-二次根式基础练习(含答案)
完整版)最简二次根式练习含答案

完整版)最简二次根式练习含答案最简二次根式基础练一、填空题:1.把下列二次根式化成最简二次根式。
1) $\sqrt{120}=\sqrt{4\times30}=2\sqrt{30}$;2) $\sqrt{27}=\sqrt{9\times3}=3\sqrt{3}$;3)$\sqrt{\frac{1}{8}}=\sqrt{\frac{1}{2}\times\frac{1}{4}}=\frac{1 }{2}\sqrt{2}$;4)$\sqrt{\frac{1}{2}}=\sqrt{\frac{2}{4}}=\frac{\sqrt{2}}{2}$;5) $\sqrt{84}=\sqrt{4\times21}=2\sqrt{21}$;6) $\sqrt{250}=\sqrt{25\times10}=5\sqrt{10}$;7) $\sqrt{\frac{24}{8}}=\sqrt{3}$;8) $\sqrt{\frac{8}{32}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$。
2.若$\sqrt{3}\approx1.732$,则$\sqrt{227}\approx15.0$(保留三个有效数字)。
3.设$x<0$,则$\sqrt{-8x}=2i\sqrt{2}\sqrt{-x}$。
4.下列二次根式$45a$,$30$,$\frac{1}{2}$,$40b^2$,$\sqrt{54}$中是最简二次根式有$30$,$\frac{1}{2}$,$\sqrt{54}=3\sqrt{6}$。
二、选择题1.在二次根式$\sqrt{72}$,$5a\sqrt{3}$,$\sqrt{3}$,$9\sqrt{x^2}$中,最简二次根式的个数是(C)3个。
2.下列各式中是最简二次根式的是(A)$\sqrt{5}$。
3.下列各式中,不是最简二次根式的是(A)$\sqrt{6}$。
4.下列计算中正确的是(A)$\frac{1}{2}$。
八年级数学下册《二次根式》练习题带答案

八年级数学下册《二次根式》练习题班级:__________ 座号:__________ 姓名:__________________ 成绩:___________一、选择题(每小题4分,共24分)1.二次根式1-a 中,字母a的取值范围是…………………………………………()A.a<1 B.a≤1 C.a≥1 D.a>12.下列与 2 是同类二次根式的是……………………………………………………()A. 3 B.12 C.8 D. 2 -13.下列计算正确的是……………………………………………………………………()A. 2 × 3 = 6 B. 2 + 3 = 5 C.8 =4 2 D. 4 - 2 = 24.若(3-b)2=3-b,则…………………………………………………………………()A.b>3 B.b<3 C.b≥3 D.b≤35.下列根式中不是最简二次根式的是…………………………………………………()A.10 B.8 C. 6 D. 26.已知12-n 是正整数,则实数n的最大值为………………………………………()A.12 B.11 C.8 D.3二、填空题(每题3分,共36分)7.使式子4-x 无意义的x取值的是______________;8.计算:(6)2=____________;9.化简:81×49 =______________;10.化简:153=_________;11.比较大小:-32___________-2 3 ;12.写出一个无理数,使它与32的积为有理数_____________;13.若x-23-x=x-23-x成立,则x满足________________;14.已知一个正数的平方根是2x-6和x+3 ,则这个数是___________;15.如果最简二次根式3a-3 与7-2a 是同类二次根式,那么a的值是________;16.已知a、b为两个连续整数,且a<7<b,则a+b=_________;17.把二次根式313中根号外的因数移到根号内,结果是______________;18.观察并分析右边的数据,寻找规律:0,6,3,23,15,32,…,那么第10个数据应是_____________。
二次根式经典练习含答案

二次根式经典练习含答案亲爱的朋友,很高兴能在此相遇!欢迎您阅读文档二次根式经典练习含答案,这篇文档是由我们精心收集整理的新文档。
相信您通过阅读这篇文档,一定会有所收获。
假若亲能将此文档收藏或者转发,将是我们莫大的荣幸,更是我们继续前行的动力。
二次根式经典练习含答案篇一:《二次根式》典型分类练习题《二次根式》分类练习题知识点一:二次根式的概念【知识要点】二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才有意义.【典型例题】【例1】下列各式1其中是二次根式的是_________(填序号).举一反三:1、下列各式中,一定是二次根式的是()AD2______个【例2】有意义,则x的取值范围是.举一反三:1、使代数式x3有意义的x的取值范围是()x4B、x≥3C、x>4D、x≥3且x≠4A、x>32x的取值范围是1mn有意义,那么,直角坐标系中点P(m,n)的位置在()3、如果代数式mA、第一象限B、第二象限C、第三象限D、第四象限【例3】若y=x5+x+2009,则x+y=解题思路:式子a≥0),x50,x5,y=2009,则x+y=20xx5x0举一反三:1(xy)2,则x-y的值为()A.-1B.1C.2D.32、若x、y都是实数,且y=2x332x4,求xy的值3、当a1取值最小,并求出这个最小值。
已知ab是a1的值。
b2若的整数部分是a,小数部分是b,则ab。
若的整数部分为x,小数部分为y,求x21y的值.知识点二:二次根式的性质【知识要点】1.非负性:a(a0)是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到.2.a)2aa(0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a)2(a0) a(a0)3.a2注意:(1)字母不一定是正数.|a|a(a0)(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.a(a0))2aa(0)的区别与联系4.公式a2与a|a|a(a0)(1)a2表示求一个数的平方的算术根,a的范围是一切实数.(2)(a)2表示一个数的算术平方根的平方,a的范围是非负数.(3)a2和()2的运算结果都是非负的.【典型例题】a2c40,abc【例4】若则.2举一反三:1、若3(n1)20,则mn的值为。
初中数学二次根式基础测试题附答案解析

初中数学二次根式基础测试题附答案解析一、选择题1.下列各式中,不能化简的二次根式是()A B C D【答案】C【解析】【分析】A、B选项的被开方数中含有分母或小数;D选项的被开方数中含有能开得尽方的因数9;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【详解】解:A=,被开方数含有分母,不是最简二次根式;B=,被开方数含有小数,不是最简二次根式;D=,被开方数含有能开得尽方的因数,不是最简二次根式;所以,这三个选项都不是最简二次根式.故选:C.【点睛】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.下列式子正确的是()=-A6=±B C3=-D5【答案】C【解析】【分析】根据算术平方根、立方根的定义和性质求解即可.【详解】=,故A错误.解:6B错误.=-,故C正确.3=,故D错误.D. 5故选:C【点睛】此题主要考查算术平方根和立方根的定义及性质,熟练掌握概念是解题的关键.3.a的值为()A.2 B.3 C.4 D.5【答案】D【解析】【分析】根据两最简二次根式能合并,得到被开方数相同,然后列一元一次方程求解即可.【详解】根据题意得,3a-8=17-2a,移项合并,得5a=25,系数化为1,得a=5.故选:D.【点睛】本题考查了最简二次根式,利用好最简二次根式的被开方数相同是解题的关键.4.下列计算中,正确的是()A.=B1b=(a>0,b>0)C=D.=【答案】B【解析】【分析】a≥0,b≥0a≥0,b>0)进行计算即可.【详解】A、B 1b(a>0,b>0),故原题计算正确;C ,故原题计算错误;D 32故选:B .【点睛】 此题主要考查了二次根式的乘除法,关键是掌握计算法则.5.下列各式计算正确的是( )A .2+b =2bB =C .(2a 2)3=8a 5D .a 6÷ a 4=a 2【答案】D【解析】解:A .2与b 不是同类项,不能合并,故错误;B 不是同类二次根式,不能合并,故错误;C .(2a 2)3=8a 6,故错误;D .正确.故选D .6.若x 、y 4y =,则xy 的值为( )A .0B .12C .2D .不能确定 【答案】C【解析】由题意得,2x −1⩾0且1−2x ⩾0,解得x ⩾12且x ⩽12, ∴x =12, y =4,∴xy =12×4=2. 故答案为C.7.下列计算或运算中,正确的是()A .=B =C .=D .-=【答案】B【解析】【分析】根据二次根性质和运算法则逐一判断即可得.【详解】A 、=BC 、=D 、-=,此选项错误;故选B .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及二次根式的性质.8.的结果是 A .-2B .2C .-4D .4【答案】B【解析】22=-=故选:B9.x 的取值范围是( )A .1x ≥-B .12x -≤≤C .2x ≤D .12x -<< 【答案】B【解析】【分析】【详解】解:要使二次根式有意义,则必须满足二次根式的被开方数为非负数,则1020x x +≥⎧⎨-≥⎩,解得:12x -≤≤ 故选:B .【点睛】本题考查二次根式的性质.10.如果一个三角形的三边长分别为12、k 、72|2k ﹣5|的结果是( )A .﹣k ﹣1B .k +1C .3k ﹣11D .11﹣3k 【答案】D【解析】【分析】求出k 的范围,化简二次根式得出|k-6|-|2k-5|,根据绝对值性质得出6-k-(2k-5),求出即可.【详解】 ∵一个三角形的三边长分别为12、k 、72, ∴72-12<k <12+72, ∴3<k <4,,=-|2k-5|,=6-k-(2k-5),=-3k+11,=11-3k ,故选D .【点睛】本题考查了绝对值,二次根式的性质,三角形的三边关系定理的应用,解此题的关键是去绝对值符号,题目比较典型,但是一道比较容易出错的题目.11.估计值应在( ) A .3到4之间B .4到5之间C .5到6之间D .6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】解:2=∵91216<<<<∴34<<∴估计2值应在3到4之间. 故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.12x 的取值范围是( )A .x≥5B .x>-5C .x≥-5D .x≤-5【答案】C【解析】【分析】先根据二次根式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【详解】Q 有意义,∴x+5≥0,解得x≥-5.故答案选:C.【点睛】本题考查的知识点是二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.13.9≤,则x 取值范围为( ) A .26x ≤≤B .37x ≤≤C .36x ≤≤D .17x ≤≤【答案】A【解析】【分析】先化成绝对值,再分区间讨论,即可求解.【详解】9, 即:23579x x x x -+-+-+-≤,当2x <时,则23579x x x x -+-+-+-≤,得2x ≥,矛盾;当23x ≤<时,则23579x x x x -+-+-+-≤,得2x ≥,符合;当35x ≤<时,则23579x x x x -+-+-+-≤,得79≤,符合;当57x ≤≤时,则23579x x x x -+-+-+-≤,得6x ≤,符合;当7x >时,则23579x x x x -+-+-+-≤,得 6.5x ≤,矛盾;综上,x 取值范围为:26x ≤≤,故选:A .【点睛】本题考查二次根式的性质和应用,一元一次不等式的解法,解题的关键是分区间讨论,熟练运用二次根式的运算法则.14.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.15.下列各式成立的是( )A .2-= B -=3C .223⎛=- ⎝D 3【答案】D【解析】 分析:各项分别计算得到结果,即可做出判断.详解:A .原式B .原式不能合并,不符合题意;C .原式=23,不符合题意; D .原式=|﹣3|=3,符合题意.故选D .点睛:本题考查了二次根式的加减法,以及二次根式的性质与化简,熟练掌握运算法则是解答本题的关键.16.婴儿游泳是供婴儿进行室内或室外游泳的场所,婴儿游泳池的样式多种多样,现已知积为()A.B.C.D.【答案】D【解析】【分析】根据底面积=体积÷高列出算式,再利用二次根式的除法法则计算可得.【详解】故选:D.【点睛】考核知识点:二次根式除法.理解题意,掌握二次根式除法法则是关键.17.下列二次根式中,属于最简二次根式的是()A B C D【答案】C【解析】【分析】根据二次根式的定义即可求解.【详解】=2,故不是最简二次根式;故选C.【点睛】此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.18.下列运算正确的是()A =B =C 123=D 2=-【答案】B【解析】【分析】根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.【详解】A .≠A 错误;B .=,故B 正确;C .=C 错误;D .2=,故D 错误.故选:B .【点睛】本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.19.如果m 2+m =0,那么代数式(221m m ++1)31m m +÷的值是( )A B . C + 1 D + 2 【答案】A【解析】【分析】先进行分式化简,再把m 2+m =. 【详解】解:(221m m ++1)31m m+÷ 223211m m m m m +++=÷ 232(1)1m m m m +=⋅+ =m 2+m ,∵m 2+m =0,∴m 2+m =∴原式=故选:A .【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.20.n的最大值为()A.12B.11C.8D.3【答案】C【解析】【分析】如果实数n取最大值,那么12-n22,从而得出结果.【详解】2时,n取最大值,则n=8,故选:C【点睛】本题考查二次根式的有关知识,解题的关键是理解”的含义.。
二次根式基础练习(含答案)

二次根式(1)1.当a ______时,23-a 有意义;当x ______时,31-x 有意义. 2.当x ______时,x 1有意义;当x ______时,x1的值为1. 3.直接写出下列各式的结果: (1)49=______;(2)2)7(=______;(3)2)7(-=______;(4)2)7(-=______; (5)2)7.0(=______;(6)22])7([-=______.4.下列各式中正确的是( ). (A )416±=(B)2)2(2-=-(C)24-=- (D)3327= 5.下列各式中,一定是二次根式的是( ). (A )23- (B )2)3.0(- (C)2- (D)x 6.已知32+x 是二次根式,则x 应满足的条件是( ). (A)x >0 (B)x ≤0 (C )x ≥-3 (D )x >-3 7.当x 为何值时,下列式子有意义? (1)x -1; (2)2x -;(3)12+x ; (4).7x +8.计算下列各式:(1)2)23( (2)2)32(⨯ (3)2)53(⨯- (4)2)323(9.若y x xy ⋅=24成立,则x ,y 必须满足条件______.10. (1)12172⨯______; (2))84)(213(--=______; (3)62434⨯________.(4)3649⨯=______;(5)25.081.0⨯=______;(6)31824a a ⋅=______. 11.下列计算正确的是( ).(A )532=⋅ (B )632=⋅(C)48=(D)3)3(2-=-12.化简2)2(5-⨯,结果是( ).(A)52 (B )52- (C)-10 (D)10 13.如果)3(3-=-⋅x x x x ,那么( ). (A )x ≥0 (B )x ≥3 (C)0≤x ≤3 (D )x 为任意实数 14.当x =-3时,2x 的值是( ).(A )±3 (B )3 (C )-3 (D )915.计算:(1)26⨯(2)123⨯(3)8223⨯ (4)x x 62⋅ (5)aab 131⋅(6)ab a 3162⋅ (7)49)7(2⨯-(8)22513- (9)7272y x16.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.17.把下列各式化成最简二次根式:(1)12=______; (2)18=______; (3)45=______; (4)x 48=______;(5)32=______; (6)214=______; (7)35b a =______; (8)3121+=______. (5)1525= (6)632=(7)211311÷ (8)125.02121÷23.把下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有_________;与3的被开方数相同的有______;与5的被开方数相同的有______. 24. (1)31312+=______;(2)485127-=______. 25.化简后,与2的被开方数相同的二次根式是( ). (A )12 (B)18 (C)41 (D )61 26.下列说法正确的是( ).(A)被开方数相同的二次根式可以合并 (B)8与80可以合并(C)只有根指数为2的根式才能合并(D )2与50不能合并27.可以与a 12合并的二次根式是( ).(A)a 2 (B)a 54 (C )a271 (D )a 328、.48512739-+ 29..61224-+30..503238318-++31.).5.04313()81412(---32..12183127--33.)272(43)32(21--+34.当a =______时,最简二次根式12-a 与73--a 可以合并.35.若a =7+2,b =7-2,则a +b =______,ab =______.36.合并二次根式:(1))18(50-+=______;(2)ax xax45+-=______. 37.下列各式中是最简二次根式的是( ). (A)a 8 (B)32-b (C)2y x - (D )y x 23 38.下列计算正确的是( ).(A)3232=+ (B)b a ab 555+= (C)268=- (D)x x x =-45 39.)32)(23(+-等于( ).(A )7 (B)223366-+-(C )1 (D)22336-+ 40.⋅⋅-121)2218( 41.).23)(322(--42.).3223)(3223(-+ 43.).3218)(8321(-+44..6)1242764810(÷+- 45..)18212(2-46..1502963546244-+-47.).32)(23(-- 48..)12()12(87-+49.).94(323ab ab a b a a b a b +-+参考答案1..3,32>≥x a . 2.x >0,x =1.3.(1)7;(2)7;(3)7;(4)7;(5)0。
二次根式练习10套(附答案)

二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。
3、16的平方根________,64的立方根________。
4、算术平方根等于它本身的数有________,立方根等于本身的数有________。
5、若2562=x ,则=x ________,若2163-=x ,则=x ________。
6、已知ABC Rt ∆两边为3,4,则第三边长________。
7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。
8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。
9、如果0)6(42=++-y x ,则=+y x ________。
10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。
12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。
二、选择题13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB. 5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB. 248cmC. 224cmD. 232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A. 2h ab =B. 2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。
初二数学二次根式基础练习和常考题与简单题(含解析)

初二数学二次根式基础练习和常考题与简单题(含解析)一•选择题(共7小题)1 •若式子.有意义,则x的取值范围为()x-3A. x>2B. X M3C. x> 2 或X M3D. x>2 且X M32 •下列二次根式中属于最简二次根式的是()A.三B.产C.上D.3•如果■、. ’•二;,那么X取值范围是()A. X<2B. x v2C. X>2D. x>24. 若1v x v 2,则|—卜:「的值为()A. 2X- 4B.- 2C. 4- 2XD. 25. 下列各式计算正确的是()A.匚+ 二二二B. 4 二-3 二=1C. 2 二X 3 二=6 二D. =十二=36. 若.T订是正整数,最小的整数门是()A. 6B. 3C. 48D. 27. 下列根式中,不能与=合并的是()二.填空题(共7小题)8. 计算"•'的结果是—.V39. _______________________________________________________ 三角形的三边长分别为3、m、5,化简{(卜™)'-心旷对星= _____________________ .10 .若实数a、b、c在数轴的位置,如图所示,则化简:.ii .- [--= ------------ . - -11. __________________________________________________ 若二次根式是最简二次根式,则最小的正整数a= _____________________________ .第2页(共24页)12. 计算:(匚+1)(二-1)= ______13 .已知x、y都是实数,且y= •- 1-' +4,则y X= ____解答题(共26小题) 计算:—_.计算:(占-1)(弋二+1) — (— ) 2+| 1 - :| —( n- 2) °+七.32 - - 先化简,再求值:-亠?亠-亠,其中a=二+1. ,-1 丁 1计算:一^+「(「- _) + -.V2-1当x=wL''」时,求代数式x 2+5x - 6的值. 化简求值::「'七,求歸的值.已知a , b , c 在数轴上如图所示,化简:“丁 - ^+卜,+ . I. I| b0 c-J ------------- 1 ----- 1—>计算3- 9.;.二+3 =(~+不)+ (九上-7)计算:匚+ (- 2013) °-(石)-1+| - 3|二二-」x r +.三.先化简,再求值:(「一+「)宁「,其中a=^+1.aT a 2-2a+La-1已知 a= (*) -1,,c= (2014- n)d=|1-走|,15. 16. 17.18. 19. 20. 21.aI22. (1) (2)23.(1) (2)24. 25.(1) (2)26. 27.14.如果厂〔+ . . — =0,那么第2页(共24页)化简这四个数;把这四个数,通过适当运算后使得结果为2.请列式并写出运算过程.先化简:(2x+1) 2+ (x+2) (x- 2) - 4x (x+1),再求值,其中x=-^p-.£先化简,再求值,其中■■- ;.x+2 x+228•若a 、b 为实数,且b 二•「•+4,求a+b 的值.a+729•计算:(二―二)2-(二+ 二)2. 30. 计算: (1)4 三一叨汁4 .:(2) (- 2.r )J(〒 +3 了 - J) 31. 计算:(1)4- ■ . : - I(2)]汁.| T _ : I ' -•-]32. 计算:(-3) °- =+| 1 -二|+ -.V3+V236. 计算与化简(1),二1_ !一 (2)_ 「 _ .37. (1) 一个正数的平方根是2a - 3与5 -a ,求这个正数.(2)已知x 、y 都是实数,且■ ■-> ■-,求y 的值.38. 若x ,y ,a ,b 满足关系式〒-+ =丄;,二〔丨心 •,试求x , y 的值.39. 已知a, b 为等腰三角形的两条边长,且 a ,b 满足b=「+仁】】+4,求此 三角形的周长. 40.已知 a , b , c ABC 的三边长,且( =+ ) 2=3 (甘二二+!汇+ ■),试说明这个三角形是什么三角形.42•计算:("-1)(甘.:■+〔)—(—一) 2+| 1 -计—(冗―2) 0+ ■:. 33.先化简,,其中x=' ,34.已知:._汁1「.二,工.41.计算:343• (1)计算:Tx - 4X ■ X(1- ") °;2 k2 k2 ’___ (2)先化简,再求值:(_:_- +「)宁,其中a, b满足-■ +|ba2-2ab+ b2a2-ab-1 =°.244•先化简,再求值:---------- ----- ,其中a= =+1.a2-l a-145 .计算:一+ (二-二)+ 匚.V2~l46•计算:5 +•不-「X ;+.〒- =初二数学二次根式基础练习和常考题与简单题(含解析)参考答案与试题解析一•选择题(共7小题)1. (2016?乐亭县一模)若式子::有意义,则x的取值范围为()x-3A. x>2B. X M3C. x> 2 或X M3D. x>2 且X M3【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解. 【解答】解:根据二次根式有意义,分式有意义得:x-2>0且x- 3M 0,解得:X>2且X M 3.故选D.【点评】本题考查了二次根式有意义的条件和分式的意义. 考查的知识点为:分式有意义,分母不为0; 二次根式的被开方数是非负数.2. (2015?锦州)下列二次根式中属于最简二次根式的是()A、 B.三C. - D.【分析】A、B选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:A、不是最简二次根式,故本选项错误;B、不是最简二次根式,故本选项错误;C、不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选D.【点评】本题考查了对最简二次根式定义的应用,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幕的指数等于或大于2,也不是最简二次根式.3. (2015?维坊模拟)如果.,那么x取值范围是()A. x<2B. x v2C. x>2D. x>2【分析】根据二次根式的被开方数是一个》0的数,可得不等式,解即可.【解答】解:T」=2- x,x—2w 0,解得x<2.故选A.【点评】本题考查了二次根式的化简与性质.解题的关键是要注意被开方数的取值范围.4. (2016?呼伦贝尔)若1v x v2,则.■.. 的值为()A. 2x —4B.—2C. 4—2xD. 2【分析】已知1v x v2,可判断x —3v0, x—1>0,根据绝对值,二次根式的性质解答. 【解答】解:••• 1vxv 2,•- x—3v 0, x —1 >0, 原式=|x-3|+ ::1'=|x—3|+| x—1|=3 —x+x —1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a>0)的代数式叫做二次根式.当a>0时,■■表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:「=| a| .5. (2015?潜江)下列各式计算正确的是()A.匚+ 二二二B. 4 二—3 二=1C. 2 7x 3 二=6 二D. =* 二=3【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.好[好二,无法计算,故此选项错误,B4.;t- 3化二「;,故此选项错误,C.2二x 3二=6X 3=18,故此选项错误,故选D.【点评】此题主要考查了二次根式的混合运算,熟练掌握二次根式基本运算是解题关键.6. (2015?安徽模拟)若"E-是正整数,最小的整数门是()A. 6B. 3C. 48D. 2【分析】先将所给二次根式化为最简二次根式,然后再判断n的最小正整数值.【解答】解:.冇=4帀,由于.冇是正整数,所以n的最小正整数值是3, 故选B.【点评】此题考查二次根式的定义,解答此题的关键是能够正确的对二次根式进行化简.7. (2015?凉山州)下列根式中,不能与二合并的是()A. B ;C , D--【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、;-2_,本选项不合题意;D、」;二;'「,本选项不合题意;故选C.【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.二•填空题(共7小题)8. (2015?南京)计算一的结果是5 .【分析】直接利用二次根式的性质化简求出即可.【解答】解:——-=;莎X -=5.V3故答案为:5.【点评】此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.9. (2016?山西模拟)三角形的三边长分别为3、m、5,化简辰费-皿乔= 2m-10 .【分析】先利用三角形的三边关系求出m的取值范围,再化简求解即可.【解答】解:•••三角形的三边长分别为3、m、5,二2v m v8,•••-:_,「「;=m- 2-(8-m)=2m- 10.故答案为:2m- 10.【点评】本题主要考查了二次根式的性质与化简及三角形三边关系,解题的关键是熟记三角形的三边关系.故答案为:-a- b.【点评】正确地根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.11. (2016?山西模拟)若二次根式沁…-是最简二次根式,则最小的正整数a=2 .【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:二次根式/.;.小是最简二次根式,则最小的正整数a=2, 故答案为:2.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个10(2016春?惠山区期末)若实数a、b、c在数轴的位置,如图所示,贝U化简:.,| ■-〔-一= -a-b . - »【分析】先根据数轴上各点的位置判断出a,b的符号及a+c与b-c的符号,再进行计算即可.【解答】解:由数轴可知,c v b v0v a, |a| v|c|,••• a+c v 0,b- c>0,•原式=-(a+c)-(b - c)= - a - b.条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12. (2014?畐州)计算:(「+1)( _- 1)= 1 .【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(匚+1)(二-1)= :「故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.13. (2014?苏州模拟)已知x、y都是实数,且y= J 垃-3+V3-X+4,则y x= 64【分析】先根据二次根式有意义的条件列出关于x的不等式组,求出x的值代入y x进行计算即可.【解答】解:Ty=.. -<+4,解得x=3,.y=4,••• y x=43=64. 故答案为:64.【点评】本题考查的是二次根式有意义的条件及有理数的乘方,能根据二次根式有意义的条件求出x的值是解答此题的关键.14. (2015春?泰兴市期末)如果除\」+ ==0,那么【分析】先由非负数的性质求得a, b的值,再代入原式化简计算可得答案.【解答】解:•••化-+『—=0,而心0, 》0;• a=1, b=2•原式=1+ _=1+ 7.故本题答案为:1+ ".【点评】本题考查了二次根式的化简,还利用了非负数的性质:若两个非负数的和为0,则这两个数均为0.三.解答题(共26小题)15. (2016?德州校级自主招生)计算:「.丄.-【分析】先根据二次根式的乘除法法则得到原式=二-- 二+2二然后利用二次根式的性质化简后合并即可.【解答】解:原式=山-:二+2 7=4 —空并+2 ■■=4+聲汇【点评】本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各二次根式化为最简二次根式,然后进行二次根式的加减运算.16. (2014?张家界)计算:(■—1)(,+1)-(-[)—2+| 1 — : —(n—2)0+匚.【分析】根据零指数幕、负整数指数幕和平方差公式得到原式=5 —1 —9+匚—1-1+2匚,然后合并即可.【解答】解:原式=5 - 1-9+匚-1 - 1+2 -=-7+3 匚.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、负整数指数幕.通分和约分,本题难度不大.【分析】先进行二次根式的化简和乘法运算,然后合并. 【解答】解:原式=匚+1+3 - 3匚+匚【点评】本题考查了二次根式的混合运算, 解答本题的关键是掌握二次根式的化 简和乘法法则.17. (2016?安徽三模)先化简,再求值:2-T 亠-",其中 a=「+1.【分析】首先把‘ 2节寸1写成 泌',然后约去公因式(a+1),再与后一项式子进行通分化简,最后代值计算. 【解答】解: oa +2N +1 aa 2-l 蔦孑= ___ a_=a+l _ n二-I--I【点评】本题主要考查二次根式的化简求值的知识点, 解答本题的关键是分式的18. (2015?闵行区二模)计算:V2-1卜二(二-二)+ 匚.19. (2015?湖北模拟)当x 二匸「时,求代数式X 2+5X -6的值.【分析】可直接代入求值. 【解答】解:当x 二匸〕时,2x +5x - 6=(L - ) 2+5 (也■■)- 6 =6 - 2 "+5 - - 5- 6 =2%「! ■.【点评】主要考查二次根式的混合运算,要掌握好运算顺序及各运算律.【分析】本题需先对要求的式子和已知条件进行化简,再把所得的结果代入即可 求出答案. :(a+b) (d~b)3(a+b)-+1; b= \「,./-b '=(血+1?_(竝_¥=2人卜 ::知条件进行化简是本题的关键.21 . ( 2016春?日照期中)已知a ,b ,c 在数轴上如图所示,化简: --I - - -: :,-.a b0 ciiIi =20. (2016春?潮南区期中)化简求值:2 k 2 求-的值.【解答】解:【点评】本题主要考查了二次根式的化简求值, 在解题时要能对要求的式子和已3a+3b【分析】根据数轴abc的位置推出a+bv 0,c- a>0,b+cv 0,根据二次根式的性质和绝对值进行化简得出-a+a+b+c- a- b- c,再合并即可.【解答】解:•••从数轴可知:a v b v O v c,••• a+b v0, c- a>0, b+c v0,••• r—|a+b|+ +| b+c|=-a+a+b+c - a - b - c =-a.【点评】本题考查了二次根式的性质,实数、数轴的应用,关键是能得出-a+a+b+c-a- b - c.22. (2014春?汉阳区期末)计算(1) 3 . :■: - 9.丄+3 . .:■:(2)(三+不)+ (九上一7)【分析】(1)首先对每一项二次根式进行化简,然后合并同类二次根式即可,(2)首先对每一项二次根式进行化简,然后去掉括号,进行合并同类二次根式即可.【解答】解:(1)原式=12二-3二+6二=15 「;,(2)原式=4 二+2 二+2 二--=6 '+V.:;.【点评】本题主要考查二次根式的化简,合并同类二次根式,关键在于正确的化简二次根式,正确的去括号,认真的进行计算.23. (2014春?兴业县期末)计算:(1)匚+ (-2013) 0-( 1 ) -1+| - 3|(2).丘十二-.1 x y I .•:+. =.【分析】(1)根据零指数幕和负整数指数幕的意义得到原式=3+1 - 2+3,然后进行加减运算;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=3+1 - 2+3=5;(2)原式=…: 1:; -'一.•. i _+2訂」=4 —.卜+2”;.扌叭 =4+ *(i .【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕和负整数指 数幕.24. (2016?仙游县校级模拟)先化简,再求值:(二+)- 一,其中旷1 a -2a+la_1a= T +1.【分析】利用通分、平方差公式等将原式化简为厶,代入a 的值即可得出结论. 【解答】解:原式=(止+ 「 )^■,丹(a -l ) 2 ^-1=6+1)(旷1)+1 ? aT: ?,_ a=..当a=二+1时,原式=丄=二!a-l 3【点评】本题考查了分式的化简求值,解题的关键是将原式化简成-.本题属a -l于基础题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据 求值是关键.(1)化简这四个数;(2)把这四个数,通过适当运算后使得结果为 2.请列式并写出运算过程.25. (2015?杭州模拟)已知a=()c= (2014— n) 0, d=| 1 — "I ,【分析】(1)根据零指数幕和负整数指数幕和分母有理化求解;(2)可列式子为a+b-3c-d,然后把a b、c、d的值代入计算.【解答】解:(1)a=d)-1=3, b= - =匚+1, c=(2014-n °=1, d=| 1 —匚| =匚3 V2-1-1,(2) a+b - 3c- d=3+ 匚+1 - 3X 1 -匚+1=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕和负整数指数幕.26. (2014?焦作一模)先化简:(2x+1) 2+ (x+2) (x-2)- 4x (x+1),再求值, 其中* -.2【分析】根据整式的运算法则将式子进行化简,再代值计算.【解答】解:原式=4X+4x+1+x2- 4 - 4x2- 4x=«- 3,当厂时,【点评】本题不是很难,但是在合并同类项时要仔细.27. (2010?莱芜)先化简,再求值:二;:',其中弓.孟* u 矗T £【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x-2看作一个整体.【解答】解:原式=三',:,一—…x+2 x+2=X2-16X X+2.■ - '■ ■:=::■: - ■ ■:-=■ ■:=-(x+4),当时,原式= 一■■=_■ = :■:.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解; 第15页(共24页)除法要统一为乘法运算.28. (2016春?澄城县期末)若a、b为实数,且b二-二+4,求a+b的值.【分析】根据二次根式有意义的条件列出方程,分别求出a、b的值,计算即可. 【解答】解:由题意得,a2- 1 >0, 1-a2>0, 解得,a=± 1,则b=4,••• a+b=3或5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.29. (2016春?闵行区期末)计算:(「- -)2-(「+ _)2.【分析】先进行完全平方公式的运算,然后合并.【解答】解:原式=3 - 2 7+2 - 3 -2「- 2=-4 '■.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握完全平方公式以及二次根式的合并.30. (2016春?定州市期中)计算:(1) 4 ~+ . ■-口- +4 ■:(2)(- 2 .h) J (于+3」-7)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算. 【解答】解:(1)原式=4 ~+3 :-2 ~+4 -=7 +2 :;(2)原式=4X 12-(5 二+ 二-4 二)第仃页(共24页)=48宁(2 二)=8【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.31. (2015春?黔南州期末)计算:(“ ":•…ii - 〔 •丄:(2) 「汁「「T 一 〕 「一— 【分析】(1)先化简,再进一步去掉括号计算即可;(2)利用二次根式的性质化简,平方差公式计算,再进一步合并即可.【解答】解:(1)原式=2「+• - + 7 2 4=3 一-二 4(2)原式=3 - 1 - 3 - 1+ 二+1=':-1.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.【解答】解::::- ::=1 - 3 二 + 匚-1 +=-3 ■+ ■:+ ■— ■:,=-2 =、.【点评】此题主要考查了二次根式的混合运算以及绝对值的性质, 在进行此类运 32. (2011?上海)计算: (-3) 0- =+| 1 -匚|+ 1V3+\/2【分析】观察,可以首先去绝对值以及二次根式化简,再合并同类二次根式即可.算时一般先把二次根式化为最简二次根式的形式后再运算.其中 x= , y=27. 2【分析】首先对二次根式进行化简,然后去括号、合并二次根式即可化简,然后 把x , y 的值代入求解.【解答】解:原式=(6.「+3 7T ) ;+6.「)=9 二—6 二当 x= , y=27 时, 2=---【点评】本题考查了二次根式的化简求值,正确对二次根式进行化简是关键.【分析】本题需先对a 的值和要求的式子进行化简,然后把a 的值代入化简以后 的式子即可求出结果.a v 1,33. (2015春?封开县期中)先化简,再求值 丁34. (2003?济南)已知:)-第仃页(共24页)=—2 —:.【点评】本题主要考查了二次根式的化简求值,在解题时要能灵活应用二次根式化简的方法是本题的关键.35. (2015秋?哈尔滨校级月考)计算】【分析】把二次根式的被开方数相除,再根据二次根式的性质开出来即可.【解答】解:原式=二壯 b=2a.【点评】本题考查了二次根式的性质,二次根式的乘除的应用,主要考查学生的 计算和化简能力.36. (2012?深圳模拟)计算与化简(1) 乙〉].厂:(2) -「儿【分析】(1)先化简二次根式,再进行计算即可;(2)先化简二次根式,再合并同类二次根式即可.=「 2::;2 一岳•(2) 原式=2a 2 =+3a?5a 二x 3a 二 2 -3 一、 【解答】解:(1)原式=((2)根据二次根式的被开方数是非负数,列出关于x的不等式组,然后解得x值,从而求得y值;最后将它们代入所求的代数式求值即可.【解答】解:(1)设该正数为x.则由题可知2a- 3+5 - a=0,解得a二—2,所以2a- 3=- 7,所以x=49,即所求的正数是49;(2)根据题意,得x_3^0解得x=3,••• y=4;.•. y x=43=64,即y x=64.【点评】此题主要考查了平方根的性质,注意如果一个数的平方等于A,那么这个数就叫做A的平方根,也叫做A的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.38. 若x, y, a, b满足关系式心T+ 一-巳—m x "-:,试求x, y的值.【分析】由a+b- 2014》0, 2014-( a+b)>0,所以a+b=2014.再利用两个根式的和等于0,即每一个被开方数等于0.【解答】解:依题意,得a+b- 2014》0, 2014-( a+b)》0,解得a+b=2014.所以二一■:+、.U =0,3x- 6=0, 2y- 7=0,x=2, y=.【点评】考查了二次根式的意义和性质.概念:式子-(a》0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.39. (2014春?黄梅县校级期中)已知a, b为等腰三角形的两条边长,且a, b 第20页(共24页)满足b= - 1+ :一+4,求此二角形的周长.【分析】根据二次根式有意义:被开方数为非负数可得a的值,继而得出b的值,然后代入运算即可.【解答】解:•••.—,、.:有意义,--a=3,b=4,当a为腰时,三角形的周长为:3+3+4=10;当b为腰时,三角形的周长为:4+4+3=11.【点评】本题考查了二次根式有意义的条件,属于基础题,注意掌握二次根式有意义:被开方数为非负数.40. (2013秋?川汇区校级月考)已知a, b,c ABC的三边长,且(:+幕+ 一)2=3 (V込初二辰),试说明这个三角形是什么三角形.【分析】先利用完全平方公式展开后合并得到a+b+c-.亍-丁- =o,再利用配方法得到(1-”;.北)2+ (”;.北-)2+ (-I - )2=0,然后根据非负数的性质得到灵-血=0,血-讥=0,灵-叭=0,所以a=b=c.【解答】解:•(空和+心+ )2=3 (叮'),a+b+c+2、匕:+2 了:+2 丨—3 .-1- 3 : - 3 :'L ;=0,a+b+c- 1’- 心:- 门:=0,2a+2b+2c- 2 -1 ■ - 2 -■ —2门:=0,••( 1-“:「.;)2+ (',-吋二)2+ (1-悩二)2=0,•••灵-麻=0,亦-讥=0,讥-讥=0,• a=b=c,•这个三角形为等边三角形.【点评】本题考查了二次根式的应用:把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.41. (2016?德州校级自主招生)计算- "-''::.=4—遽 ci +2' -,y 1;'.=4+*(匚. 【点评】本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各 二次根式化为最简二次根式,然后进行二次根式的加减运算.42. (2014?张家界)计算:(山—1) (*二+1)-(-二)2+| 1-灯:—( n — 2) 30+ ".【分析】根据零指数幕、负整数指数幕和平方差公式得到原式 =5 — 1 — 9+匚—1 —1+2匚,然后合并即可.【解答】解:原式=5- 1 — 9+ ~— 1 — 1+2 -=—7+3 _.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、负整 数指数幕. 43. (2014?荆门)(1)计算: 丁X 〒-4X X ( 1—二)°;2.2 k 2 ________________________________________(2)先化简,再求值:(”+「)- ,其中a ,b 满足 +|b a -2ab+b 2 "a a -ab—二 | =0. 【分析】(1)根据二次根式的乘法法则和零指数幕的意义得到原式X - X 仁2匚-.,然后合并即可; 4(2)先把分子和分母因式分解和除法运算化为乘法运算, 再计算括号内的运算,【分析】先根据二次根式的乘除法法则得到原式 :+2 ,然后利 用二次根式的性质化简后合并即可.然后约分得到原式=「,再根据非负数的性质得到a+仁0, b—二=0,解得a=—1,b b=二,然后把a和b的值代入计算即可.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、非负 数的性质和分式的化简求值.44. (2016?安徽三模)先化简,再求值:-亠‘亠-:,其中a=「+1.a 2-l H2 2 【分析】首先把自+严+1写成 £辛) 然后约去公因式(a+1),再与后一 项式子进行通分化简,最后代值计算.2【解答】解:亠_'一 _ ,32-1 旷 1= ____ a:.I ; U.:...=曰+1 a=2匚-匚-4X - 4(2)原式=[:"''- (a-b)=(丁一: — ')?a-b a-b=\- ?oA-_i-b-」L : ? I.:a ] ?3(自-b)a-b b 2 =- 一,T .丨 +| b - ;|=0,••• a+1=0, b - =0,解得 a= - 1, b= ■:,当 a=- 1,【解答】解:(1)原式= b=「时,【点评】本题主要考查二次根式的化简求值的知识点,解答本题的关键是分式的 通分和约分,本题难度不大. 45. (2015?闵行区二模)计算: 一二(二-7) + 匚. V2-1 【分析】先进行二次根式的化简和乘法运算,然后合并. 【解答】解:原式=匚+1+3-3匚+匚 =4 -':. 【点评】本题考查了二次根式的混合运算, 解答本题的关键是掌握二次根式的化 简和乘法法则. Y5 2 V4 Y5 【分析】先二次根式化为最简二次根和根据二次根式的乘除法得到原式 =:+ :- 丨+3灯.宀"=2 - - 1+3,然后合并即可.=2 _- 1+3=2 _+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后进行二次根式的加减运算.,31且【点评】本题考查了二次根式的混合运算,二次根式的化简是解此题的关键.37. (2009春?岳阳校级期末)(1) 一个正数的平方根是2a - 3与5 - a ,求这个 正数. (2)已知x 、y 都是实数,且 八门,求y "的值.【分析】(1)因为一个正数x 的平方根有两个,且互为相反数,由此即可得到关 于a 方程,解方程即可得a 的值,然后代入求x ;46. (2015春?石林县期末)计算: V4 5【解答】/。
100道二次根式含答案 (2)

100道二次根式题目及答案第一部分:简单题(共50题)1. $\\sqrt{9}$答案:32. $\\sqrt{25}$答案:53. $\\sqrt{81}$答案:94. $\\sqrt{64}$答案:85. $\\sqrt{100}$答案:106. $\\sqrt{121}$答案:11答案:128. $\\sqrt{169}$ 答案:139. $\\sqrt{196}$ 答案:1410. $\\sqrt{225}$ 答案:1511. $\\sqrt{256}$ 答案:1612. $\\sqrt{289}$ 答案:1713. $\\sqrt{324}$ 答案:18答案:1915. $\\sqrt{400}$ 答案:2016. $\\sqrt{441}$ 答案:2117. $\\sqrt{484}$ 答案:2218. $\\sqrt{529}$ 答案:2319. $\\sqrt{576}$ 答案:2420. $\\sqrt{625}$ 答案:25答案:2622. $\\sqrt{729}$ 答案:2723. $\\sqrt{784}$ 答案:2824. $\\sqrt{841}$ 答案:2925. $\\sqrt{900}$ 答案:3026. $\\sqrt{961}$ 答案:3127. $\\sqrt{1024}$ 答案:32答案:3329. $\\sqrt{1156}$ 答案:3430. $\\sqrt{1225}$ 答案:3531. $\\sqrt{1296}$ 答案:3632. $\\sqrt{1369}$ 答案:3733. $\\sqrt{1444}$ 答案:3834. $\\sqrt{1521}$ 答案:39答案:4036. $\\sqrt{1681}$ 答案:4137. $\\sqrt{1764}$ 答案:4238. $\\sqrt{1849}$ 答案:4339. $\\sqrt{1936}$ 答案:4440. $\\sqrt{2025}$ 答案:4541. $\\sqrt{2116}$ 答案:46答案:4743. $\\sqrt{2304}$ 答案:4844. $\\sqrt{2401}$ 答案:4945. $\\sqrt{2500}$ 答案:5046. $\\sqrt{2601}$ 答案:5147. $\\sqrt{2704}$ 答案:5248. $\\sqrt{2809}$ 答案:53答案:5450. $\\sqrt{3025}$答案:55第二部分:中等题(共25题)51. $\\sqrt{10} + \\sqrt{2}$答案:$\\sqrt{10} + \\sqrt{2}$52. $\\sqrt{5} + \\sqrt{20}$答案:$\\sqrt{5} + 2\\sqrt{5} = 3\\sqrt{5}$53. $\\sqrt{15} + \\sqrt{12}$答案:$\\sqrt{15} + \\sqrt{12} = \\sqrt{15} + 2\\sqrt{3}$ 54. $\\sqrt{7} - \\sqrt{8}$答案:$\\sqrt{7} - \\sqrt{8}$55. $\\sqrt{9} - \\sqrt{6}$答案:$\\sqrt{9} - \\sqrt{6} = 3 - \\sqrt{6}$答案:$\\sqrt{26} + \\sqrt{14}$57. $\\sqrt{30} - \\sqrt{10}$答案:$\\sqrt{30} - \\sqrt{10}$58. $\\sqrt{5} \\cdot \\sqrt{10}$答案:$\\sqrt{5} \\cdot \\sqrt{10} = \\sqrt{50}$59. $\\sqrt{10} \\cdot \\sqrt{2}$答案:$\\sqrt{10} \\cdot \\sqrt{2} = 2\\sqrt{5}$60. $\\sqrt{18} \\cdot \\sqrt{3}$答案:$\\sqrt{18} \\cdot \\sqrt{3} = 3\\sqrt{6}$61. $\\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{32} - \\sqrt{8} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$ 62. $\\sqrt{24} - \\sqrt{6}$答案:$\\sqrt{24} - \\sqrt{6} = 4\\sqrt{6} - \\sqrt{6} = 3\\sqrt{6}$答案:$(\\sqrt{2} + \\sqrt{3})^2 = 2 + 2\\sqrt{2}\\sqrt{3} + 3 = 5 +2\\sqrt{6}$64. $(\\sqrt{2} - \\sqrt{3})^2$答案:$(\\sqrt{2} - \\sqrt{3})^2 = 2 - 2\\sqrt{2}\\sqrt{3} + 3 = 5 - 2\\sqrt{6}$65. $(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3})$答案:$(\\sqrt{2} + \\sqrt{3})(\\sqrt{2} - \\sqrt{3}) = 2 - 3 = -1$66. $(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6})$答案:$(\\sqrt{5} + \\sqrt{6})(\\sqrt{5} - \\sqrt{6}) = 5 - 6 = -1$67. $3\\sqrt{2}(\\sqrt{2} - \\sqrt{3})$答案:$3\\sqrt{2}(\\sqrt{2} - \\sqrt{3}) = 3\\sqrt{2} \\cdot \\sqrt{2} -3\\sqrt{2} \\cdot \\sqrt{3} = 6 - 3\\sqrt{6}$68. $(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6})$答案:$(\\sqrt{2}\\sqrt{5})(\\sqrt{3}\\sqrt{6}) = \\sqrt{2\\cdot 5} \\cdot \\sqrt{3\\cdot 6} = \\sqrt{10} \\cdot \\sqrt{18} = \\sqrt{180}$69. $\\frac{\\sqrt{8}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{8}}{\\sqrt{2}} = \\sqrt{4} = 2$70. $\\frac{\\sqrt{15}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{15}}{\\sqrt{5}} = \\sqrt{3}$71. $\\frac{\\sqrt{18}}{\\sqrt{6}}$答案:$\\frac{\\sqrt{18}}{\\sqrt{6}} = \\sqrt{3}$72. $\\frac{\\sqrt{50}}{\\sqrt{2}}$答案:$\\frac{\\sqrt{50}}{\\sqrt{2}} = \\sqrt{25} = 5$73. $\\frac{\\sqrt{35}}{\\sqrt{5}}$答案:$\\frac{\\sqrt{35}}{\\sqrt{5}} = \\sqrt{7}$74. $\\frac{\\sqrt{40}}{\\sqrt{8}}$答案:$\\frac{\\sqrt{40}}{\\sqrt{8}} = \\sqrt{5}$75. $\\frac{\\sqrt{72}}{\\sqrt{18}}$答案:$\\frac{\\sqrt{72}}{\\sqrt{18}} = \\sqrt{4} = 2$第三部分:困难题(共25题)76. $\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6}$答案:$\\sqrt{2} \\cdot \\sqrt{3} + \\sqrt{6} = \\sqrt{6} + \\sqrt{6} = 2\\sqrt{6}$答案:$\\sqrt{7} \\cdot \\sqrt{11} - \\sqrt{77} = \\sqrt{7\\cdot11} - \\sqrt{77} = \\sqrt{77} - \\sqrt{77} = 0$78. $(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2$答案:$(\\sqrt{3} + \\sqrt{5})^2 - (\\sqrt{3} - \\sqrt{5})^2 =4\\sqrt{3}\\sqrt{5} = 4\\sqrt{15}$79. $(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2$答案:$(\\sqrt{2} + \\sqrt{5})^2 - (\\sqrt{2} - \\sqrt{5})^2 =4\\sqrt{2}\\sqrt{5} = 4\\sqrt{10}$80. $\\sqrt{2\\sqrt{2}}$答案:$\\sqrt{2\\sqrt{2}} = \\sqrt{\\sqrt{2^2}\\sqrt{2}} =\\sqrt{\\sqrt{4}\\sqrt{2}} = \\sqrt{2}\\sqrt{2} = 2$81. $\\sqrt{3\\sqrt{3}}$答案:$\\sqrt{3\\sqrt{3}} = \\sqrt{\\sqrt{3^2}\\sqrt{3}} =\\sqrt{\\sqrt{9}\\sqrt{3}} = \\sqrt{3}\\sqrt{3} = 3$82. $\\sqrt{5\\sqrt{5}}$答案:$\\sqrt{5\\sqrt{5}} = \\sqrt{\\sqrt{5^2}\\sqrt{5}} =\\sqrt{\\sqrt{25}\\sqrt{5}} = \\sqrt{5}\\sqrt{5} = 5$答案:$(\\sqrt{5} + \\sqrt{3})^2 + 2\\sqrt{15} = 5 + 3 + 2\\sqrt{15} = 8 + 2\\sqrt{15}$84. $(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6}$答案:$(\\sqrt{2} - \\sqrt{3})^2 + 2\\sqrt{6} = 2 - 2\\sqrt{2}\\sqrt{3} + 3 + 2\\sqrt{6} = 5 + 2\\sqrt{6}$85. $3\\sqrt{2} - \\sqrt{8}$答案:$3\\sqrt{2} - \\sqrt{8} = 3\\sqrt{2} - 2\\sqrt{2} = \\sqrt{2}$86. $2\\sqrt{3} + \\sqrt{12}$答案:$2\\sqrt{3} + \\sqrt{12} = 2\\sqrt{3} + 2\\sqrt{3} = 4\\sqrt{3}$87. $\\sqrt{8} + \\sqrt{72}$答案:$\\sqrt{8} + \\sqrt{72} = 2\\sqrt{2} + 6\\sqrt{2} = 8\\sqrt{2}$88. $\\sqrt{5}\\sqrt{10} - \\sqrt{10}$答案:$\\sqrt{5}\\sqrt{10} - \\sqrt{10} = \\sqrt{5\\cdot10} - \\sqrt{10} = \\sqrt{50} - \\sqrt{10} = 5\\sqrt{2} - \\sqrt{10}$89. $\\sqrt{3}\\sqrt{6} + \\sqrt{18}$答案:$\\sqrt{3}\\sqrt{6} + \\sqrt{18} = \\sqrt{3\\cdot6} + \\sqrt{18} =\\sqrt{18} + \\sqrt{18} = 2\\sqrt{18} = 6\\sqrt{2}$90. $\\sqrt{16} - \\sqrt{32}$答案:$\\sqrt{16} - \\sqrt{32} = 4 - 4\\sqrt{2} = 4(1 - \\sqrt{2})$91. $\\sqrt{12} - \\sqrt{20} + \\sqrt{5}$答案:$\\sqrt{12} - \\sqrt{20} + \\sqrt{5} = 2\\sqrt{3} - 2\\sqrt{5} + \\sqrt{5} = 2\\sqrt{3} - \\sqrt{5}$92. $\\sqrt{7}\\sqrt{35} - \\sqrt{7}$答案:$\\sqrt{7}\\sqrt{35} - \\sqrt{7} = \\sqrt{7\\cdot35} - \\sqrt{7} =\\sqrt{245} - \\sqrt{7}$93. $\\sqrt{50} + \\sqrt{200} - \\sqrt{8}$答案:$\\sqrt{50} + \\sqrt{200} - \\sqrt{8} = 5 + 10\\sqrt{2} - 2\\sqrt{2} = 5 + 8\\sqrt{2}$94. $5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32}$答案:$5\\sqrt{2} - 2\\sqrt{18} + \\sqrt{32} = 5\\sqrt{2} - 2\\cdot3\\sqrt{2} + 4\\sqrt{2} = 9\\sqrt{2}$95. $\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8}$答案:$\\sqrt{72} - \\sqrt{18} + \\sqrt{32} - \\sqrt{8} = 6\\sqrt{2} -3\\sqrt{2} + 4\\sqrt{2} - 2\\sqrt{2} = 5\\sqrt{2}$96. $\\sqrt{3}(\\sqrt{15} - \\sqrt{5})$答案:$\\sqrt{3}(\\sqrt{15} - \\sqrt{5}) = \\sqrt{3}\\sqrt{15} -\\sqrt{3}\\sqrt{5} = \\sqrt{45} - \\sqrt{15} = 3\\sqrt{5} - \\sqrt{15}$97. $\\sqrt{2}(\\sqrt{16} - \\sqrt{8})$答案:$\\sqrt{2}(\\sqrt{16} - \\sqrt{8}) = \\sqrt{2}\\cdot4\\sqrt{2} - \\sqrt{2}\\cdot2\\sqrt{2} = 8 - 4\\sqrt{2} = 4(2 - \\sqrt{2})$98. $\\sqrt{5}(\\sqrt{12} + \\sqrt{3})$答案:$\\sqrt{5}(\\sqrt{12} + \\sqrt{3}) = \\sqrt{5}\\cdot2\\sqrt{3} + \\sqrt{5}\\sqrt{3} = 2\\sqrt{15} + \\sqrt{15} = 3\\sqrt{15}$99. $\\sqrt{7}(\\sqrt{7} + \\sqrt{11})$答案:$\\sqrt{7}(\\sqrt{7} + \\sqrt{11}) = \\sqrt{7}\\cdot\\sqrt{7} + \\sqrt{7}\\sqrt{11} = 7 + \\sqrt{77}$100. $\\sqrt{8}(\\sqrt{6} - \\sqrt{2})$答案:$\\sqrt{8}(\\sqrt{6} - \\sqrt{2}) = \\sqrt{8}\\cdot2\\sqrt{2} - \\sqrt{8}\\cdot\\sqrt{2} = 4\\sqrt{2} - 2\\sqrt{2} = 2\\sqrt{2}$结束语本文共提供了100道二次根式题目及其答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-二次根式基础练习(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN二次根式(1)1.当a ______时,23-a 有意义;当x ______时,31-x 有意义. 2.当x ______时,x1有意义;当x ______时,x1的值为1.3.直接写出下列各式的结果: (1)49=______;(2)2)7(=______;(3)2)7(-=______;(4)2)7(-=______;(5)2)7.0(=______;(6)22])7([-=______.4.下列各式中正确的是( ). (A)416±=(B)2)2(2-=-(C)24-=- (D)3327= 5.下列各式中,一定是二次根式的是( ). (A)23- (B)2)3.0(- (C)2- (D)x6.已知32+x 是二次根式,则x 应满足的条件是( ). (A)x >0 (B)x ≤0 (C)x ≥-3 (D)x >-3 7.当x 为何值时,下列式子有意义 (1)x -1;(2)2x-;(3)12+x ; (4).7x +8.计算下列各式: (1)2)23( (2)2)32(⨯ (3)2)53(⨯- (4)2)323(9.若yx xy ⋅=24成立,则x ,y 必须满足条件______.10. (1)12172⨯______; (2))84)(213(--=______; (3)62434⨯________.(4)3649⨯=______;(5)25.081.0⨯=______;(6)31824a a ⋅=______.11.下列计算正确的是( ). (A)532=⋅ (B)632=⋅(C)48=(D)3)3(2-=-12.化简2)2(5-⨯,结果是( ).(A)52(B)52- (C)-10 (D)1013.如果)3(3-=-⋅x x x x ,那么( ).(A)x ≥0 (B)x ≥3 (C)0≤x ≤3 (D)x 为任意实数 14.当x =-3时,2x 的值是( ). (A)±3 (B)3 (C)-3 (D)9 15.计算:(1)26⨯(2)123⨯(3)8223⨯ (4)x x 62⋅ (5)aab 131⋅(6)ab a 3162⋅ (7)49)7(2⨯-(8)22513- (9)7272y x16.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.17.把下列各式化成最简二次根式: (1)12=______; (2)18=______; (3)45=______; (4)x 48=______; (5)32=______; (6)214=______;(7)35b a =______; (8)3121+=______.18.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式: 如:23与2. (1)32与______;(2)32与______; (3)a3 与______;(4)38a 与______; (5)26a 与______. 19.xx x x -=-11成立的条件是( ). (A)x <1且x ≠0 (B)x >0且x ≠1(C)0<x ≤1 (D)0<x <1 20.下列计算不正确...的是( ). (A)471613= (B)xy xx y 63132= (C)201)51()41(22=-(D)x xx3294=21.下列根式中,不是..最简二次根式的是( ) A .7 B .3 C .21D .2 22.(1)2516= (2)972=(3)324=(4)1227=(5)1525= (6)632=(7)211311÷ (8)125.02121÷23.把下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有_________;与3的被开方数相同的有______;与5的被开方数相同的有______.24. (1)31312+=______;(2)485127-=______.25.化简后,与2的被开方数相同的二次根式是( ). (A)12(B)18 (C)41 (D)6126.下列说法正确的是( ).(A)被开方数相同的二次根式可以合并 (B)8与80可以合并(C)只有根指数为2的根式才能合并(D)2与50不能合并27.可以与a 12合并的二次根式是( ).(A)a2 (B)a 54 (C)a271 (D)a328、.48512739-+ 29..61224-+30..503238318-++31.).5.04313()81412(--- 32..12183127--33.)272(43)32(21--+34.当a =______时,最简二次根式12-a 与73--a 可以合并. 35.若a =7+2,b =7-2,则a +b =______,ab =______.36.合并二次根式:(1))18(50-+=______;(2)ax xax45+-=______. 37.下列各式中是最简二次根式的是( ). (A)a 8 (B)32-b (C)2y x - (D)y x 2338.下列计算正确的是( ). (A)3232=+ (B)b a ab 555+= (C)268=- (D)x x x =-4539.)32)(23(+-等于( ).(A)7 (B)223366-+- (C)1 (D)22336-+40.⋅⋅-121)2218( 41.).23)(322(-- 42.).3223)(3223(-+ 43.).3218)(8321(-+44..6)1242764810(÷+- 45..)18212(2-46..1502963546244-+-47.).32)(23(-- 48..)12()12(87-+49.).94(323ab ab ab a aba b +-+参考答案1..3,32>≥x a. 2.x >0,x =1.3.(1)7;(2)7;(3)7; (4)7;(5);(6)49. 4.D . 5.B .6.D .7.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≥-7. 8.(1)18;(2)6;(3)15;(4)6. 9.x ≥0且y ≥0. 10.(1)6;(2)24;(3)16.(4)42;(5);(6).3122a 11.B . 12.A . 13.B . 14.B15.(1)32; (2)6; (3)24; (4)x 32; (5)3b ;(6)ab 2; (7)49; (8)12; (9).263y xy 16..cm 6217.(1)32; (2)23; (3)53; (4)x34;(5)36; (6)223; (7)ab b a 2; (8)⋅63018.(1)3; (2)2; (3)a 3; (4)a 2; (5).619.C . 20.C . 21.C . 22.(1);54 (2);35 (3);22 (4);23 (5);63(6);2 (7);322 (8)4.23..454,125;12,27;18,82,3224..36)2(;33)1(-25.B . 26.A . 27.C . 28..33 29..632+30..21631..23+ 32..23- 33.⋅-42341134.6. 35.3,72. 36.(1)22; (2)ax 3-.37.B . 38.D . 39.B. 40.⋅6641..763- 42.⋅3619 43.⋅417 44..215 45..62484-46.68-.47..562- 48..12- 49..2ab -二次根式(2)1.x 2-表示二次根式的条件是______.2.使12-x x有意义的x 的取值范围是______. 3.若m m 32-+有意义,则m =______.4.已知411+=-+-y x x ,则x y 的平方根为______.5.当x =5时,在实数范围内没有意义的是( ). (A)|1|x -(B)x -7(C)x 32-(D)204-x6.若022|5|=++-y x ,则x -y 的值是( ).(A)-7 (B)-5 (C)3 (D)7 7.计算下列各式: (1)2)52.0(- (2)22)3(--(3)21))32((- (4)22)5.03(8.已知△ABC 的三边长a 、b 、c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.9.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b bc c a a ---++-的结果是:______. 10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2. 11.比较大小:(1)23______32;(2)25______34;(3)22-______6-.12.如果m n 是二次根式,那么m ,n 应该满足条件( ).(A)mn >0 (B)m >0,n ≥0(C)m ≥0,n >0 (D)mn ≥0且m ≠0 13.把4324根号外的因式移进根号内,结果等于( ).(A)11-(B)11 (C)44- (D)4414.计算:(1)x xy 6335⋅=______;(2)23221.8ab b a =______;(3);21132212⋅⋅=______;(4))123(3+⋅=______.15.先化简,再求值:)6()3)(3(----a a a a ,其中215+=a .16.把下列各式中根号外的因式移到根号里面:(1);1aa -(2)⋅---11)1(y y17.已知a ,b 为实数,且01)1(1=---+b b a ,求a 2008-b 2008的值.18.化简二次根式:(1)71=______;(2)81=______;(3)314-=______. 19.计算下列各式,使得结果的分母中不含有二次根式: (1)51=______; (2)321______;(3)322=______; (4)yx 5=______.20.已知3≈,则31≈______;27≈______.(结果精确到 21.计算)0,0(1>>⨯÷b a abab a b 等于( ). (A)ab ab 21 (B)ab b a 21 (C)ab b1 (D)ab b22.下列各式中,最简二次根式是( ). (A)y x -1 (B)ba (C)42+x (D)b a 2523.(1)8517÷- (2)y xy 3212÷(3)ba b a ++24.已知:△ABC 中,AB =AC ,∠A =120°,68=BC ,求△ABC 的面积.25.观察规律:32321,23231,12121-=+-=+-=+求值.(1)7221+=______;(2)10111+=______;(3)nn ++11=______.26.3832ab 与ba b26无法合并,这种说法是______的.(填“正确”或“错误”)27.一个等腰三角形的两边长分别是32和23,则这个等腰三角形的周长为( ). (A)3423+ (B)3226+(C)3426+ (D)3423+或3226+ 28.).454757272(125+--29..32|275|)21()1π(10--++--30..211393a aa a a -+31..21233ab bb a a b a b a b a -+-32.化简求值:yy x y xx 3241+-+,其中x =4,y =91.33.已知四边形ABCD 四条边的长分别为50,72,5.013和3100,求它的周长.34.探究下面问题(1)判断下列各式是否成立.你认为成立的,在括号内画“√”,否则画“×”.①322322=+ ( );②833833=+ ( );③15441544=+ ( );④24552455=- ( ).(2)你判断完以上各题后,发现了什么规律请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)中所写式子的正确性.35.设67,67-=+=b a ,则a 2007b 2008的值是______.36.))((b a a b a b b a-+的运算结果是( ).(A)0 (B)ab (b -a ) (C)ab (a -b ) (D)ab ab 237.下列计算正确的是( ). (A)b a b a +=+2)((B)ab b a =+(C)b a b a +=+22 (D)a aa =⋅138.⋅+-221.221 39..)103()103(101100-+40..)()(22b a b a --+41.已知23+=x ,23-=y ,求值:x 2-xy +y 2.42.已知x +y =5,xy =3,求xy y x +的值.43.若b <0,化简3ab -的结果是______.44.若菱形的两条对角线长分别为)2352(+和)2352(-则此菱形的面积为______.45.若25+=x,则代数式x 2-4x +3的值是______.46.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). (A)1个 (B)2个 (C)3个 47.若a ,b 两数满足b <0<a 且|b |>|a |,则下列各式有意义的是( ). (A)b a + (B)ab - (C)b a - (D)ab48.⋅⋅-⋅ba b a ab b a 3)23(35 49.48)832(3x x x x ÷-.50.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD =2,求梯形ABCD 的周长.参考答案1.x ≤0. 2.x ≥0且⋅=/21x 3.0. 4.1. 5.C . 6.D .7.(1);(2)-9;(3)23;(4)36. 8.2,3,4. 9.010.10211.>,>,<. 12.D . 13.D .14.(1)45x y 2 (2)2a 2b b ;(3)34; (4)9.15.6a -3;5616.(1)a -- (2)y --117.a =-1,b =1,0. 18.(1);77 (2);42 (3)-⋅339 19.(1);55 (2);82 (3);66 (4)⋅y y x 55 20.;.21.B . 22.C .23.(1)55-;(2);33x (3).b a + 24..33225.(1)722-;(2)1011-;(3).1n n -+26.错误. 27.D 28..57329-29..23-30.⋅617a31.0.32.原式=y x32+,代入得2. 33..33102235+ 34.(1)都打“√”;(2)1122-=-+n nn n n n (n ≥2,且n 是整数); (3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n nn n n n n 35..67-36.B . 37.D . 38.⋅-4139..103-40.ab 4(可以按整式乘法,也可以按因式分解法).41.9.42.⋅335 43..ab b --44.1. 45.4. 46.B . 47.C . 48..293ab b a -49..245x-. 50.周长为.625+。