人教版-九下数学第二十九章《投影与视图》单元测试及答案【2】

合集下载

人教版九年级数学下册第29章投影与视图单元综合评价试卷含解析

人教版九年级数学下册第29章投影与视图单元综合评价试卷含解析

人教版九年级数学下册第29章投影与视图单元综合评价试卷含解析姓名座号题号一二三总分得分考后反思(我思我进步):一.选择题(共10小题,30分)1.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.2.下列几何体中,主视图和左视图都为矩形的是()A.B.C.D.3.如图所示几何体的左视图正确的是()A.B.C.D.4.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.5.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥6.如图,是某个几何体从不同方向看到的形状图(视图)这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.7.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③8.太阳发出的光照在物体上是_____,车灯发出的光照在物体上是_____.()A.中心投影,平行投影C.平行投影,平行投影B.平行投影,中心投影D.中心投影,中心投影9.如图,晚上小亮在路灯下散步,在小亮由A处径直走到B处这一过程中,他在地上的影子()A.逐渐变短C.先变长后变短B.先变短后变长D.逐渐变长10.小强的身高和小明的身高一样,那么在同一路灯下()A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长二.填空题(共8小题,24分)11.从三个方向看所得到的图形都相同的几何体是(写出一个即可).12.在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)13.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.(14.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉个小正方体.15.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体.16.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是.17.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.18.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子.(长,短)三.解答题(共5小题,46分)19.8分)如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.20.(10分)如图所示是一个物体从正面、左面、上面看到的形状图,试回答下列问题:(1)该物体有几层高?(2)该物体最长处为多少?(3)该物体最高部分位于哪里?21.(8分)从正面、左面观察如图所示几何体,分别画出你所看到的几何体的形状图.22.(10分)两棵小树在同一时刻的影子如图所示:(1)试判断哪是小树白天在太阳光下的影子,哪是小树晚上在路灯下的影子?并确定出路灯灯泡的位置(2)根据你的判断,请画出图中另一棵小树的影子(影子用线段表示即可)23.(10分)如图所示:笔直的公路边有甲、乙两栋楼房,高度分别为12m和25m,两楼之间的距离为10m,现有一人沿着公路向这两栋楼房前进,当他走到与甲楼的水平距离为30m且笔直站立时(这种姿势下眼睛到地面的距离为1.6m),他所看到的乙楼上面的部分有多高?参考答案一.选择题(共10小题)1.下列几何体中,从正面看(主视图)是长方形的是()A.B.C.D.【解答】解:圆锥的主视图是等腰三角形,圆柱的主视图是长方形,圆台的主视图是梯形,球的主视图是圆形,故选:B.2.下列几何体中,主视图和左视图都为矩形的是()A.B.C.D.【解答】解:A、主视图和左视图都为矩形的,所以A选项正确;B、主视图和左视图都为等腰三角形,所以B选项错误;C、主视图为矩形,左视图为圆,所以C选项错误;D、主视图是矩形,左视图为三角形,所以D选项错误.故选:A.3.如图所示几何体的左视图正确的是()A.B.C.D.【解答】解:从几何体的左面看所得到的图形是:故选:A.4.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【解答】解:A、的主视图是第一层两个小正方形,第二层右边一个小正方形,B、的主视图是第一层两个小正方形,第二层左边一个小正方形,C、的主视图是第一层两个小正方形,第二层左边一个小正方形,D、的主视图是第一层两个小正方形,第二层左一个小正方形,故选:A.5.已知一个几何体从三个不同方向看到的图形如图所示,则这个几何体是()A.圆柱B.圆锥C.球体D.棱锥【解答】解:∵主视图和左视图都是三角形,∴此几何体为椎体,∵俯视图是一个圆,∴此几何体为圆锥.故选:B.6.如图,是某个几何体从不同方向看到的形状图(视图)这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.7.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.8.太阳发出的光照在物体上是_____,车灯发出的光照在物体上是_____.()A.中心投影,平行投影B.平行投影,中心投影(C .平行投影,平行投影D .中心投影,中心投影【解答】解:∵太阳发出的光是平行光线,灯发出的光线是不平行的光线,∴太阳发出的光照在物体上是平行投影,车灯发出的光照在物体上是中心投影.故选:B .9.如图,晚上小亮在路灯下散步,在小亮由A 处径直走到 B 处这一过程中,他在地上的影子()A .逐渐变短C .先变长后变短B .先变短后变长D .逐渐变长【解答】解:晚上小亮在路灯下散步,在小亮由 A 处径直走到 B 处这一过程中,他在地上的影子先变短,再变长.故选:B .10.小强的身高和小明的身高一样,那么在同一路灯下()A .小明的影子比小强的影子长B .小明的影子比小强的影子短C .小明的影子和小强的影子一样长D .无法判断谁的影子长【解答】解:小强的身高和小明的身高一样,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的影子长.故选:D .二.填空题(共 8 小题)11.从三个方向看所得到的图形都相同的几何体是 球体(正方体)(写出一个即可).【解答】解:正方体,三视图均为正方形;球,三视图均为圆,故答案为:球体(正方体).12.在如图所示的几何体中,其三视图中有矩形的是 ①② . 写出所有正确答案的序号)【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.13.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.14.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要10个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉1个小正方体.【解答】解:这个几何体由10小正方体组成,最多可以拿掉1个小正方体,故答案为:10,1.15.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体球(答案不唯一)..【解答】解:球的3个视图都为圆;正方体的3个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.故答案为:球(答案不唯一).16.如图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是5.【解答】解:根据三视图的知识,几何体的底面有4个小正方体,该几何体有两层,第二层有1个小正方体,共有5个;故答案为5.17.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.18.春天来了天气一天比一天暖和,在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.(长,短)【解答】解:∵春天来了天气一天比一天暖和,∴太阳开始逐渐会接近直射,∴在同一地点某一物体,今天上午11点的影子比昨天上午11点的影子短.故答案为:短.三.解答题(共5小题)19.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).20.如图所示是一个物体从正面、左面、上面看到的形状图,试回答下列问题:(1)该物体有几层高?(2)该物体最长处为多少?(3)该物体最高部分位于哪里?【解答】解:(1)根据从正面看所得视图可得该物体有2层高;(2)根据从左边看的视图可得该物体最长处为3个长方体;(3)如图所示:该物体最高部分位于阴影部分.21.从正面、左面观察如图所示几何体,分别画出你所看到的几何体的形状图.【解答】解:如图即为所求作的图形.22.两棵小树在同一时刻的影子如图所示:(1)试判断哪是小树白天在太阳光下的影子,哪是小树晚上在路灯下的影子?并确定出路灯灯泡的位置(2)根据你的判断,请画出图中另一棵小树的影子(影子用线段表示即可)【解答】解:(1)因为光线是相交的,所以是中心投影,所以(1)是小树晚上在路灯下的影子,路灯灯泡的位置是三条光线的交点;(2)因为光线是平行的,所以是平行投影,所以(2)是小树在太阳光下的影子.23.如图所示:笔直的公路边有甲、乙两栋楼房,高度分别为12m和25m,两楼之间的距离为10m,现有一人沿着公路向这两栋楼房前进,当他走到与甲楼的水平距离为30m且笔直站立时(这种姿势下眼睛到地面的距离为 1.6m),他所看到的乙楼上面的部分有多高?【解答】解:作AN⊥GH,交EF于M,如图,AB=1.6m,EF=12m,GH=25m,AF=30m,MN=15m,点A、E、C共线,则MF=NH=AB=1.6,EM=EF﹣MF=10.4,∵EM∥CN,∴△AEM∽△ACN,∴=,即=,∴CN=15.6,∴CG=GH﹣NH﹣CN=25﹣﹣1.6﹣15.6=7.8(m),即他所看到的乙楼上面的部分有7.8m高.。

人教版九年级下册数学第二十九章第1节《投影》训练题 (2)(含答案解析)

人教版九年级下册数学第二十九章第1节《投影》训练题 (2)(含答案解析)
A.阳光下跑动的运动员的影子B.阳光下木杆的影子
C.一组平行光线下课桌的影子D.放电影时屏幕上的影子
8.某一时刻,身高1.6m的小明在阳光下的影长是0.4m.同一时刻同一地点,测得某旗杆的影长是5m,则该旗杆的高度是()
A.1.25mB.10mC.20mD.8m
9.一个长方形的正投影不可能是()
A.正方形B.矩形C.线段D.点
(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)=;
(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD).
19.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C的照射下,小明的影长BE=______m.
20.如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上,他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.4m,请你帮她算一下,树高是______.
13.一张矩形纸片在太阳光线的照射下,形成影子不可能是( )
A.平行四边形B.矩形C.正方形D.梯形
14.下列光线所形成投影是平行投影的是()
A.太阳光线B.台灯的光线
C.手电筒的光线D.路灯的光线
二、填空题
15.如图,在A时测得某树的影长为4米,在B时测得该树的影长为9米,若两次日照的光线互相垂直,则该树的高度为___________米.

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题含答案

人教版数学九年级下学期第29章《投影与视图》测试题(测试时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.如图所示几何体的主视图是().A. B. C. D.2.如图所示的几何体的俯视图是()A. B. C. D.3.如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的()A.主视图改变,左视图改变 B.俯视图不变,左视图不变C.俯视图改变,左视图改变 D.主视图改变,左视图不变4.下列四个几何体中,它们的主视图、左视图、俯视图都是正方形的是()A. B. C. D.5.如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是()A. B. C. D.6.如图所示是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是().A. B. C. D.7.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是( ) 8.如图,按照三视图确定该几何体的全面积为(图中尺寸单位:cm)()A.128πcm2 B.160πcm2 C.176πcm2 D.192πcm29.如图所示的几何体的左视图是()A. B. C. D.10.如图,在房子屋檐E处安有一台监视器,房子前有一面落地的广告牌,那么监视器的盲区是()A.△ACE B.△ADF C.△ABD D.四边形BCED二、填空题(每小题3分,共30分)11.苏轼的诗句“横看成岭侧成峰,远近高低各不同”把此诗句用在视图上,说明的现象是________.12.如图,请写出图,图,图是从哪个方向可到的:图________;图________;图________.13.图是一个几何体的主视图、左视图和俯视图,则这个几何体是________.(填序号)14.如图,②是①中图形的________视图.②15.下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号) 16.图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是_________.17.有两根大小、形状完全相同的铁丝,甲铁丝与投影面的夹角是45°,乙铁丝与投影面的夹角是30°,那么两根铁丝在投影面的正投影的长度的大小关系是:甲____乙(填“>”“<”或“=”).18.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,那么线段AC在AB上的正投影是___,线段CD在AB上的正投影是___,线段BC在AB上的正投影是___.19.如图,是一个包装盒的三视图,则这个包装盒的表面积是(结果保留π)20.如图,小明同学在非洲旅游期间想自己测出金字塔的高度,首先小明在阳光下测量出了长1 m的木杆CD的影子CE长1.5m;其次测出金字塔中心O到影子的顶部A的距离为201m。

人教版初中数学九年级下册单元测试 第29章 投影与视图 (含答案)

人教版初中数学九年级下册单元测试 第29章  投影与视图  (含答案)

第二十九章投影与视图全章测试一、选择题1.平行投影中的光线是( )A.平行的B.聚成一点的C.不平行的D.向四面八方发散2.正方形在太阳光下的投影不可能是( )A.正方形B.一条线段C.矩形D.三角形3.如图1,将一块正方形纸片沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是( )4.由一些完全相同的小立方块搭成的几何体的三视图如图所示,那么搭成这个几何体所用的小立方块的个数是( )第4题图A.8 B.7 C.6 D.5 5.如图是某几何体的三视图及相关数据,则判断正确的是( )第5题图A.a>c B.b>cC.4a2+b2=c2D.a2+b2=c26.若干个正方体形状的积木摆成如图所示的塔形,平放于桌面上,上面正方体的下底四个顶点是下面相邻正方体的上底各边中点,最下面的正方体棱长为1,如果塔形露在外面的面积超过7,则正方体的个数至少是( )A.2 B.3C.4 D.5二、填空题7.一个圆柱的俯视图是______,左视图是______.8.如果某物体的三视图如图所示,那么该物体的形状是______.第8题图9.一空间几何体的三视图如图所示,则这个几何体的表面积是______cm2.第9题图10.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于______.三、解答题11.楼房、旗杆在路灯下的影子如图所示.试确定路灯灯炮的位置,再作出小树在路灯下的影子.(不写作法,保留作图痕迹)12.画出图中的九块小立方块搭成几何体的主视图、左视图和俯视图.13.如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,请画出这个几何体的主视图和左视图.14.如图是一个几何体的主视图和俯视图,求该几何体的体积( 取3.14).图形并求这两种圆柱的表面积.答案与提示第二十九章 投影与视图全章测试1.A . 2.D . 3.A . 4.A . 5.D . 6.B .7.圆;矩形. 8.三棱柱. 9.48π. 10.24.11.如图:12.如图:13.如图:14.体积为π×102×32+30×25×40≈40 048(cm 3). 15.第一种:高为a ,表面积为;π221b ab S +=第二种:高为b ,表面积为⋅+=π222a ab S。

人教版九年级下《第29章投影与视图》单元测试题含答案解析

人教版九年级下《第29章投影与视图》单元测试题含答案解析

春人教版九年级数学下册第29章投影与视图单元测试题一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定6.如图所示的四棱柱的主视图为()A.B.C.D.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.13.从正面看、从上面看、从左面看都是正方形的几何体是.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为cm2.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放个小正方体.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的;(2)这个几何体最多由个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是、、;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.春人教版九年级数学下册第29章投影与视图单元测试题参考答案与试题解析一.选择题(共10小题)1.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是()A.③①④②B.③②①④C.③④①②D.②④①③【分析】太阳光可以看做平行光线,从而可求出答案.【解答】解:太阳从东边升起,西边落下,所以先后顺序为:③④①②故选:C.【点评】本题考查平行投影,解题的关键是熟练知道太阳光是平行光线,本题属于基础题型.2.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()A.B.C.D.【分析】根据题意:水杯的杯口与投影面平行,即与光线垂直;则它的正投影图是应是D.【解答】解:依题意,光线是垂直照下的,故只有D符合.故选:D.【点评】本题考查正投影的定义及正投影形状的确定.3.小红和小花在路灯下的影子一样长,则她们的身高关系是()A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【分析】根据中心投影的特点,小红和小花在同一路灯下的影长与他们到路灯的距离有关,虽然他们的身高一样,也不能判断谁的身高的高与矮.【解答】解:小红和小花在路灯下的影子一样长,在同一路灯下他们的影长与他们到路灯的距离有关,所以无法判断谁的身高的高与矮.故选:D.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.4.如图,路灯距地面8米,身高1.6米的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长3.5m B.变长2.5m C.变短3.5m D.变短2.5m【分析】小明在不同的位置时,均可构成两个相似三角形,可利用相似比求人影长度的变化.【解答】解:设小明在A处时影长为x,AO长为a,B处时影长为y.∵AC∥OP,BD∥OP,∴△ACM∽△OPM,△BDN∽△OPN,∴,,则,∴x=;,∴y=,∴x﹣y=3.5,故变短了3.5米.故选:C.【点评】此题考查相似三角形对应边成比例,应注意题中三角形的变化.5.当你乘车沿一条平坦的大道向前行驶时,你会发现,前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了.这是因为()A.汽车开的很快B.盲区减小C.盲区增大D.无法确定【分析】前方哪些高一些的建筑物好像“沉”到了位于它们前面哪些矮一些的建筑物后面去了,说明看到的范围减少,即盲区增大.【解答】解:根据题意我们很明显的可以看出“沉”下去的建筑物实际上是到了自己的盲区的范围内.故选:C.【点评】本题结合了实际问题考查了对视点,视角和盲区的认识和理解.6.如图所示的四棱柱的主视图为()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【分析】根据图中的主视图解答即可.【解答】解:A、图中的主视图是2,1;B、图中的主视图是2,1;C、图中的主视图是2,1;D、图中的主视图是2,2;故选:D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.8.如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是()A.B.C.D.【分析】由已知条件可知,左视图有2列,每列小正方形数目分别为3,1.据此可得到答案.【解答】解:如图,左视图如下:故选:D.【点评】本题考查了作图﹣﹣三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.9.如图,A,B,C,D是四位同学画出的一个空心圆柱的主视图和俯视图,正确的一组是()A.A B.B C.C D.D【分析】主视图是从几何体的正面看所得到的视图,俯视图是从几何体的上面看所得到的图形.【解答】解:主视图是矩形且中间有两道竖杠,俯视图是两个同心圆,故选:D.【点评】此题主要考查了三视图,关键是掌握主视图和俯视图所看的位置.10.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和俯视图都是长方形,∴此几何体为柱体,∵左视图是一个圆,∴此几何体为平放的圆柱体.故选:B.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.二.填空题(共8小题)11.已知操场上的篮球架上的篮板长1.8米,高1.2米,当太阳光与地面成45°角投射到篮板时,它留在地面上的阴影部分面积为 2.16m2.【分析】根据平行投影,篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,根据等腰直角三角形的性质得矩形的宽等于篮板宽,为1.2m,然后根据矩形得面积公式求解.【解答】解:因为太阳光线是平行光线,所以篮板在地面上的阴影部分为矩形,此矩形的长等于篮板长,为1.8m,由于太阳光与地面成45°角,则矩形的宽等于篮板宽,为1.2m,所以篮板长留在地面上的阴影部分面积=1.8×1.2=2.16(m2).故答案为2.16m2.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.太阳光线是平行光线.12.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为4m.【分析】利用中心投影的性质可判断△CDE∽△CBA,再根据相似三角形的性质求出BC的长,然后计算BC﹣CD即可.【解答】解:∵DE∥AB,∴△CDE∽△CBA,∴=,即=,∴CB=6,∴BD=BC﹣CD=6﹣2=4(m).故答案为4.【点评】本题考查了中心投影:中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.13.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.15.用硬纸壳做一个如图所示的几何体,其底面是圆心角为300°的扇形,则该几何体的表面积为(60+75π)cm2.【分析】求得该几何体的侧面积以及底面积,相加即可得到表面积.【解答】解:侧面积为10×(6+)=60+50π,底面积之和为:2×=15π,∴该几何体的表面积为60+50π+15π=60+65π,故答案为:60+65π.【点评】本题主要考查了几何体的表面积,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.16.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是12.【分析】由2个视图是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么可得该几何体是三棱柱,由三视图知,三棱柱的正面的高是3,根据三棱柱的体积公式得到三角形的底,根据三角形公式列式计算即可.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的正面是高为3的三角形,∵这个几何体的体积是24,∴三角形的底为=8,∴它的主视图的面积=×8×3=12,故答案为:12.【点评】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.17.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放1个小正方体.【分析】根据主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,可得答案.【解答】解:主视图是第一层三个小正方形,第二层是左边一个小正方形,中间一个小正方形,第三层是左边一个小正方形,俯视图是第一层三个小正方形,第二层三个小正方形,左视图是第一层两个小正方形,第二层两个小正方形,第三层左边一个小正方形,不改变三视图,中间第二层加一个,故答案为:1.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.18.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,∴组成这个几何体的小正方体的个数可能是4个或5个,故答案为:4或5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三.解答题(共7小题)19.一个几何体的三视图如图所示,根据图示的数据计算该几何体的侧面积.【分析】根据三视图判断出该几何体的形状,再求出侧面积即可得出答案.【解答】解:根据三视图可得该几何体是一个三棱柱,侧面积为4×3×6=72.【点评】此题考查了由三视图判断几何体,用到的知识点是长方形的面积,同时也体现了对空间想象能力方面的考查.20.如图是从上面看到一个由小正方体搭建的几何体的图形,其中方框内的数字为该处小立方块的个数.请你画出从正面和左面看到这个几何体的图形.【分析】分别利用小立方块的个数得出其形状,进而画出左视图与主视图.【解答】解:如图所示:.【点评】此题考查了作图﹣三视图,由三视图判断几何体,正确想象出立体图形的形状是解题关键.21.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的体积和表面积.【分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可.【解答】解:根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm,∴立体图形的体积是:4×4×2+6×8×2=128(mm3),∴立体图形的表面积是:4×4×2+4×2×2+4×2+6×2×2+8×2×2+6×8×2﹣4×2=200(mm2).【点评】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.22.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的甲和乙;(2)这个几何体最多由9个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.【分析】(1)由主视图和左视图的定义求解可得;(2)构成几何体的正方体个数最少时,其正方体的构成是在乙的基础上左数第1列前面再添加1个正方形即可得;(3)正方体个数最少时如图甲,据此作出俯视图即可得.【解答】解:(1)由主视图和左视图知,这个几何体可以是图2甲、乙、丙中的甲和乙,故答案为:甲和乙;(2)这个几何体最多可以由9个小正方体组成,故答案为:9;(3)如图所示:【点评】本题考查作图﹣三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.【分析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.【解答】解:(1)如图所示:(2)如图所示:【点评】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.24.学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,一摞碟子的层数与累积高度的关系如下表:碟子层数累积高度(cm)1222+1.532+342+4.5……(1)当一摞碟子有x层时,请写出此时的累积高度(用含x的式子表示);(2)桌子上有一些碟子,如图分别是从正面、左面和上面看到的形状图,厨房师傅想把这些碟子全部叠成一摞,求叠成一摞后的累积高度.【分析】(1)观察表格数据不难发现,每增加一个碟子高度增加1.5cm,然后写出即可;(2)根据三视图判断出碟子的个数为12个,然后代入(1)中算式计算即可得解.【解答】解:(1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x﹣1)=1.5x+0.5;(2)由图可知,共有3摞,左前一摞有4个,左后一摞有5个,右边前面一摞有3个,共有:3+4+5=12个,叠成一摞后的高度=1.5×12+0.5=18.5cm.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状.25.如图是一个大正方体切去一个小正方体组成的几何体.(1)下列三个图形中,从上面、左面、正面看到的平面图形分别是③、②、①;(2)若大正方体的边长为20cm,小正方体的边长为10cm,求这个几何体的表面积.【分析】(1)根据从上面、左面、正面看到的三视图,可得答案.(2)依据三视图的面积,即可得到这个几何体的表面积.【解答】解:(1)由题可得,从上面、左面、正面看到的平面图形分别是③,②,①;故答案为:③,②,①;(2)∵大正方体的边长为20cm,小正方体的边长为10cm,∴这个几何体的表面积为:2(400+400+400)=2×1200=2400(cm2).【点评】本题考查了简单组合体的三视图以及几何体的表面积,画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.。

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章 投影与视图 含答案

人教版九年级下册数学第二十九章投影与视图含答案一、单选题(共15题,共计45分)1、图1是矗立千年而不倒的应县木塔一角,它使用了六十多种形态各异的斗栱(dǒugǒng).斗栱是中国古代匠师们为减少立柱与横梁交接处的剪力而创造的一种独特的结构,位于柱与梁之间,斗栱是由斗、升、栱、翘、昂组成,图2是其中一个组成部件的三视图,则这个部件是()A. B. C. D.2、由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3B.4C.5D.63、如图,这个几何体的左视图是()A. B. C. D.4、如图,正六棱柱的主视图是()A. B. C. D.5、如图是由5个相同的小正方体构成的几何体,其俯视图是()A. B. C. D.6、如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,则这个几何的侧面积是 ( )A.60πcm 2B.65πcm 2C.70πcm 2D.75πcm 27、当投影线由上到下照射水杯时,如图所示,那么水杯的正投影是()A. B. C. D.8、一个几何体的三视图如图所示,则这个几何体是()A.三棱锥B.三棱柱C.圆柱D.长方体9、某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥10、在一盏路灯的周围有一圈栏杆,则下列叙述中不正确的是( )A.若栏杆的影子落在围栏里,则是在太阳光照射下形成的B.若这盏路灯有影子,则说明是在白天形成的C.若所有栏杆的影子都在围栏外,则是在路灯照射下形成的D.若所有栏杆的影子都在围栏外,则是在太阳光照射下形成的11、下面四幅图中,()不是无盖的正方体盒子的展开图.A. B. C. D.12、如图是4块小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小方块的个数,其主视图是()A. B. C. D.13、下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C. D.14、如图是由5个相同的小正方体组成的立体图形,这个立体图形的左视图是()A. B. C. D.15、如图,太阳光线与地面成60°的角,照在地面的一只排球上,排球在地面的投影长是14 ,则排球的直径是()A.7cmB.14cmC.21cmD.21 cm二、填空题(共10题,共计30分)16、小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为________ 米.17、俯视图为圆的几何体是________,________.18、一块直角三角形板ABC,∠ACB=90°,BC=12 cm,AC=8 cm,测得BC边的中心投影B1C1长为24 cm,则A1B1长为________ cm.19、如图,长方体的棱AB长为4,棱BC长为3,棱BF长为2,P为HG的中点,一只蚂蚁从点A出发,沿长方体的表面爬行到点处吃食物,那么它爬行的最短路程是________.20、由一些大小相同的小正方体搭成的几何体的从正面看和从上面看,如图所示,则搭成该几何体的小正方体最多是________ 个.21、若要使如图中的平面展开图折叠成正方体后,相对面上的两个数为相反数,则________.22、一个几何体的三视图如图所示,则该几何体的侧面展开图的面积为________.23、在右边的展开图中,分别填上数字1,2,3,4,5,6,使得折叠成正方体后,相对面上的数字之和相等,则a=________ ,b=________ ,c=________24、圆锥有________个面,它的侧面展开图是________.25、若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x+y=________.三、解答题(共5题,共计25分)26、一个几何体的三视图如图,求这个几何体的侧面积?27、如图是一个正方体的表面展开图,请回答下列问题:(1)与面B、C相对的面分别是?(2)若A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=﹣(a2b﹣6),且相对两个面所表示的代数式的和都相等,求E、F分别代表的代数式.28、已知:如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻,AB 在阳光下的投影BC=4m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影长时,同时测出DE在阳光下的投影长为6m,请你计算DE的长.29、已知Rt△DEF与等腰△ABC如图放置(点A与F重合,点D,A,B在同一直线上),AD=3,AB=BC=4,∠EDF=30°,∠ABC=120°.(1)求证:ED∥AC;(2)Rt△DEF沿射线AB方向平移,平移距离为a,当点D与点B重合时停止移动:①当E在BC上时,求a;②设△DEF与△ABC重叠部分的面积为S,请直接写出S与平移距离a之间的函数关系式,并写出相应的自变量a的取值范围.30、一个正方体6个面分别写着1、2、3、4、5、6,根据下列摆放的三种情况,那么每个数对面上的数是几?参考答案一、单选题(共15题,共计45分)1、C2、C3、B4、D5、B6、B7、D8、B9、C10、D11、D12、D13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。

人教版九年级下《第29章投影与视图》单元检测试卷含答案

第29章投影与视图单元检测一、选择题1.如图,图中的几何体是将圆柱沿竖直方向切掉一半后,再在中心挖去一个圆柱得到的,则该几何体的左视图是()A. B. C. D.2.下列图形是正方体表面积展开图的是()A. B. C. D.3.由一些相同的立方体搭成某几何体,这个几何体的主视图和俯视图如图所示,请问搭这样一个几何体最多需要多少小立方体?()A. 4B. 5C. 6D. 74.如图所示几何体的左视图是()A.B.C.D.5.人往路灯下行走的影子变化情况是()A. 长⇒短⇒长B. 短⇒长⇒短C. 长⇒长⇒短D. 短⇒短⇒长6.下列水平放置的几何体中,俯视图是矩形的是()A. 圆柱B. 长方体C. 三棱柱D. 圆锥7.下列四个几何体中,左视图为圆的是()A. B. C. D.8.下列立体图形中,俯视图是正方形的是()A. B. C. D.9.如图四个几何体,其中,它们各自的主视图与俯视图不相同的几何体的个数是()A. 1B. 2C. 3D. 410.如图的几何体是由六个完全相同的正方体组成的,这个几何体的主视图是()A. B. C. D.二、填空题11.直角坐标平面内,一点光源位于A(0,5)处,线段CD⊥x轴,D为垂足,C(3,1),则CD在x轴上的影长为________ ,点C的影子的坐标为________ .12.如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图和左视图的面积之和是________13.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为________14.一个上下底密封的纸盒的三视图如图所示,请你根据图中的数据,计算这个密封纸盒的表面积为________m2.(结果保留π)15.皮影戏中的皮影是由投影得到的________ .16.三棱柱的三视图如图所示,△EFG中,EF=10cm,EG=16cm,∠EGF=30°,则AB的长为________cm .17.某长方体包装盒的展开图如图所示,如果长方体盒子的长比宽多4cm,则这个包装盒的体积是________ cm3.18.如图是一个正方体的展开图,如果将它折成一个正方体,相对面上的数相等,则x+y的值为________.三、解答题19.如图是由6个相同的正方形拼成的图形,请你将其中一个正方形移动到合适的位置,使它与另5个正方形能拼成一个正方体的表面展开图.(请在图中将要移动的那个正方形涂黑,并画出移动后的正方形).20.有一个正方体,在它的各个面上分别标上数字1、2、3、4、5、6,甲、乙、丙三位同学从三个不同的角度去观察此正方体,观察结果如图所示:请画出正方体的一种表面展开图,(要求把数字标注在表面展开图中)21.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.22.观察:下图中的几何体是由若干个完全相同的小正方体搭成的.(1)画出几何体的主视图,左视图,俯视图;(2)能移走一个小正方体使它的三个视图都不变吗?23.如图,是一个由若干同样大小的正方体搭成的几何体俯视图,小正方形中的数字表示在该位置的立方体的个数.(1)请你画出它的从正面看和从左面看的形状图.(2)如果每个立方体的棱长为2cm,则该几何体的表面积是多少?24. 小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题1.A2.D3.B4.B5.A6.B7. D8.B9.C 10.A二、填空题11.;(3.75,0)12.5 13.48π 14.600π 15.中心投影16.8 17.90 18. 11三、解答题19.解:答案如下:20.解:从3个小立方体上的数可知,与写有数字1的面相邻的面上数字是2,3,4,6,所以数字1面对数字5面,同理,立方体面上数字3对6.故立方体面上数字2对4.作图为:21.解:22.(1)(2)去掉粉红色的立方体,三视图不变23.解:(1)如图所示:(2)(2×2)×(6×2+6×2+5×2+4)=4×38=152(平方厘米).故该几何体的表面积是152平方厘米.24.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.。

人教版九年级下《第二十九章投影与视图》单元测试题(含答案).docx

第二十九章投影与视图一、选择题(本大题共7小题,每小题5分,共35分)1.下列结论中正确的有()① 同一地点、同一时刻,不同物体在阳光照射下,影子的方向是相同的; ② 不同物体在任何光线照射下影子的方向都是相同的; ③ 同一物体在路灯照射下,影子的方向与路灯的位置有关; ④ 物体在光线照射下,影子的长短仅与物体的长短有关.如图29-Z-1是某零件的直观图,则它的主视图为()图 29-Z-1如图29-Z-3是水平放置的圆柱形物体,物体中间有一根细木棒,则此几何体的左视图是()图 29-Z-45. 一个正方体被截去四个角后得到一个几何体(如图29-Z-5),它的俯视图是A. 1个B. 2个C ・3个D. 4个2. 圆形物体在阳光下的投影不可能是() A. 圆形B.线段C.矩形D.椭圆3. B C 图 29-Z-24. 正面AD止面图 29-Z-3ABCD6. 由一些大小相同的小正方体组成的几何体的三视图如图29-Z-7所示,那么组成这个几何体的小正方体有(左视图图 29-Z-7A ・4个 B. 5个 C. 6个 D. 7个7. 一个几何体的三视图如图29-Z-8所示,则这个几何体的侧面积为()图 29-Z-8 A • 2兀 cnT B • 4兀 cnT C. 8兀 cm 2 D• I671 cm 2二、填空题(本大题共6小题,每小题5分,共30分)8. 写出一个在三视图中俯视图与主视图完全相同的儿何体: _________ ・ 9. 如图29-Z-9是由四个小正方体组成的几何体,若每个小正方体的棱长都是1,则该几何体的俯视图的面积是A 图 29-Z-5图 29-Z-6D主视图 俯视图图29-Z-910. 一个几何体的三视图如图29-Z-10所示(其中标注的a, b, C 为相应的边长),则这个几何体的体积是 ________ •图 29-Z-1011. 已知小明同学身高1.5 m,经太阳光照射,在地上的影长为2 m,若此时测得一座塔在地上的影长为60 m,则塔高为 _________ m.12. 已知某正六棱柱的主视图如图29-Z-11所示,则该正六棱柱的表面积为60 f―> 1010图 29-Z-1113. 在桌面上摆放着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图29-Z-12所示,设组成这个几何体的小正方体的个数为弘则n 的最小值为三、解答题(本大题共3小题,共35分)14. (9分)画出如图29—Z —13所示几何体的三视图.图 29-Z-1315. (12分)如图29-Z-14,已知线段AB=2cm,投影面为P,太阳光线与投影面垂直.(1)当AB 垂直于投影面P 时(如图①),请画出线段AB 的投影;b主视图图 29-Z-12(2)当AB平行于投影面P吋(如图②),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂育于投影面P的平面内逆时针旋转30。

九年级数学下册第二十九章《投影与视图》综合测试(含答案解析)

学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.如图,是由-些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块最后搭成一个大的长方体,至少还需要添加()个小立方块.A.26 B.38 C.54 D.562.如图是由大小相同的小正方体搭成的几何体,将其中的一个小正方体①去掉,则三视图不发生改变的是()A.主视图B.俯视图C.左视图D.俯视图和左视图3.桌面上放着长方体和圆柱体各1个,按下图所示的方式摆放在一起,其左视图是()A.B.C.D.4.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A.9 B.10 C.11 D.125.下面几何体的左视图是( )A.B.C.D.6.如图是由一些相同的小正方体构成的立体图形的三视图.构成这个立体图形的小正方体的个数是()A.6 B.7 C.4 D.57.从上面看下图能看到的结果是图形()A.B.C.D.8.如图所示立体图形,从上面看到的图形是()A.B.C.D.9.如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是( )A.(1)(2)(3)(4) B.(4)(3)(2)(1) C.(4)(3)(1)(2) D.(2)(3)(4)(1)10.下列几何体中,其主视图、俯视图和左视图分别是图中三个图形的是()A.B.C.D.11.某展厅要用相同的正方体木块搭成一个展台,从正面、左面、上面看到的形状如图所示,请判断搭成此展台共需这样的正方体().A.6个B.5个C.4个D.3个12.如图是由5个相同的正方体搭成的几何体,其左视图是()A.B.C.D.13.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是()A.B.C.D.14.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是()A .12πB .6πC .12π+D .6π+二、填空题15.已知:如图是由若干个大小相同的小正方体所搭成的几何体从正面、左面和上面看到的形状图,则搭成这个几何体的小正方体的个数是_______.16.由几个相同的小正方体搭成的一个几何体如图所示,这个几何体的主视图可以看到5个小正方体的面,则俯视图与左视图能看到的小正方体的面的个数和为______.17.广场上一个大型艺术字板块在地上的投影如图所示,则该投影属于_____.(填写“平行投影”或“中心投影”)18.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.19.如图,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m ,CD=6m ,点P 到CD 的距离是2.7m ,则点P 到AB 间的距离是________.20.如图,是某一个几何体的俯视图,主视图、左视图,则这个几何体是________.21.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是____.22.如图所示,是从不同方向看到的由一些小立方块搭成的几何体的形状图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以便搭成一个大正方体,则至少还需要______个小立方块.23.如图,一棵树(AB)的高度为7.5米,下午某一个时刻它在水平地面上形成的树影长(BE)为10米,现在小明想要站这棵树下乘凉,他的身高为1.5米,那么他最多可以离开树干多少米才可以不被阳光晒到?____.24.如图,小军、小珠之间的距离为2.8m,他们在同一盏路灯下的影长分别为1.7m,1.5m,已知小军、小珠的身高分别为1.7m,1.5m,则路灯的高为________m.25.一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为____.26.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是________.三、解答题27.如图,若干个完全相同的小正方体堆成一个几何体.(1)请在图中方格中画出该几何体的左视图和俯视图.(2)用若干小立方体搭一个几何体,使得它的左视图和俯视图与你在方格中所画的一致,则这样的几何体最多要个小立方块.(3)若小正方体的棱长为1cm,如果将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,求需喷漆部分的面积.28.如图所示是由几个小立方体所组成几何体从上面看到的形状,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体从正面和从左面看到的形状.A B,且木棒AB的长为8cm. 29.已知木棒AB垂直投射于投影面a上的投影为11A B长;(1)如图(1),若AB平行于投影面a,求11A B长.(2)如图(2),若木棒AB与投影面a的倾斜角为30,求这时1130.如图各图是棱长为1cm的小正方体摆成的,如图①中,从正面看有1个正方形,表面积为6cm2;如图②中,从正面看有3个正方形,表面积为18cm2;如图③,从正面看有6个正方形,表面积为36cm2;…(1)第6个图中,从正面看有多少个正方形?表面积是多少?(2)第n个图形中,从正面看有多少个正方形?表面积是多少?【参考答案】一、选择题1.A2.C3.C4.C5.C6.A7.D8.C9.C10.A11.C12.A13.D14.B二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几16.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别17.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影18.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股定理19.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P到AB距离为x则=x=09故答案为09m【点睛20.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱21.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体22.19【分析】先由主视图左视图俯视图求出原来的几何体共有8个立方块再根据搭成的大正方体的共有3×3×3=27个小立方块即可得出答案【详解】解:由主视图可知原来的几何体有三层且有3列;由左视图可知搭成的23.8【分析】设小明这个时刻在水平地面上形成的影长为x米利用同一时刻物体的高度与影长成正比得到=解得x=2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x米根据题意得=解得x=24.3【分析】如图由题意证明AB=EBAB=BF推出DB=AB﹣17BN=AB﹣15根据DN=28构建方程求解即可【详解】解:如图由题意可得:在Rt△CDE中CD=DE=17m在Rt△MNF中MN=NF25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC中作AD⊥BC于D则26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键三、解答题27.28.29.30.【参考解析】一、选择题1.A解析:A【分析】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×3×3=36个小正方体,即可得出答案.【详解】解:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×3×3=36个小正方体,∴至少还需要36-10=26个小正方体.故选:A.【点睛】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.2.C解析:C【分析】利用结合体的形状,结合三视图可得出主视图没有发生变化.【详解】解:主视图由原来的三列变为两列;俯视图由原来的三列变为两列;左视图不变,依然是两列,左起第一列是两个小正方形,第二列底层是一个小正方形.故选:C.【点睛】本题考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题的关键.3.C解析:C【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查三视图的知识,左视图是从物体的左面看得到的视图.4.C解析:C【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据主视图与俯视图得出答案.【详解】解:根据几何体的主视图和俯视图,可以得出那个主视图看最少5个,那个俯视图看,最左边正方形前后可以有三列,分别有三个⨯+个.故最多有332=11故选C.【点睛】本题考查了三视图的应用,根据从俯视图看,最左边正方形前后可以有三列,分别有三个从而得出答案是解决问题的关键.5.C解析:C【分析】根据三视图的定义,从左边观察可得.【详解】从左面看可得到左边有2个正方形,右边有1个正方形.故选:C.【点睛】考核知识点:三视图.注意观察的方向.6.A解析:A【分析】利用三视图的观察角度不同得出行数与列数,结合主视图得出答案.【详解】解:如图所示:由左视图可得此图形有3行,由俯视图可得此图形有3列,由主视图可得此图形最左边一列有4个小正方体,中间一列有1个小正方体,最右边一列有1个小正方体,故构成这个立体图形的小正方体有6个.故选:A.【点睛】此题主要考查了由三视图判断几何体,利用三视图得出几何体的形状是解题关键.7.D解析:D【分析】先细心观察原立体图形中的圆锥体和长方体的位置关系,结合四个选项选出答案.【详解】从上面往下看到左边一个长方形,右边一个圆,因此只有D的图形符合这个条件.故选:D.【点睛】本题考查了三视图的知识,解题的关键是熟知俯视图是从上面往下的视图.8.C解析:C【分析】从上面看到3列正方形,找到相应列上的正方形的个数即可.【详解】从上面看得到从左往右3列正方形的个数依次为2,1,1,故选C.【点睛】本题考查了简单组合体的三视图,解决本题的关键是得到3列正方形具体数目.9.C解析:C【分析】根据平行投影的规律:早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长可得.【详解】根据平行投影的规律知:顺序为(4)(3)(1)(2).故选C.【点睛】本题考查平行投影的特点和规律.在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,就北半球而言,从早晨到傍晚物体的指向是:西-西北-北-东北-东,影长由长变短,再变长.10.A解析:A【解析】分析:根据三视图想象立体图形,从主视图可以看出左边的一列有两个,左视图可以看出右边一列有两个,俯视图中左边的一列有两个,综合起来可得解.详解:从主视图可以看出左边的一列有两个,右边的两列只有一行(第二行);从左视图可以看出右边的一列有两个,左边的一列只有一行(第二行);从俯视图可以看出左边的一列有两个,右边的两列只有一行(第一行).故选A..做这类题时要借助三种视图表示物体的特点,从主点睛:本题考查由三视图想象立体图形视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.11.C解析:C【分析】这些正方体分前、后两排,左、右两行.后排左边是一列2个正方体,右边一个正方体;前排1个正方体,与后排右列对齐.【详解】如图搭成此展台共需这样的正方体(如下图)共需4个这样的正方体.故选C.【点睛】本题是考查作简单图形的三视图,能正确辨认从正面、上面、左面(或右面)观察到的简单几何体的平面图形.12.A解析:A【分析】根据三视图的定义即可判断.【详解】根据立体图可知该左视图是底层有2个小正方形,第二层左边有1个小正方形.故选A.【点睛】本题考查三视图,解题的关键是根据立体图的形状作出三视图,本题属于基础题型.13.D解析:D【解析】【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看易得第一层左侧有1个正方形,第二层有3个正方形.故选D.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.14.B解析:B【解析】【分析】根据三视图确定该几何体是圆柱体,再根据主视图上的数据计算圆柱体的侧面积即可.【详解】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1,高是3.所以该几何体的侧面积为2π×1×3=6π.故选:B.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.二、填空题15.【分析】根据主视图和俯视图判断几何体的底层的正方体的个数根据主视图和左视图判断几何体的第二和第三层的正方体的个数计算即可【详解】解:从主视图和俯视图可知几何体的底层有4个正方体从主视图和左视图可知几解析:6【分析】根据主视图和俯视图判断几何体的底层的正方体的个数,根据主视图和左视图判断几何体的第二和第三层的正方体的个数,计算即可.【详解】解:从主视图和俯视图可知,几何体的底层有4个正方体,从主视图和左视图可知,几何体的第二和第三层各一个正方体,则搭成这个几何体的小正方体的个数为:4+1+1=6,故答案为:6.【点睛】本题考查的是由三视图判断几何体,掌握几何体的主视图、左视图和俯视图的概念是解题的关键.16.7【分析】左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别为121据此计算即可【详解】解:根据题意可得左视图有2列每列小正方形数目分别为21;俯视图有3列每行小正方形数目分别解析:7【分析】左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.据此计算即可.【详解】解:根据题意可得左视图有2列,每列小正方形数目分别为2,1;俯视图有3列,每行小正方形数目分别为1,2,1.∴俯视图与左视图能看到的小正方体的面的个数和为:2+1+1+2+1=7.故答案为:7【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.17.中心投影【解析】【分析】找出光源即可得出结果【详解】如图可知该投影属于中心投影故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行而中心投影的投影线交于一点主要从形成投影解析:中心投影【解析】【分析】找出光源即可得出结果.【详解】如图可知,该投影属于中心投影.故答案为:中心投影【点睛】平行投影与中心投影之间的区别是平行投影的投影线互相平行,而中心投影的投影线交于一点.主要从形成投影的光线来比较两者的区别.18.20cm【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股定理解析:20 cm.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得2222A B A D BD121620'='+=+=(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.19.09m【分析】根据AB∥CD易得△PAB∽△PCD根据相似三角形对应高之比等于对应边之比列出方程求解即可【详解】∵AB∥CD∴△PAB∽△PCD∴假设P 到AB距离为x则=x=09故答案为09m【点睛解析:0.9m【分析】根据AB∥CD,易得,△PAB∽△PCD,根据相似三角形对应高之比等于对应边之比,列出方程求解即可.【详解】∵AB∥CD,∴△PAB∽△PCD,∴ 2.7ABx CD=,假设P到AB距离为x,则2.7x=26,x=0.9.故答案为0.9m.【点睛】考查了相似三角形的性质和判定.本题考查了相似三角形的判定和性质,常用的相似判定方法有:平行线,AA,SAS,SSS;常用到的性质:对应角相等;对应边的比值相等;相似三角形对应高之比等于对应边之比;面积比等于相似比的平方.解此题的关键是把实际问题转化为数学问题(三角形相似问题).20.圆柱【解析】解:这个几何体是圆柱故答案为:圆柱解析:圆柱【解析】解:这个几何体是圆柱.故答案为:圆柱.21.8【解析】试题分析:根据从上边看得到的图形是俯视图可知从上边看是一个梯形:上底是1下底是3两腰是2周长是1+2+2+3=8故答案为8考点:1简单组合体的三视图;2截一个几何体解析:8【解析】试题分析:根据从上边看得到的图形是俯视图,可知从上边看是一个梯形:上底是1,下底是3,两腰是2,周长是1+2+2+3=8,故答案为8.考点:1、简单组合体的三视图;2、截一个几何体22.19【分析】先由主视图左视图俯视图求出原来的几何体共有8个立方块再根据搭成的大正方体的共有3×3×3=27个小立方块即可得出答案【详解】解:由主视图可知原来的几何体有三层且有3列;由左视图可知搭成的解析:19【分析】先由主视图、左视图、俯视图求出原来的几何体共有8个立方块,再根据搭成的大正方体的共有3×3×3=27个小立方块,即可得出答案.【详解】解:由主视图可知,原来的几何体有三层,且有3列;由左视图可知,搭成的几何体共有3行;由俯视图易得最底层有5个小立方体,第二层有2个小立方体,第三层有1个小立方块,共有5+2+1=8个小立方块,∵搭成的大正方体的共有3×3×3=27个小立方块,∴至少还需要27−8=19个小立方块.故答案为:19.【点睛】本题考查了三视图,重点培养学生的空间想象能力,解题的关键是求出原来的几何体及搭成的大正方体共有多少个小立方块.23.8【分析】设小明这个时刻在水平地面上形成的影长为x米利用同一时刻物体的高度与影长成正比得到=解得x=2然后计算两影长的差即可【详解】解:设小明这个时刻在水平地面上形成的影长为x米根据题意得=解得x=解析:8【分析】设小明这个时刻在水平地面上形成的影长为x 米,利用同一时刻物体的高度与影长成正比得到1.5x =107.5,解得x =2,然后计算两影长的差即可. 【详解】解:设小明这个时刻在水平地面上形成的影长为x 米, 根据题意得1.5x =107.5,解得x =2, 小明这个时刻在水平地面上形成的影长为2米,因为10﹣2=8(米),所以他最多离开树干8米才可以不被阳光晒到.故答案为:8.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.同一时刻物体的高度与影长成正比.24.3【分析】如图由题意证明AB =EBAB =BF 推出DB =AB ﹣17BN =AB ﹣15根据DN =28构建方程求解即可【详解】解:如图由题意可得:在Rt △CDE 中CD =DE =17m 在Rt △MNF 中MN =NF解析:3【分析】如图,由题意证明AB =EB ,AB =BF ,推出DB =AB ﹣1.7,BN =AB ﹣1.5,根据DN =2.8,构建方程求解即可.【详解】解:如图,由题意可得:在Rt △CDE 中,CD =DE =1.7m ,在Rt △MNF 中,MN =NF =1.5m ,∵∠CDE =∠MNF =90°,∴∠E =∠F =45°,∵AB ⊥EF ,∴AB =EB =BF ,∴DB =AB ﹣1.7,BN =AB ﹣1.5,∵DN =2.8m ,∴2AB ﹣1.7﹣1.5=2.8,∴AB =3(m ),即路灯的高为3米.故答案为:3.【点睛】本题考查了中心投影和等腰直角三角形的判定和性质,属于常考题型,熟练掌握上述知识是解题的关键.25.【分析】先判断出几何体为正三棱柱求出三棱柱的底面积最后求表面积即可【详解】解:由三视图得几何体为正三棱柱上下底为边长为2的等边三角形侧面积为长为3宽为2的矩形如图等边三角形ABC 中作AD ⊥BC 于D 则 解析:1823+ 【分析】 先判断出几何体为正三棱柱,求出三棱柱的底面积,最后求表面积即可. 【详解】 解:由三视图得,几何体为正三棱柱,上下底为边长为2的等边三角形,侧面积为长为3,宽为2的矩形.如图,等边三角形ABC 中,作AD ⊥BC 于D ,则BD=1BC=12, 在t ABD R △中,2222AD=AB -BD =21=3-;∴11=BC AD=23=322ABC S ⨯⨯⨯⨯△, ∴三棱柱的表面积为23323=18+23⨯⨯+⨯.故答案为: 183+【点睛】本题考查了三视图,等边三角形的面积计算等知识,根据三视图判断出几何体形状是解题关键.26.18【分析】这个几何体的表面积是主视图左视图俯视图的面积和的2倍【详解】(3+3+3)×2=18故答案为18【点睛】本题考查了几何体的表面积的计算方法将问题转化为三视图面积和的2倍是解决问题的关键解析:18【分析】这个几何体的表面积是主视图、左视图、俯视图的面积和的2倍.【详解】(3+3+3)×2=18.故答案为18.【点睛】本题考查了几何体的表面积的计算方法,将问题转化为三视图面积和的2倍是解决问题的关键.三、解答题27.30cm(1)见解析;(2)14;(3)2【分析】(1)从上面看得到从左往右3列正方形的个数依次为3,2,1,依此画出图形即可;从左面看得到从左往右3列正方形的个数依次为3,2,1,;依此画出图形即可;(2)由俯视图易得最底层小立方块的个数,由左视图找到其余层数里最多个数相加即可;(3)数一数有多少个正方形露在外面即可求得面积.【详解】解:(1)如图所示:(2)由俯视图易得最底层有6个小立方块,第二层最多有5个小立方块,第三层最多有3个小立方块,所以最多有6+5+3=14个小立方块.故答案为:14;(3)若将图1中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,30cm,则需要喷6×2+6×2+6=30个小正方形,面积为230cm.故需喷漆部分的面积为2【点睛】本题考查了作图-三视图,用到的知识点为:三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,俯视图决定底层立方块的个数,易错点是由左视图得到其余层数里最多的立方块个数.。

九年级数学下册《第二十九章-投影》练习题附答案解析-人教版

九年级数学下册《第二十九章投影》练习题附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.小明在操场上练习双杠时,则发现两横杠在地上的影子().A.相交B.平行C.垂直D.无法确定2.身高1.6米的小明同学利用相似三角形测量学校旗杆的高度,上午10点,小明在阳光下的影长为1米,此时测得旗杆的影长为9米,则学校旗杆的高度是()A.9米B.10米C.13.4米D.14.4米3.如图是某学校操场上单杠(图中实线部分)在地面上的影子(图中虚线部分),可判断形成该影子的光线为()A.该影子实际不可能存在B.可能是太阳光线也可能是灯光光线C.太阳光线D.灯光光线4.在下列四幅图形中能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A.A B.B C.C D.D5.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A .B .C .D . 6.如果在同一盏路灯下,小明与小强的影子一样长,下列说法正确的是( )A .小明比小强的个子高B .小强比小明的个子高C .两个人的个子一样高D .无法判断谁的个子高7.下列物体的影子中不正确的是( )A .B .C .D .8.正方形在太阳光下的投影不可能是( ).A .正方形B .一条线段C .矩形D .三角形9.如图,在平面直角坐标系中点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是( )A B C .13 D .310.如图,树AB 在路灯O 的照射下形成投影AC ,已知树的高度3m AB =,树影4m AC =,树AB 与路灯O 的水平距离6m AP =,则路灯高PO 的长是( )A .2mB .4.5mC .7.5mD .12m11.如图,在直角坐标系中点P (2,2)是一个光源.木杆AB 两端的坐标分别为(0,1),(3,1).则木杆AB 在x 轴上的投影长为( )A .3B .4C .5D .612.当投影线由物体的左方射到右方时,则如图所示几何体的正投影是( )A .B .C .D .13.当棱长为20的正方体的某个面平行于投影面时,则这个面的正投影的面积为()A.20 B.300 C.400 D.60014.下列关于投影与视图的说法正确的是()A.平行投影中的光线是聚成一点的B.线段的正投影还是线段C.三视图都是大小相同的圆的几何体是球D.正三棱柱的俯视图是正三角形15.下列投影是正投影的是( )A.①B.②C.③D.都不是16.小明在太阳光下观察矩形木板的影子,不可能是()A.平行四边形B.矩形C.线段D.梯形17.下列四幅图,表示两棵树在同一时刻阳光下的影子是()A.B.C.D.18.几何体在平面P的正投影,取决于()①几何体形状;②投影面与几何体的位置关系;③投影面P的大小.A.①②B.①③C.②③D.①②③二、解答题19.①操作方法:选一名学生为观测者,在他和旗杆之间的地面上直立一根高度已知的标杆,观测者前后调整自己的位置,使旗杆顶部、标杆顶部与眼睛恰好在同一直线上时,则分别测出,以及,然后测出即可求出旗杆的高度.②点拨:如图,过点A作AN⊥DC于N,交EF于M.△_____∽△_____∴()()=()(),代入测量数据即可求出旗杆CD的高度.20.如图,在安装路灯AB的路面CD比种植树木的地面PQ高 1.2mCP=,身高1.8m的红英MN站在距离C点15米的路面上.在路灯的照射下,路基CP留在地面上的影长EP为0.4米(1)画出红英MN在地面的影子NF;(2)若红英留在路面上的影长NF为3m,求路灯AB的高度.21.如图,一艘货轮在海面上航行,准备要停靠到码头C,货轮航行到A处时,则测得码头C在北偏东60°方向上.为了躲避A,C之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B处后,又沿着南偏东70°方向航行20海里到达码头C.求货轮从A到B航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).22.如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A处测得古亭B位于北偏东60°,他们向南走50m到达D点,测得古亭B位于北偏东45°,求古亭与古柳之间的距离AB 1.41 1.73,结果精确到1m).23.分别画出下列几个几何体从正面和上面看的正投影.24.如图,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24︒.求斜坡上相邻两树间的坡面距离(结果保留小数点后一位).三、填空题25.如图所示是两棵小树在同一时刻的影子,可以断定这是_______投影.(填“平行投影”或“中心投影”)26.如图,在ABC 中8cm,16cm AB AC ==,点P 从A 出发,以2cm/s 的速度向B 运动,同时点Q 从C 出发,以3cm/s 的速度向A 运动,当其中一个动点到达端点时,则另一个动点也随之停止运动,设运动的时间为t .(1)用含t 的代数式表示:AQ =_______;(2)当以A ,P ,Q 为顶点的三角形与ABC 相似时,则运动时间t =________27.对于一个物体(例如一个正方体)在三个投影面内进行正投影①在正面内得到的由前向后观察物体的视图,叫____.②在水平面内得到的由上向下观察物体的视图,叫做____.③在水平面内得到的由左向右观察物体的视图,叫做____.28.如图,把一根直的细铁丝(记为线段AB )放在三个不同位置;三种情形下铁丝的正投影各是什么形状?(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有交点).通过观察,我们可以发现:(1)当线段AB平行于投影面α时,则它的正投影是线段A1B1,线段与它的投影的大小关系为AB_____A1B1;(2)当线段AB倾斜于投影面α时,则它的正投影是线段A2B2,线段与它的投影的大小关系为AB______A2B2;(3)当线段AB垂直于投影面α时,则它的正投影是一个________.参考答案与解析1.【答案】B【分析】根据平行投影的特点即可求解.【详解】解:依题意得两横杠在地上的影子平行.故选:B.2.【答案】D【分析】同一时刻,物体的实际高度与影长成比例,据此列方程即可解答.【详解】∵同一时刻的物高与影长成正比例∴1.6∶1=旗杆的高度∶9.∴旗杆的高度为14.4米.故选D.3.【答案】D【分析】根据平行投影和中心投影的特点分析判断即可.【详解】解:若影子是由太阳光照射形成的,则两条直线一定平行;若影子是由灯光照射形成的,则两条直线一定相交.据此可判断形成该影子的光线为灯光光线.故选:D.4.【答案】D【分析】由太阳光是平行光线,可知同一时刻下,影子的朝向一致,由此进行求解即可.【详解】解:太阳光是平行光线,因此同一时刻下,影子的朝向是一致的.故选:D.5.【答案】D【分析】因为中心投影物体的高和影长成比例,正确的区分中心投影和平行投影,依次分析选项即可找到符合题意的选项【详解】因为正方形的对角线互相垂直,且一条对角线垂直地面,光源与对角线组成的平面垂直于地面,则有影子的对角线仍然互相垂直,且由于光源在平板的的上方,则上方的边长影子会更长一些故选D6.【答案】D【分析】在同一路灯下由于位置不确定,根据中心投影的特点判断得出答案即可.【详解】解:在同一路灯下由于小明与小强位置不确定,虽然影子一样长,但无法判断谁的个子高.故选:D.7.【答案】B8.【答案】D【分析】同一时刻,平行物体的投影仍旧平行.则正方形在太阳光下的投影得到的应是平行四边形或是特殊的平行四边形或线段.【详解】A项:正方形是特殊的平行四边形,符合要求;B项:线段,符合要求;C项:矩形是特殊的平行四边形,符合要求;D项:三角形不是平行四边形,不是特殊的平行四边形,不是线段,不符合要求.故选D9.【答案】C【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解.【详解】∵P 点坐标为(1,1)则OP 与x 轴正方向的夹角为45°又∵OP AB ∥则∠BAO =45°,OAB 为等腰直角形∴OA =OB设OC =x ,则OB =2OC =2x则OB =OA =3x ∴tan 133OC x OAP OA x ∠===. 【点睛】本题考查了等腰三角形的性质、平行线的性质、勾股定理和锐角三角函数的求解,根据P 点坐标推出特殊角是解题的关键.10.【答案】C【分析】根据相似三角形的判定与性质直接求解即可. 【详解】解:根据题意可知AB PO ∥C C ∴∠=∠ CAB CPO ∠=∠CAB CPO ∴∆∆∽AB PO AC PC ∴=,即3446PO =+,解得30157.542PO ===m∴路灯高PO 的长是7.5m故选:【答案】C .11.【答案】D【分析】利用中心投影,延长PA 、PB 分别交x 轴于A ′、B ′,作PE ⊥x 轴于E ,交AB 于D ,如图,证明△PAB ∽△PA ′B ′,然后利用相似比可求出A 'B '的长.【详解】解:延长PA 、PB 分别交x 轴于A ′、B ′,作PE ⊥x 轴于E ,交AB 于D ,如图∵P(2,2),A(0,1),B(3,1).∴PD=1,PE=2,AB=3∵AB//A′B′∴△PAB∽△PA′B′∴AB PDA B PE''=,即312A B=''∴A′B′=6故选:D.12.【答案】A【详解】试题解析:从左边看第一层一个小正方形,第二层一个小正方形.故选A.13.【答案】C【分析】根据平行投影性质可知该正方体的正投影是边长为20的正方形,计算可得.【详解】解:根据题意知,该正方体的正投影是边长为20的正方形∴正投影的面积为2020400⨯=故选C.14.【答案】C【分析】根据排除法判断即可;【详解】平行投影中的光线是是平行的,而不是聚成一点的,故A错误;线段的正投影不一定是线段,比如光线平行于线段时,则正投影是一点,故B错误;三视图都是大小相同的圆的几何体是球,故C正确;正三棱柱的俯视图不一定是正三角形,要看它如何放置,如水平放置,它是矩形,故D错误;故答案选C.15.【答案】C【分析】平行投影法分为正投影和斜投影,正投影是平行光垂直于屏幕的投影.【详解】根据题意:①是点光源的投影,是错误的;②是斜投影,故错误;③是正投影,故正确.故选C.16.【答案】D【分析】根据平行投影的特点可确定矩形木板与地面平行且与光线垂直时所成的投影为矩形;当矩形木板与光线方向平行且与地面垂直时所成的投影为一条线段;除以上两种情况矩形在地面上所形成的投影均为平行四边形,据此逐一判断即可得答案.【详解】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意B.将矩形木框与地面平行放置时,则形成的影子为矩形,故该选项不符合题意C.将矩形木框立起与地面垂直放置时,则形成的影子为线段D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等∴得到投影不可能是梯形,故该选项符合题意故选:D.17.【答案】B【分析】根据平行投影的意义和性质,得出影子与实物的位置和大小关系得出答案.【详解】解:太阳光和影子,同一时刻,杆高和影长成正比例,且影子的位置在物体的统一方向上可知,选项B中的图形比较符合题意;故选:B.18.【答案】A【详解】试题分析:对于①,同一个方向球体和长方体的正投影的形状是不同的,故①与题意相符;对于②,保持平行光线和投影面的位置不变,转动长方体的位置,投影的形状会改变,故②与题意相符;对于③,投影面的大小和投影的形状无关,故③与题意不符.故选A.19.【答案】①观测者的脚到旗杆底端的距离,观测者的脚到标杆底端的距离,标杆的高,②AME,ANC,AM AN=EM CN20.【答案】(1)见解析(2)9米【分析】(1)根据相似即可画出影子NF;(2)如图,设AB=x m,CB=y m.构建方程组解决问题即可.(1)解:如图所示:(2)解:设AB x = CB y = ∵AB PC BC EP= AB BF MN NF = ∴ 1.20.41.81533x y x y ⎧=⎪⎪⎨⎪=⎪-+⎩∴解得93x y =⎧⎨=⎩ 经检验93x y =⎧⎨=⎩是分式方程的解 ∴9AB =答:灯AB 的高度为9米.21.【答案】货轮从A 到B 航行的距离约为30.6海里.【分析】过B 作BD ⊥AC 于D ,在Rt △BCD 中利用正弦函数求得BD =15.32海里,再在Rt △ABD 中利用含30度角的直角三角形的性质即可求解.【详解】解:过B 作BD ⊥AC 于D由题意可知∠ABE =30°,∠BAC =30°,则∠C =180°-30°-30°-70°=50°在Rt △BCD 中∠C =50°,BC =20(海里)∴BD = BC sin50°≈20×0.766=15.32(海里)在Rt △ABD 中∠BAD =30°,BD =15.32(海里)∴AB =2BD =30.64≈30.6(海里)答:货轮从A 到B 航行的距离约为30.6海里.22.【答案】古亭与古柳之间的距离AB 的长约为137m【分析】过点B 作AD 的垂线,交DA 延长线于点C ,设m AC x =,则(50)m CD x =+,分别在Rt BCD 和Rt ABC △中解直角三角形求出,BC AB 的长,再建立方程,解方程可得x 的值,由此即可得出答案.【详解】解:如图,过点B 作AD 的垂线,交DA 延长线于点C由题意得:50m,60,45AD BAC D =∠=︒∠=︒设m AC x =,则(50)m CD AC AD x =+=+在Rt BCD 中tan (50)m BC CD D x =⋅=+在Rt ABC △中tan m BC AC BAC =⋅∠=与2m cos AC AB x BAC==∠则50x +=解得25x =则250137(m)AB x ==≈答:古亭与古柳之间的距离AB 的长约为137m .23.【答案】见解析 【分析】根据投影的概念逐个求解即可.【详解】解:从正面正投影依次为:从上面正投影依次为:【点睛】本题主要考查投影视图,解决本题的关键是要熟练掌握正投影的定义.24.【答案】6.0m【分析】根据题意画出图形,再根据三角函数可得AB =AC ÷cos24°,再代入数计算即可.【详解】解:如图:由题意得:AC =5.5米,∠A =24°AB =AC ÷cos24°=5.5÷0.914≈6.0(米).答:斜坡上两树间的坡面距离是6.0米.25.【答案】中心【分析】根据光线的平行和相交即可判断是平行投影和中心投影.【详解】解:因为影子的顶点和大树的顶点的连线不平行所以它们的光线应该是点光源.所以是中心投影.故答案为:中心.26.【答案】163t -##316-+t 167秒或4秒 【分析】(1)根据路程=速度⨯时间,即可表示出AQ 的长度.(2)此题应分两种情况讨论.①当APQ ABC ∽时;②当APQ ACB ∽时.利用相似三角形的性质求解即可.【详解】解:(1)由题意可知:163=-AQ t(2)连接PQ∵∠PAQ =∠BAC∴当AP AQ AB AC =时,则APQ ABC ∽,即2163816t t -=,解得167t =; 当AP AQ AC AB =时,则APQ ACB ∽,即2163168t t -=,解得t=4. ∴运动时间为167秒或4秒.故答案为:163t167秒或4秒27.【答案】主视图俯视图左视图28.【答案】= > 点A3(B3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
C B A 人教版 九下数学第二十九章《投影与视图》单元测试及答案【2】
(时限:100分钟 满分:100分)
班级 姓名 总分 一、填空题:(本大题共12小题,每小题2分,共24分)
1.平行投影中光线是( )
A.平行的
B.聚成一点的
C.不平行的
D.向四面八方发散的 2.木棒长为1.2m ,则它的正投影的长一定( )
A.大于1.2m
B.小于1.2m
C.等于1.2m
D.小于或等于1.2m 3.如图是一根电线杆在一天中不同时刻的影长图,试按一天中时间先后顺序排列,正确的是( )
A.①②③④
B.④①③②
C.④②③①
D.④③②① 4.下图是一个立体图形的二视图,根据图示的数据求出这个立体图形的体积是( )
A.24cm
B.48cm
C.72cm
D.192cm 5.下面立方体的左视图应为( )
俯视图
左视图
主视图
俯视图
左视图
主视图
6.如图是某几何体的三视图及相关数据,则判断正确的是( )
A. a >c
B. b >c
C. 4a 2+b 2=c 2
D. a 2+b 2=c 2 7.如图是由一些相同的小正方体构成的几何体的三视图,则这个几何体的小正方体的
个数是( )
主视图 左视图 俯视图
A. 4个
B. 5个
C. 6个
D. 7个 8.将一个几何体放在桌子上,它的三视图如下,这个几何体是( )
俯视图 左视图 主视图 A.三棱体 B.长方体 C.正方体 D.球体
9.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的高和底边长
分别为( )
A.3,2
B. 2,2
C. 3,2
D. 2,3
10.下列投影一定不会改变△ABC的形状和大小的是()
A.中心投影
B.平行投影
C.正投影
D.当△ABC平行投影面时的平行投影
11.已知一个物体由x个相同的正方体堆成,它的主视图和左视图如图,那么x的最大
值是()
主视图左视图
A.13
B. 12
C. 11
D. 10
12.下面左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示
位置上小立方块的个数,则该几何体的主视图为()
3
4 2 1
1 2
二、填空题:(本大题共8小题,每小题3分,共24分)
13.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视
图、俯视图都完全相同的是.(填序号)
14.由一些大小相同的小正方体组成的几何体三视图如图所示,那么,组成这个几何体
的小正方体有块.
主视图左视图俯视图
4
2
15.正方形ABCD 的边长为3,以直线AB 为轴旋转一周,所得几何体的左视图的周长是 .
16.如图是一个几何体的三视图,其中主视图、左视图、都是腰为13cm ,底为10cm 的等腰三角形,则这个几何体的表面积为 .
主视图 左视图 俯视图
17.一个圆锥的轴截面平行于投影面,已知圆锥的正投影是边长为a 的等边三角形,则圆锥的体积是 .
18.某一时刻,身高为165cm 的小丽影长是55cm ,此时,小玲在同一地点测得旗杆的影长为5m ,则该旗杆的高度为 m.
19.如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是 (把下图中正确和立体图形的序号都填在横线上)

② ③ ④
20.如图,水平放置的长方体的底面是边长为2和4的矩形,它的左视图的面积为6,则长方体的体积等于 .
俯视图
左视图
主视图
三、解答题:(本大题共52分)
21.(7分) 圆形餐桌正上方有一个灯泡A ,灯泡A 照射到餐桌后在地面上形成阴影.已知餐桌的半径为0.4m 、高为1m ,灯泡距地面2.5m,求地面上阴影部分的面积.
22.(7分)一个几何体的三视图如图所示,它的俯视图为菱形,请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.
23.(8分)某班一位学生要过生日了,为了筹备生日聚会,班主任准备让学生自己动手制作生日礼帽.如图所示,是礼帽的三视图,计算制作一个这样的生日礼帽需要纸板的面积为多
24.(8分)求证:一个人在两个高度相同的路灯之间行走,他前后的两个影子的长度
之和是一个定值.
25.(8分)如图,花丛中有一路灯杆AB,在灯光下,小丽在D点处的影长DE=3米,
沿BD方向行走到达G点,DG=5米,这时小丽的影长GH=5米.如果小丽的身高为1.7米,求路灯杆AB的高度(精确到0.1米)
26.(7分)八年级美术老师在课堂上进行立体模型素描教学时,把14个棱长为10的
正方体摆成如图所示的形式,然后他把露出的表面都涂上不同的颜色,求被他涂上颜色部分的面积.
27.(7分)观察下列由棱长为1的小立方体摆成的图形.寻找规律,如图①中共有1
个小立方体,其中1个看得见,0个看不见;如图②共有8个立方体,其中7个看得见,1个看不见;如图③中,共有278个看不
见……
①②③
照此规律,请你判断第⑥个图中有多少个小立方块,有多少个看不见?
0.4x F
E D
C
B A
10
30D
O C
B
A
b
b a N M
F E D
C
B
A 参考答案 一、选择题:
1.A ;
2.D ;
3.B ;
4.B ;
5.B ;
6.D ;
7.B ;
8.A ;
9.C ;10.D ;11.C ;12.C ; 二、填空题:
13.②;14.5;15.18π;16.90π㎝2
;17.a 3
π;18.15;19.①、②、④;20.24; 三、解答题:
21.解:如图所示,设底面半径为x m
DE ∥BC 可得
= 解得 x =
∴底面面积为:π=πm 2
22.解:该几何体的形状是直四棱柱.
由三视图可知:棱柱底面菱形的对角线长分别为4cm 、3cm , ∴菱形的边长为 cm
∴棱柱的测面积=×8×4=80(cm 2) 23.解:由三视图可知,该几何体是圆锥体. 其中,底面直径是20cm ,高为30cm. 则圆锥的母线长为 =10cm 圆锥的表面积为 S =×20π×10 =100 (cm 2) ∴制作生日礼帽需要纸板100π (cm 2). 24.解:如图所示,CD 、EF 为路灯高度,AB 为该人高度, BM 、BN 为该人前后的两个影子. ∵AB ∥CD ∴= ∴= 即 MB =DB. 同理 BN =FB.
1.7523
1.7
x
H
G
F E D C B
A
∴MB +BN = =常数(定值).
25.解:如图所示, ∵CD ∥AB ∴= ∴= ① 同理 == ②
由①②得 = ∴BD =
∴= ∴x ≈6. 答 略.
26.解:从前、后、左、右看该物体均为6个正方形,从上面看有9个正方形, 所以被涂上颜色部分的面积为 6×100×4+900=3300.
27.解:照此规律,第⑥个图形中有216个小立方块,有125个小立方块看不见.。

相关文档
最新文档