32+12)(18-23). (3)(3+2)2-(3-2)2. (4)(2-3)2024×(2+3)2023;(5)(2+3-5)2-(2-3+5)2; (6)(3+2)2(3-2)-(3-2)2(3+2).类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4.9.【2023福建】先化简,再求值:÷,其中x =-1.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.12.当x 取何值时,5x -1+4的值最小?最小值是多少?类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值.15.已知x +y =-7,xy =12,求yx y +x yx的值.16.已知x=1-,y=1+,求x2+y2-xy-2x+2y的值.17.【2023长沙南雅中学期末】已知x=3+,y=3-,求下列各式的值.(1)x2-y2;(2)+.参考答案类型1 二次根式的加减运算 1.计算:|2-5|+|4-5|= . 【答案】2 2.计算: (1)24+0.5-⎝⎛⎭⎪⎫18+6. 解:原式=6+14 2. (2)248-1813+318-818;解:原式=83-63+92-2 2 =23+7 2. (3)32-212-418+348. 解:原式=83+2 2. (4)239x +6x 4-2x 1x . 解:原式=3x . (5)a 2b +ab a -ba b-ab 2. 解:原式=a b -b a . (6)-12 046+⎝⎛⎭⎫12-2-|4-12|+(π-3)0-27.解:原式=-1+4-4+23+1-3 3 =- 3.类型2 二次根式的乘除运算 3.计算: (1)112×23= ;(2)(-14)×(-112)= ; (3)-0.45-0.5= ; (4)59÷127= .【答案】1 28 2 31010 15 4.计算:2318÷(-3)×1327.解:原式=⎝⎛⎭⎫-23×1318×13×27=-29×9 2 =-2 2.类型3 二次根式的混合运算 5.计算:12⎝ ⎛⎭⎪⎫75+313-48= . 【答案】12 6.计算:(1)50-(-2)+8× 2. 解:原式=1+2+4=7. (2)12-1+3(3-6)+8. 解:原式=4.(3)15×3520÷⎝⎛⎭⎫-13 6.解:原式=-9 2.(4)(-3)2+18-6×22; 解:原式=3+32-32=3. (5)⎝ ⎛⎭⎪⎫72-412+32÷8. 解:原式=(62-22+42)÷2 2 =82÷2 2 =4.(6)⎝⎛⎭⎫318+15 50-40.5÷32.解:原式=2.类型4 巧用乘法公式计算 7.计算: (1)(5+3)2. 解:原式=8+215. (2)(32+12)(18-23). 解:原式=6.(3)(3+2)2-(3-2)2. 解:原式=4 6. (4)(2-3)2024×(2+3)2023;解:原式=(2-3)2023×(2+3)2023×(2-3)=[(2-3)×(2+3)]2023×(2-3)=-1×(2-3)=-2+3.(5)(2+3-5)2-(2-3+5)2; 解:原式=(2+3-5+2-3+5)× (2+3-5-2+3-5) =22×(23-25) =46-410.(6)(3+2)2(3-2)-(3-2)2(3+2).解:原式=(3+2)(3-2)[](3+2)-(3-2) =(9-2)×2 2 =14 2.类型5 先化简,再求值8.先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5+4. 解:原式=a 2-4+a -a 2 =a -4.当a =5+4时,原式=5+4-4= 5. 9.【2023福建】先化简,再求值:÷,其中x =-1.【解】原式=·=-·=-.当x =-1时,原式=-=-.10.先化简,再求值:(x -1-3x +1)÷x -2x 2+x ,其中x =3-2.解:原式=x 2-1-3x +1×x (x +1)x -2=(x +2)(x -2)x +1×x (x +1)x -2=x (x +2).把x =3-2代入,原式=(3-2)(3-2+2)=3-2 3. 类型6 巧用二次根式的定义和性质求值 11.若x -3-3-x =(x +y )2,求x -y 的值.解:∵x -3≥0,3-x ≥0, ∴x =3,∴y =-3, ∴x -y =6.12.当x 取何值时,5x -1+4的值最小?最小值是多少? 解:当x =15时,5x -1+4的最小值为4.类型7 巧用乘法公式求值13.已知x =2-3,求代数式(7+43)x 2+(2+3)x +3的值. 解:原式=(7+43)(7-43)+(2+3)(2-3)+ 3 =2+ 3.类型8 巧用整体代入法求值14.已知a =3+22,b =3-22,求a 2b -ab 2的值. 解:原式=ab (a -b ) =4 2.15.已知x +y =-7,xy =12,求y xy +xyx 的值.解:∵x +y <0,xy >0,∴x <0,y <0, ∴原式=y ·xy -y +x ·xy-x=-2xy =-4 3. 16.已知x =1-,y =1+,求x 2+y 2-xy -2x +2y 的值. 【解】∵x =1-,y =1+,∴x -y =(1-)-(1+)=-2, xy =(1-)(1+)=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2)2-2×(-2)+(-1)=7+4.17.【2023长沙南雅中学期末】已知x =3+,y =3-,求下列各式的值.(1)x 2-y 2; 【解】∵x =3+,y =3-,∴x +y =3++3-=6, x -y =3+-(3-)=2, ∴x 2-y 2=(x +y )(x -y )=6×2=12.(2)+.【解】∵x=3+,y=3-,∴x+y=3++3-=6,xy=(3+)×(3-)=4,∴+=====7.。

新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(包含答案解析)

新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(包含答案解析)

一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22== 2.若x=,则2x 2x -=( )A B .1 C .2D 13.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤14.已知0<x<3,化简=的结果是( )A .3x-4B .x-4C .3x+6D .-x+6 5.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .=6.下列算式中,正确的是( )A .3=B =C =D 4= 7.下列四个数中,是负数的是( )A .2-B .2(2)-C .D 8.下列计算正确的是( )A 7=±B 7=-C 112=D =9x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x = 10.下列各式计算正确的是( )A +=B .26=(C 4=D = 11.下列计算正确的是( )A .336a a a +=B .1=C .()325x x =D .642b b b ÷=12. )A B .C D .二、填空题13.计算:()235328-+---=__________.14.如果代数式1x -有意义,那么实数x 的取值范围是____15.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.16.若224y x x =-+-+,则y x 的平方根是__________.17.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.18.13a a+=a a =______. 19.计算:232)(32)=______.20.2121=-+3232=+4343=+,请从上述等式找出规律,并利用规律计算(20082)32435420082007++⋅⋅⋅++=++++_________. 三、解答题21.(1)计算:503248- (2)计算:16215)362(3)解方程组:25214323x y x y -=-⎧⎨+=⎩(4)解方程组:4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 22.计算:(1)121850322(2)21)-.23.计算:(12- (2) 248(31)(31)(31)(31)1++++- 24.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2++⋯+; (3)设a =,b =c =,比较a ,b ,c 的大小关系.25()201220202π-⎛⎫+-- ⎪⎝⎭26.计算:.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.B解析:B【分析】直接将已知分母有理化,进而代入求出答案.【详解】解:∵ x==1=, ∴ ()2x 2x x x 2-=- )112=- 21=-1=.【点评】此题主要考查了分母有理化,正确化简二次根式是解题关键.3.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A.【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.5.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.6.C解析:C【分析】根据二次根式的除法与加减法法则逐项判断即可得.【详解】A、=B235=+=,此项错误;C==D2==,此项错误;故选:C.【点睛】本题考查了二次根式的除法与加减法,熟练掌握运算法则是解题关键.7.C解析:C先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】-=>,不符合题意;A、220-=>,不符合题意;B、()2240C、0<,符合题意;D20=>,不符合题意;故选:C.【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.8.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A77=-=,故该选项错误;B77=-=,故该选项错误;C====,故该选项正确;D2故选:D.【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键.9.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 11.D解析:D【分析】依次根据合并同类项法则,二次根式的加减、幂的乘方和同底数幂的除法判断即可.【详解】解:A. 3332a a a +=,故该选项错误;B. =C. ()32236x x x ⨯==,故该选项错误;D. 64642b b b b -÷==,故该选项正确.故选:D .【点睛】本题考查幂的相关计算,合并同类项和二次根式的加减.掌握相关运算法则,能分别计算是解题关键.12.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A 不是同类二次根式,故本选项不符合题意;B 、=C =D、=,所以2故选:C.【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()--=322=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.14.x≥1【分析】直接利用二次根式有意义的条件分析得出答案【详解】解:∵代数式有意义∴∴x≥1故答案为:x≥1【点睛】此题主要考查了二次根式的有意义的条件列出不等式是解题关键解析:x≥1.【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵x-≥,∴10∴x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式的有意义的条件,列出不等式是解题关键.15.﹣2a【分析】依据数轴即可得到a+1<0b﹣1>0a﹣b<0即可化简|a+1|﹣【详解】解:由题可得﹣2<a <﹣11<b <2∴a+1<0b ﹣1>0a ﹣b <0∴|a+1|﹣=|a+1|﹣|b ﹣1|+|解析:﹣2a .【分析】依据数轴即可得到a +1<0,b ﹣1>0,a ﹣b <0,即可化简|a +1|.【详解】解:由题可得,﹣2<a <﹣1,1<b <2,∴a +1<0,b ﹣1>0,a ﹣b <0,∴|a +1|=|a +1|﹣|b ﹣1|+|a ﹣b |=﹣a ﹣1﹣(b ﹣1)+(﹣a +b )=﹣a ﹣1﹣b +1﹣a +b=﹣2a ,故答案为:﹣2a .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是熟练掌握所学的知识,正确的进行化简.16.【分析】根据二次根式的有意义的条件得出x 值进而求出y 代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零 解析:4±【分析】根据二次根式的有意义的条件得出x 值,进而求出y ,代入计算即可.【详解】解:要使4y =有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =, ∴=4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零.17.【分析】设两个正方形AB的边长是xy(x<y)得出方程x2=2y2=6求出x=y=代入阴影部分的面积是(y-x)x求出即可【详解】解:设两个正方形AB的边长是xy(x<y)则x2=2y2=6x=y=解析:2【分析】设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=6,求出,,代入阴影部分的面积是(y-x)x求出即可.【详解】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=6,,,则阴影部分的面积是(y-x)x=-=2-,故答案为:2-.【点睛】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13aa+=,取算数平方根即可求解.【详解】∵13aa+=,∴212325aa=++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.19.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22⎡⎤-⎣⎦=【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键. 20.2006【分析】所求代数式第一个括号内可由已知的信息化简为:然后利用平方差公式计算【详解】解:原式故答案为:2006【点睛】本题考查了数字型规律二次根式的混合运算解答此类题目的关键是认真观察题中式子解析:2006【分析】 所求代数式第一个括号内可由已知的信息化简为:,然后利用平方差公式计算.【详解】解:1===⋯ ∴原式==20082=-2006=.故答案为:2006.【点睛】本题考查了数字型规律,二次根式的混合运算,解答此类题目的关键是认真观察题中式子的特点,找出其中的抵消规律.三、解答题21.(1)72;(2)-2)25x y =⎧⎨=⎩;(4)368x y =⎧⎨=⎩【分析】(1)由二次根式的性质进行化简,再计算加减运算即可;(2)由二次根式的性质和乘法运算进行化简,再计算加减运算即可;(3)利用加减消元法解二元一次方程,即可得到答案;(4)利用加减消元法解二元一次方程,即可得到答案;【详解】解:(1)4=4 =142-=72; (2)=-=-;(3)25214323x y x y -=-⎧⎨+=⎩①②, 由②-①⨯2,得1365y =,∴5y =,把5y =代入①,得22521x -=-,∴2x =,∴方程组的解为25x y =⎧⎨=⎩; (4)4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩①②, 由①-②,得334x x -=, ∴36x =,把36x =代入①,得124y -=,∴8y =, ∴方程组的解为368x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,二次根式的性质,二元一次方程组的解法,解题的关键是熟练掌握运算法则,正确的进行解题.22.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)==(2)21)-=5﹣6﹣(5﹣)=﹣1﹣(6﹣=﹣1﹣=﹣【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键. 23.(1)52;(2)16332- 【分析】(1)先由二次根式的性质、立方根、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)由平方差公式进行化简,然后得到答案.【详解】解:(1)原式31322=++52=; (2)原式248(31)(31)(31)(31)(31)12-++++=-16163133122--=-=. 【点睛】本题考查了平方差公式,实数的混合运算,二次根式的性质,以及绝对值的化简,解题的关键是熟练掌握运算法则进行计算.24.(1==2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (21=+1=1=.(3)a ==2b ==2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.25.7-【分析】 先化简二次根式、绝对值、负整数指数幂运算、零指数幂运算,再计算加减法.【详解】()201220202π-⎛⎫+-- ⎪⎝⎭=2241+-=7-【点睛】此题考查实数的混合运算,熟练掌握二次根式的化简、绝对值的化简、负整数指数幂运算、零指数幂运算是解题的关键.26.【分析】根据二次根式混合运算的运算顺序,先算乘除,再将二次根式化成最简二次根式,最后合并同类二次根式即可得出结果.【详解】解:====【点睛】本题考查了二次根式的混合运算,掌握二次根式混合运算的相关运算法则是解题的关键.。

八年级数学下册《二次根式》练习题附答案-人教版

八年级数学下册《二次根式》练习题附答案-人教版

八年级数学下册《二次根式》练习题附答案-人教版一、选择题1.下列函数中,自变量x的取值范围为x<1的是( )A.y=11-xB.y=1-1xC.y=1-xD.y=11-x2.若a<1,化简(a-1)2﹣1= ( )A.a﹣2B.2﹣aC.aD.﹣a3.下列根式是最简二次根式的是( )A.13B.0.3C. 3D.204.下列运算正确的是( )A.2+3= 5B.18=2 3C.2·3= 5D.2÷12=25.当a<0,b<0时,把化为最简二次根式,得( )A. B.- C.- D.6.下列二次根式中,与3是同类二次根式的是( )9 B.30 C.12 D.87.下列运算正确的是( )2+5=7 B.22×32=6 2 C.8÷2=2 D.32﹣2=38.已知a,b分别是6﹣13的整数部分和小数部分,则2a﹣b的值为( )A.3﹣13B.4﹣13C.13D.2+139.化简a+1+aa+1-a﹣a+1-aa+1+a的结果是( )A.2a+2B.4a+2C.4a2+aD.﹣4a2+a10.已知a+b=3,a﹣b=2,c=5,则代数式a2﹣b2﹣c2﹣2bc的值是( )A.正数B.负数C.零D.无法确定二、填空题11.当x________时,二次根式2x +3在实数范围内有意义. 12.当x =-2时,二次根式2-7x 的值 .13.计算:8+2= .14.计算(1-2)2+18的值是________.15.若a+b=5+ 3 ,ab=15- 3 ,则x+y=_______.16.比较大小:2+6________3+ 5.三、解答题17.计算:.18.计算:(32-23)(32+23).19.计算:1212﹣(313+2).20.计算:33﹣(3)2+(π+3)0﹣27+|3﹣2|;21.已知x ,y 为实数,且y =x -12+12-x +12,求4x +|2y ﹣1|﹣y 2-2y +1的值.22.有一个长、宽之比为5∶2的长方形过道,其面积为 10 m2.(1)求这个长方形过道的长和宽;(2)用40块大小一样的正方形地板砖刚好把这个过道铺满,求这种地板砖的边长.23.设x=2+5,y=-2+5,求x2+y2﹣2xy的值.24.对于任意不相等的两个实数a,b,定义运算“*”如下:a*b=a+ba-b﹣a-ba-b(a>b>0).如4*3=4+34-3﹣4-34-3=7﹣1,试求下列各式的值:(1)13*5.(2)6*5﹣5×(8*3).25.小明在学习《二次根式》后,发现一些含根号的式子可以写成另一个式子的平方如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+2mn 2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+2b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得a=________,b=________;(2)利用所探索的结论,找一组正整数a,b,m,n填空:________+________3=(________+________3)2;(3)若a+43=(m+n3)2,且a,m,n均为正整数,求a的值.参考答案1.D.2.D.3.C.4.D.5.B6.C7.C.8.C9.C.10.B11.答案为:≥-3212.答案为:4.13.答案为:3 214.答案为:42﹣1.15.答案为:4- 316.答案为:<.17.解:原式=-22;18.解:原式=6.19.解:原式=3﹣3﹣2=﹣ 2.20.原式=﹣3 3.21.解:∵x ﹣12≥0且12﹣x ≥0 ∴x =12,∴y =12∴原式=4x +|2y ﹣1|﹣(y -1)2=4x +|2y ﹣1|﹣|y ﹣1|=2﹣12=32.22.解:(1)设这个长方形过道的长为5x(m),宽为2x(m)则5x·2x=10∴x2=1,解得x1=1,x2=-1(不合题意,舍去).答:这个长方形过道的长为5 m,宽为2 m;(2)设这种地板砖的边长为m(m)则40m2=10∴m2=0.25解得m1=0.5,m2=-0.5(不合题意,舍去).答:这种地板砖的边长为0.5 m.23.解:∵x2+y2﹣2xy=(x﹣y)2∴把x=2+5,y=﹣2+5代入得:原式=(2+5+2﹣5)2=16.24.解:(1)13*5=13+513-5﹣13-513-5=328﹣228=28.(2)6*5﹣5×(8*3)=6+56-5﹣6-56-5﹣5×(8+38-3﹣8-38-3)=11﹣1﹣11+5=5﹣1.25.解:(1)∵a+b3=(m+n3)2∴a+b3=m2+3n2+2mn 3∴a=m2+3n2,b=2mn.(2)答案不唯一,如:设m=1,n=1∴a=m2+3n2=4,b=2mn=2.(3)由题意,得:a=m2+3n2,b=2mn∵4=2mn,且m,n为正整数∴m=2,n=1或m=1,n=2∴a=22+3×12=7或a=12+3×22=13.。

人教版八年级数学下册《二次根式化简》专项练习(附带答案)

人教版八年级数学下册《二次根式化简》专项练习(附带答案)

人教版八年级数学下册《二次根式化简》专项练习(附带答案)类型一、利用被开方数的非负性化简二次根式例. )A .1x ≥B .1x ≥-C .1x ≥或1x ≤-D .1x ≠±【变式训练1】已知m n 为实数 且3n -= =________.【详解】依题意可得m -2≥0且2-m ≥0 ∴m =2 ∴n -3=0∴n =3【变式训练2】已知a b c 是ABC 的三边长 ||0b c -=ABC 的形状是_______.【详解】解:2220a b c b c 2220a b c 0b c222a b c ∴=+ 且b c =∴ABC 为等腰直角三角形故答案为:等腰直角三角形.【变式训练3】3x =- 则x 的取值范围是( )A .3x >B .3x ≥C .3x <D .3x ≤【变式训练4】已知a 、b 、c 为一个等腰三角形的三条边长 并且a 、b 满足7b = 求此等腰三角形周长.【答案】17 【详解】解:由题意得:3030a a -≥⎧⎨-≥⎩ 解得:a =3 则b =7 若c =a =3时 3+3<7 不能构成三角形.若c =b =7 此时周长为17.类型二、利用数轴化简二次根式例.实数a b c ,,在数轴上的对应点如图所示 化简a b a -+-的结果是是( )A .b c --B .c b -C .222b c -+D .2b c ++ 【答案】A【详解】解:由数轴知:00c b a <,<<∴0b a -<∴原式=a b a c ----()=a b a c --+-=b c --.故选:A .【变式训练1】已知实数m n 、在数轴上的对应点如图所示 ||m n +=_____【变式训练2】实数a b 在数轴上对应点的位置如图所示 化简||a 的结果是( )A .2a b -+B .2a b -C .b -D .b 【答案】A【解析】根据数轴上点的位置得:a <0<b ∴a -b <0则原式=|a |+|a -b |=-a +b -a = -2a +b .故选:A .【变式训练3】已知实数a 、b 、c 表示在数轴上如图所示 a b -【变式训练4】如图 a b c 是数轴上三个点A 、B 、C 所对应的实数.a b b c ++.类型三、利用字母的取值范围化简二次根式例1.已知 化简:25m -<<5m -=__________.【答案】23m -##32m -+【详解】解:2m -<<例2.ABC 的三边长分别为1、k 、3 则化简723k -=_____. ∴ABC 的三边长分别为90-<812k +-()23k --A B C .D .【详解】解:20b a -≥0ab > 所以a 和b 同号22b b b a a a a a---=-【变式训练2】若35x << _______; 【答案】【变式训练3】化简:2-=_______. 【答案】0【解析】由题意可知:3-x ≥0 ∴23x -=33x x ---=33x x -+-=0故答案为:0.【变式训练4】7=-b .(1)求a 的值;(2)若a 、b 分别为一直角三角形的斜边长和一直角边长 求另一条直角边的长度. )解:25a -+2525≥≤ a ∴)解:25225a -+-a 、b 分别为一直角三角形的斜边长和一直角边长∴另一条直角边的长度为:类型四、双重二次根式的化简例.阅读下列材料 然后回答问题.在进行二次根式的化简与运算时其实我们还可以将其进===1=以上这种化简的步骤叫做分母有理化.(1;(2【答案】(1(2【详解】(13133333333;(2222(53)2(53)5353(53)(53)53.【变式训练1】阅读理解“分母有理化”7==+除此之外我们也可以用平方之后再开方的方式来化简一些有特点的无理数设x=故0x>由22x=33=-2=解得x==根据以上方法【答案】5-【详解】解:设x∴0x<∴266x =-+ ∴212236x =-⨯= ∴x =2532==-- ∴原式55=--【变式训练2】先阅读材料 然后回答问题.(1)小张同学在研究二次根式的化简时经过思考 小张解决这个问题的过程如下:①===④在上述化简过程中 第 步出现了错误 化简的正确结果为 ;(2)请根据你从上述材料中得到的启发 化简【变式训练3】先阅读下列解答过程 然后再解答:437+= 4312⨯= 即:227+= 所以2==+问题:(1=__________ =____________﹔(2)进一步研究发现: 只要我们找到两个正数a b (a b >)使a b m += ab n = 即22m += =__________.(3【答案】(11 (2)a b >;(3【详解】解:(11;(2)a b =>;(3. 【变式训练4】阅读材料:小明在学习二次根式后 发现一些含根号的式子可以写成另一个式子的平方 如(231+ 善于思考的小明进行了以下探索:设()2a m +=(其中a 、b 、m 、n 均为正整数) 则有222a m n =++∴a =m 2+2n 2 b =2mn .这样小明就找到了一种把部分a 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时 若()2a m =+ 用含m 、n 的式子分别表示a 、b 得:a = b = ;(2)若()2a m ++ 且a 、m 、n 均为正整数 求a 的值;(3课后作业120b -= 那么这个等腰三角形的周长为( ) A .8B .10C .8或10D .9 【答案】B【详解】解:20b -=∴40a -= 20b -= 解得4a = 2b =当腰长为2 底边为4时 ∴224+= 不满足三角形三边条件 不符合题意; 当腰长为4 底边为2时 ∴2464+=> 4402-=< 满足三角形三边条件 此时等腰三角形的周长为44210++=.故选:B2.化简二次根式- )A BC .D .x x x -=--3.已知a 、b 、c 在数轴上的位置如图所示 则||a c b ++ )A .2b c -B .2b a -C .2a b --D .2c b -4.若()230a -= 则a b +的平方根是______. 【详解】解:(5.设a b 是整数 方程20x ax b ++= 则a b +=___________.∴113060a b a ++=⎧⎨+=⎩解得67a b =-⎧⎨=⎩∴671a b +=-+=.故答案为:16.已知x 、y 为实数 4y = 则x y 的值等于______.7.已知实数a b c 、、在数轴上的位置如图所示 且a b = 化简a a b ++8.阅读:根据二次根式的性质 a b =+.根据这一性质 我们可以将一些“双重二次根式”去掉一层根号 达到化简效果.解:设24+=(a b 为非负有理数) 则4a b +++ ∴43a b ab +=⎧⎨=⎩①② 由①得 4b a =- 代入②得:()43a a -= 解得11a = 23a =∴13b = 21b =∴224(1+=+1=请根据以上阅读理解 解决下列问题:(1)的化简结果是__________;(2)(3) 如果能化简 请写出化简后的结果 如果不能 请说明理由.9.在二次根式的计算和比较大小中有时候用“平方法”会取得很好的效果例如比较a=b=的大小我们可以把a和b分别平方∴a2=12 b2=18 则a2<b2∴a<b.请利用“平方法”解决下面问题:(1)比较c=d=c d(填写><或者=).(2)猜想m=n=并证明.(3)=(直接写出答案).10.(1)已知a、b为实数4b+求a、b的值.(2)已知实数a 满足2021a a -= 求22021a -的值.。

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)

人教版八年级数学下册《二次根式的定义及性质》专项练习(附带答案)
【考点导航】
目录
【典型例题】 (1)
【考点一二次根式的定义】 (1)
【考点二二次根式有意义的条件】 (2)
【考点三求二次根式的值】 (3)
【考点四求二次根式中的参数】 (4)
【考点五利用二次根式的性质化简】 (6)
【考点六复合二次根式的化简】 (7)
【过关检测】 (9)
【典型例题】
【考点一二次根式的定义】
【考点二二次根式有意义的条件】
【考点三求二次根式的值】
【考点四求二次根式中的参数】
【考点五利用二次根式的性质化简】
【考点六复合二次根式的化简】
-=
)解:743
【过关检测】一、选择题
【详解】解:二次根式
a b
-≠a b
+= a b
14
【答案】22+-a b c。

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)

人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。

人教版八年级初二数学下学期二次根式单元 期末复习测试基础卷

人教版八年级初二数学下学期二次根式单元 期末复习测试基础卷

一、选择题1.下列计算正确的是( )A .336+=B .3323+=C .336⨯=D .3333+=2.下列运算正确的是( )A .235+=B .322-=3C .2(2)-=﹣2D .24322÷=3.已知2225152x x ---=,则222515x x -+-的值为( ) A .3B .4C .5D .6 4.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( )A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣1 5.下列计算正确的是( )A 366=±B .422222=C .83266=D a b ab =(a≥0,b≥0) 6.已知0xy <,化简二次根式2y x -) A y B y - C .y -D .y -- 7.已知:23-,23+,则a 与b 的关系是( ) A .相等 B .互为相反数 C .互为倒数 D .平方相等8.下列计算正确的是( )A .333=1B 23=5C .12=22D .322=52+9.以下运算错误的是( )A 3535⨯=B .2222⨯=C 169+169D 2342a b ab b =a >0)10.下列各组二次根式中,能合并的一组是( )A 1a +1a -B 3和13C 2a b 2abD 318二、填空题11.2216422x x --=22164x x --=________.12.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为:22164?a x a x =则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.13.若2x ﹣3x 2﹣x=_____.14.若a 、b 、c 均为实数,且a 、b 、c 均不为043252a c b=___________ 15.已知:5+22可用含x 2=_____. 16.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.17.若0xy >,则二次根式2y x -________. 18.化简:3222=_____.19.函数y 4x -中,自变量x 的取值范围是____________. 20.2a ·8a (a ≥0)的结果是_________.三、解答题21.3222x x x x --x 的值,代入后,求式子的值. 【答案】答案见解析.【解析】试题分析:先把除式化为最简二次根式,再用二次根式的乘法法则化简,选取的x 的值需要使原式有意义.试题解析: 原式222122222x x x x x x x x --==----22x x x x -=-= 要使原式有意义,则x >2.所以本题答案不唯一,如取x =4.则原式=222.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.23.计算:11(1)(2【答案】(12+;(2)【分析】(1)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同;(2)根据二次根式的加减法法则和乘除法法则进行计算,注意运算顺序与实数的混合运算顺序相同.【详解】11解:)=-312==【点睛】本题考查了二次根式的混合运算,二次根式的混合运算顺序与实数的混合运算顺序一样,先乘方,再乘除,最后加减,有括号时要先算括号里的或先去括号.24.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a b a b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】 原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.25.计算下列各式:(1;(2【答案】(12 ;(2) 【分析】 先根据二次根式的性质化简,再合并同类二次根式即可.【详解】(1)原式2=-2=;(2)原式==. 【点睛】本题考查了二次根式的加减,熟练掌握性质是解答本题的关键(0)(0)a a a a a ≥⎧==⎨-<⎩,)0,0a b =≥≥=(a ≥0,b >0).26.计算:(1(2|a ﹣1|,其中1<a【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简.【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1.【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.27.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.28.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据二次根式加法法则,二次根式的乘法法则计算后判断即可得到答案.【详解】=3= ,∴A 、C 、D 均错误,B 正确,故选:B.【点睛】此题考查二次根式的加法法则,二次根式的乘法法则,熟记计算法则是正确解题的关键.2.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:A、2与3,不是同类二次根式,无法合并,故此选项错误;B、32﹣2=22,故此选项错误;C、2-=2,故此选项错误;(2)D、24÷3=22,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.3.C解析:C【解析】∵2225152---=,x x2222222222 ----+-=---=--+=x x x x x x x x (2515)(2515)(25)(15)251510,∴22x x-+-=.25155故选C.4.C解析:C【解析】依据二次根式有意义的条件即可求得k的范围.解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k的不等式组,求出k的取值范围.5.D解析:D=,故A不正确;366根据二次根式的除法,可直接得到2=,故B 不正确;根据同类二次根式的性质,可知C 不正确;=(a≥0,b≥0)可知D 正确.故选:D 6.B解析:B【分析】先根据xy <0,考虑有两种情况,再根据所给二次根式可确定x 、y 的取值,最后再化简即可.【详解】解:0xy <,0x ∴>,0y <或0x <,0y >, 又2y x x -有意义, 0y ∴<,0x ∴>,0y <,当0x >,0y <时, 故选B .【点睛】本题考查了二次根式的性质与化简.解题的关键是能根据已知条件以及所跟二次根式来确定x 、y 的取值. 7.C解析:C【解析】 因为1a b ⨯==,故选C. 8.C解析:C【解析】分析:根据二次根式的四则混合运算法则,二次根式的性质与化简逐项进行分析解答即可.详解:A .= ,故本选项错误;B .不是同类二次根式,不能进行合并,故本选项错误;C .正确;D .不是同类二次根式,不能进行合并,故本选项错误.故选C .点睛:本题主要考查二次根式的化简,二次根式的四则运算法则,解题的关键是正确根据相关法则逐项进行分析解答.9.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A、是最简二次根式,被开方数不同,不是同类二次根式;BCD故选B.【点睛】本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.二、填空题11.3【解析】设,则可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.12.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a >0+3.a =a+3. 【点睛】本题考查阅读理解的能力,正确理解题意是关键.13.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x ﹣1= ,∴(2x ﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x )=2∴x2﹣x=故答案为【点 解析:12【解析】【分析】 根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x ﹣,∴(2x ﹣1)2=3∴4x 2﹣4x+1=3∴4(x 2﹣x )=2∴x 2﹣x=12故答案为12【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.14.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0= 当b <0=故答案为:00b b ⎧>⎪⎪⎨⎪<⎪⎩当时当时. 15.【解析】∵=,∴=== -==﹣x3+x ,故答案为:﹣x3+x. 解析:211166x x -+ 【解析】∵x =-==123=146+= -21116⎡⎤-⎢⎥⎣⎦=311166-+=﹣16x 3+116x , 故答案为:﹣16x 3+116x. 16.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=,∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.17.-【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是 解析:【分析】首先判断出x ,y 的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy >∴00x y <,<,∴x ==.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 18.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变. 解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.19.x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=2x -,得4-x≥0且x-2≠0. 解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版数学八年级下册《二次根式》基础专项练习一、二次根式的意义1.下列式子一定是二次根式的是()A.B.C.D.2.下列式子是二次根式的有()①;②(a≥0);③(m,n同号且n≠0);④;⑤.A.0个 B.1个 C.2个 D.3个3.下列根式中,属于最简二次根式的是()A. B.C.D.二、二次根式有意义的条件4.若代数式﹣在实数范围内有意义,则x的取值范围是()A.x≠﹣2 B.x≤5 C.x≥5 D.x≤5且x≠﹣25.已知y=,则的值为()A.B.﹣ C.D.﹣6.若式子﹣+1有意义,则x的取值范围是()A.x≥B.x≤C.x= D.以上都不对三、二次根式的性质与化简7.下列运算正确的是()A.B.C.D.8.实数a,b在数轴上的位置如图所示,则化简﹣+b的结果是()A.1 B.b+1 C.2a D.1﹣2a9.若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2四、最简二次根式10.下列二次根式是最简二次根式的是()A. B.C. D.11.在根式①②③④中,最简二次根式是()A.①②B.③④C.①③D.①④12.下列根式中是最简二次根式的是()A.B.C.(a>0)D.五、二次根式的乘除法13.计算2×÷的结果是()A.B.C.D.214.下列运算正确的是()A.a+a=a2B.a2•2a3=2a6C.÷=3 D.(﹣ab3)2=a2b615.下列计算正确的是()①=•=6;②=•=6③=•=3;④=•=1.A.1个 B.2个 C.3个 D.4个六、分母有理化16.﹣1的倒数为()A.﹣1 B.1﹣C.+1 D.﹣﹣117.a=,b=,则a+b﹣ab的值是()A.3 B.4 C.5 D.七、同类二次根式18.下列根式中,与为同类二次根式的是()A.B.C.D.19.下列二次根式中,能与合并的是()A. B. C.D.20.在根式、、、、中与是同类二次根式的有()A.1个 B.2个 C.3个 D.4个八、二次根式的混合运算21.计算(2+)(﹣2)的结果是()A.1 B.0 C.﹣1 D.﹣722.化简(﹣2)2015•(+2)2016的结果为()A.﹣1 B.﹣2 C.+2 D.﹣﹣223.下列运算正确的是()A.2﹣=1 B.(﹣)2=2C.=±11 D.==3﹣2=124.下列计算正确的是()A.B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a5九、二次根式的化简求值25.若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣326.m为实数,则的值一定是()A.整数B.正整数C.正数D.负数27.若a﹣b=﹣1,ab=,则代数式(a﹣1)(b+1)的值等于()A.2+2 B.2﹣2 C.2 D.2十、二次根式的应用28.如图,长方形ABCD恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD的周长是()A.7 B.9 C.19 D.2129.一个长方体的体积是cm3,长是cm,宽是cm,则高是()A.4cm B.12cm C.2cm D.2cm30.已知等腰三角形的两条边长为1和,则这个三角形的周长为()A.B.C.或D.参考答案与试题解析一.选择题(共30小题)1.(2017春•日照期中)下列式子一定是二次根式的是()A.B.C.D.【考点】71:二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知A、B、C中的被开方数都不会恒大于等于0,故错误;D、因为x2+2>0,所以一定是二次根式,故正确.故选:D.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.2.(2017春•蓟县期中)下列式子是二次根式的有()①;②(a≥0);③(m,n同号且n≠0);④;⑤.A.0个 B.1个 C.2个 D.3个【考点】71:二次根式的定义.【分析】根据二次根式的定义即可求出答案【解答】解:②(a≥0);③(m,n同号且n≠0);④;是二次根式,故选(D)【点评】本题考查二次根式的性质,解题的关键是正确理解二次根式的定义,本题属于基础题型.3.(2016秋•遂宁期末)下列根式中,属于最简二次根式的是()A. B.C.D.【考点】71:二次根式的定义.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=,所以本二次根式的被开方数中含有没开的尽方的因数32;故本选项错误;B、符合最简二次根式的定义;故本选项正确;C、的被开方数中含有分母;故本选项错误;D、所以本二次根式的被开方数中含有没开的尽方的因数;故本选项错误;故选B.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.4.(2017•合肥模拟)若代数式﹣在实数范围内有意义,则x的取值范围是()A.x≠﹣2 B.x≤5 C.x≥5 D.x≤5且x≠﹣2【考点】72:二次根式有意义的条件.【分析】令被开方数大于或等于0和分母不为0即可取出x的范围.【解答】解:∵∴x≤5且x≠﹣2故选(D)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解有意义的条件,本题属于基础题型.5.(2017春•临沂期中)已知y=,则的值为()A.B.﹣ C.D.﹣【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件列出不等式,解不等式求出x、y的值,计算即可.【解答】解:由题意得,4﹣x≥0,x﹣4≥0,解得x=4,则y=3,则=,故选:C.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.6.(2017春•西华县期中)若式子﹣+1有意义,则x的取值范围是()A.x≥B.x≤C.x= D.以上都不对【考点】72:二次根式有意义的条件.【分析】要使式子有意义,被开方数要大于等于0,列不等式组求解.【解答】解:要使二次根式有意义,则,解得x=,故选C.【点评】本题主要考查二次根式有意义的条件,被开方数为非负数.7.(2017春•萧山区期中)下列运算正确的是()A.B.C.D.【考点】73:二次根式的性质与化简.【分析】本题考查最简二次根式的合并,二次根式的计算,以及二次根式的意义.【解答】解:A、错误,∵2﹣=≠1;B、正确,∵=(﹣1)2=1×2=2;C、错误,∵==11≠±11;D、错误,∵==≠1.故选B.【点评】灵活运用二次根式的性质进行计算和化简,最简二次根式的运用,以及二次根式的计算法则的运用.8.(2017春•广州期中)实数a,b在数轴上的位置如图所示,则化简﹣+b 的结果是()A.1 B.b+1 C.2a D.1﹣2a【考点】73:二次根式的性质与化简;29:实数与数轴.【分析】利用数轴得出a﹣1<0,a﹣b<0,进而利用二次根式的性质化简求出即可.【解答】解:由数轴可得:a﹣1<0,a﹣b<0,则原式=1﹣a+a﹣b+b=1.故选:A.【点评】此题主要考查了二次根式的性质与化简,得出各项的符号是解题关键.9.(2016•呼伦贝尔)若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【考点】73:二次根式的性质与化简.【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.10.(2017•双桥区一模)下列二次根式是最简二次根式的是()A. B.C. D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:是最简二次根式,A正确;被开方数含分母,不是最简二次根式,B错误;=c不是最简二次根式,C错误;=2d不是最简二次根式,D错误,故选:A.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.11.(2017春•宜兴市期中)在根式①②③④中,最简二次根式是()A.①②B.③④C.①③D.①④【考点】74:最简二次根式.【分析】判断一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:①是最简二次根式;②=,被开方数含分母,不是最简二次根式;③是最简二次根式;④=3,被开方数含能开得尽方的因数,不是最简二次根式.①③是最简二次根式,故选C.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.12.(2017春•云梦县期中)下列根式中是最简二次根式的是()A.B.C.(a>0)D.【考点】74:最简二次根式.【分析】根据最简二次根式的定义即可求出答案.【解答】解:(A)原式=,故A不是最简二次根式;(C)原式=a,故C不是最简二次根式;(D)原式=2,故D不是最简二次根式;故选(B)【点评】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.13.(2017春•重庆期中)计算2×÷的结果是()A.B.C.D.2【考点】75:二次根式的乘除法.【分析】根据二次根式的运算法则即可求出答案.【解答】解:原式==3=故选(C)【点评】本题考查二次根式的乘除法,解题的关键是熟练运用二次根式的乘除法法则,本题属于基础题型.14.(2017春•云梦县期中)下列运算正确的是()A.a+a=a2B.a2•2a3=2a6C.÷=3 D.(﹣ab3)2=a2b6【考点】75:二次根式的乘除法;35:合并同类项;47:幂的乘方与积的乘方;49:单项式乘单项式.【分析】根据整式的运算法则和二次根式的运算法则即可求出答案.【解答】解:(A)原式=2a,故A错误;(B)原式=2a5,故B错误;(C)原式=,故C错误;故选(D)【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.15.(2016春•桐梓县校级期中)下列计算正确的是()①=•=6;②=•=6③=•=3;④=•=1.A.1个 B.2个 C.3个 D.4个【考点】75:二次根式的乘除法.【分析】利用二次根式的性质分别分析进而判断各选项即可.【解答】解:①=•根号下不能为负数,故此选项错误;②=•=6根号下不能为负数,故此选项错误;③=•=3,故此选项正确;④=•=1由③得,此选项错误.故正确的有1个.故选:A.【点评】此题主要考查了二次根式的性质,正确利用二次根式乘法运算法则是解题关键.16.(2016•三门峡一模)﹣1的倒数为()A.﹣1 B.1﹣C.+1 D.﹣﹣1【考点】76:分母有理化;28:实数的性质.【分析】首先根据互为倒数的两个数的乘积是1,用1除以,求出它的倒数是多少;然后根据分母有理化的方法,把分母有理化即可.【解答】解:∵,∴的倒数为:.故选:C.【点评】(1)此题主要考查了分母有理化的含义,以及分母有理化的方法,要熟练掌握.(2)此题还考查了两个数互为倒数的含义和性质的应用,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.17.(2016秋•安岳县月考)a=,b=,则a+b﹣ab的值是()A.3 B.4 C.5 D.【考点】76:分母有理化.【分析】根据分母有理化,可化简a、b,根据实数的运算,可得答案.【解答】解;a==2+,b==2﹣,a+b﹣ab=2++2﹣﹣(2+)(2﹣)=4﹣(4﹣3)=3,故选:A.【点评】本题考查了分母有理化,利用了分母有理化,整式乘法公式.18.(2017•虹口区二模)下列根式中,与为同类二次根式的是()A.B.C.D.【考点】77:同类二次根式.【分析】把化为最简二次根式,然后根据被开方数相同的二次根式叫做同类二次根式解答.【解答】解:=3,所以,与为同类二次根式的是.故选A.【点评】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.19.(2017春•寿光市期中)下列二次根式中,能与合并的是()A. B. C.D.【考点】77:同类二次根式.【分析】同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.把每个根式化简即可确定.【解答】解:A.=2,故选项错误;B、=2,故选项正确;C、=,故选项错误;D、=3,故选项错误.故选B.【点评】本题考查同类二次根式的概念,正确对根式进行化简是关键.20.(2016春•济南校级期末)在根式、、、、中与是同类二次根式的有()A.1个 B.2个 C.3个 D.4个【考点】77:同类二次根式.【分析】先把各二次根式化成最简二次根式后,再进行判断即可.【解答】解:∵=、=、=,∴在这一组数中与是同类二次根式两个,即、.故选B.【点评】此题主要考查了同类二次根式的定义,即:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.21.(2016春•宜春期末)计算(2+)(﹣2)的结果是()A.1 B.0 C.﹣1 D.﹣7【考点】79:二次根式的混合运算.【分析】先利用加法交换律将2+化为+2,再根据平方差公式进行计算.【解答】解:(2+)(﹣2),=(+2)(﹣2),=()2﹣22,=3﹣4,=﹣1,故选C.【点评】本题是利用平方差公式进行二次根式的混合运算,熟知:(a+b)(a﹣b)=a2﹣b2,注意理解公式的特点,相同项为a,相反项为b.22.(2016春•临沭县期中)化简(﹣2)2015•(+2)2016的结果为()A.﹣1 B.﹣2 C.+2 D.﹣﹣2【考点】79:二次根式的混合运算.【专题】11 :计算题.【分析】先利用积的乘方得到原式=[(﹣2)•(+2)]2015•(+2),然后根据平方差公式计算.【解答】解:原式=[(﹣2)•(+2)]2015•(+2)=(3﹣4)2015•(+2)=﹣﹣2.故选D.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.23.(2016春•杭州期中)下列运算正确的是()A.2﹣=1 B.(﹣)2=2C.=±11 D.==3﹣2=1【考点】79:二次根式的混合运算.【分析】根据二次根式的加减法对A进行判断;根据二次根式的性质对B、C、D进行判断.【解答】解:A、原式=,所以A选项错误;B、原式=2,所以B选项正确;C、原式=|﹣11|=11,所以C选项错误;D、原式==,所以D选项错误.故选B.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.24.(2017•西华县二模)下列计算正确的是()A.B.(﹣3)2=6 C.3a4﹣2a2=a2D.(﹣a3)2=a5【考点】78:二次根式的加减法;35:合并同类项;47:幂的乘方与积的乘方.【分析】根据实数的运算法则以及整式的运算法则即可判断【解答】解:(A)原式=2﹣=,故A正确,(B)原式=9,故B错误;(C)3a4与2a2不是同类项,故C错误;(D)原式=a6,故D错误;故选(A)【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.25.(2014春•宁津县期末)若x=﹣3,则等于()A.﹣1 B.1 C.3 D.﹣3【考点】7A:二次根式的化简求值.【分析】x=﹣3时,1+x<0,=﹣1﹣x,再去绝对值.【解答】解:当x=﹣3时,1+x<0,=|1﹣(﹣1﹣x)|=|2+x|=﹣2﹣x=1.故选B.【点评】本题考查了二次根式的化简方法,关键是根据x的取值,判断算式的符号.26.(2016春•宁津县校级月考)m为实数,则的值一定是()A.整数B.正整数C.正数D.负数【考点】7A:二次根式的化简求值.【分析】代数式m2+4m+5=(m+2)2+1恒为正,故它的算术平方根一定为正数.【解答】解:因为m2+4m+5=(m+2)2+1>1,且m为实数,故一定是正数.故选C.【点评】本题充分利用完全平方式为非负数的特点,确定代数式的符号及算术平方根恒为非负数.27.(2015春•宜丰县期中)若a﹣b=﹣1,ab=,则代数式(a﹣1)(b+1)的值等于()A.2+2 B.2﹣2 C.2 D.2【考点】7A:二次根式的化简求值.【分析】首先把代数式利用整式的乘法计算方法计算整理,再进一步整体代入求得答案即可.【解答】解:∵a﹣b=﹣1,ab=,∴(a﹣1)(b+1)=ab+(a﹣b)﹣1=+﹣1﹣1=2﹣2.故选:B.【点评】此题考查二次根式的化简求值,注意整体代入思想的渗透.28.(2017春•嘉祥县期中)如图,长方形ABCD恰好可分成7个形状大小相同的小长方形,如果小长方形的面积是3,则长方形ABCD的周长是()A.7 B.9 C.19 D.21【考点】7B:二次根式的应用.【专题】11 :计算题.【分析】设小长方形的长为a,宽为b,根据小长方形的面积及图形列出关系式,求出a与b的值,即可确定出长方形ABCD的周长.【解答】解:设小长方形的长为a,宽为b,则有ab=3,3a=4b,解得:a=2,b=,长方形ABCD的周长为2(a+b+4b)=2(a+5b)=19,故选C【点评】此题考查了二次根式的应用,确定出小长方形的长与宽是解本题的关键.29.(2017春•郯城县月考)一个长方体的体积是cm3,长是cm,宽是cm,则高是()A.4cm B.12cm C.2cm D.2cm【考点】7B:二次根式的应用.【分析】根据长方体的体积公式列出算式,根据二次根式的除法法则计算即可.【解答】解:高==2cm,故选:C.【点评】本题考查的是二次根式的应用,掌握长方体的体积公式、二次根式的除法法则是解题的关键.30.(2016秋•高邑县期末)已知等腰三角形的两条边长为1和,则这个三角形的周长为()A.B.C.或D.【考点】7B:二次根式的应用;KH:等腰三角形的性质.【专题】32 :分类讨论.【分析】分1是腰长和底边长两种情况讨论求解.【解答】解:1是腰时,三角形的三边分别为1、1、,∵1+1=2<,∴此时不能组成三角形;1是底边时,三角形的三边分别为1、、,能够组成三角形,周长为1++=1+2,综上所述,这个三角形的周长为1+2.故选B.【点评】本题考查了二次根式的应用,等腰三角形的性质,难点在于要分情况讨论并利用三角形的三边关系判定是否能够组成三角形.。

相关文档
最新文档