仪器分析及光谱分析绪论
(完整版)仪器分析知识点整理..

(完整版)仪器分析知识点整理..教学内容绪论分子光谱法:UV-VIS、IR、F原子光谱法:AAS电化学分析法:电位分析法、电位滴定色谱分析法:GC、HPLC质谱分析法:MS、NRS第一章绪论⒈经典分析方法与仪器分析方法有何不同?经典分析方法:是利用化学反应及其计量关系,由某已知量求待测物量,一般用于常量分析,为化学分析法。
仪器分析方法:是利用精密仪器测量物质的某些物理或物理化学性质以确定其化学组成、含量及化学结构的一类分析方法,用于微量或痕量分析,又称为物理或物理化学分析法。
化学分析法是仪器分析方法的基础,仪器分析方法离不开必要的化学分析步骤,二者相辅相成。
⒉仪器的主要性能指标的定义1、精密度(重现性):数次平行测定结果的相互一致性的程度,一般用相对标准偏差表示(RSD%),精密度表征测定过程中随机误差的大小。
2、灵敏度:仪器在稳定条件下对被测量物微小变化的响应,也即仪器的输出量与输入量之比。
3、检出限(检出下限):在适当置信概率下仪器能检测出的被检测组分的最小量或最低浓度。
4、线性范围:仪器的检测信号与被测物质浓度或质量成线性关系的范围。
5、选择性:对单组分分析仪器而言,指仪器区分待测组分与非待测组分的能力。
⒊简述三种定量分析方法的特点和应用要求一、工作曲线法(标准曲线法、外标法)特点:直观、准确、可部分扣除偶然误差。
需要标准对照和扣空白应用要求:试样的浓度或含量范围应在工作曲线的线性范围内,绘制工作曲线的条件应与试样的条件尽量保持一致。
二、标准加入法(添加法、增量法)特点:由于测定中非待测组分组成变化不大,可消除基体效应带来的影响应用要求:适用于待测组分浓度不为零,仪器输出信号与待测组分浓度符合线性关系的情况三、内标法特点:可扣除样品处理过程中的误差应用要求:内标物与待测组分的物理及化学性质相近、浓度相近,在相同检测条件下,响应相近,内标物既不干扰待测组分,又不被其他杂质干扰第2章光谱分析法引论习题1、吸收光谱和发射光谱的电子能动级跃迁的关系吸收光谱:当物质所吸收的电磁辐射能与该物质的原子核、原子或分子的两个能级间跃迁所需要的能量满足ΔE=hv的关系时,将产生吸收光谱。
仪器分析习题答案-光谱分析部分讲解

仪器分析部分作业题参考答案第一章绪论1-21、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。
2、共同点:都是进行组分测量的手段,是分析化学的组成部分。
1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。
分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。
仪器分析与分析仪器的发展相互促进。
1-7因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。
因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。
第二章光谱分析法导论2-1光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。
各部件的主要作用为:光源:提供能量使待测组分产生吸收包括激发到高能态;单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器;样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用;检测器:将光信号转化为可量化输出的信号。
信号处理与输出装置:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方式输出。
2-2:单色器的组成包括:入射狭缝、透镜、单色元件、聚焦透镜、出射狭缝。
各部件的主要作用为:入射狭缝:采集来自光源或样品池的复合光; 透镜:将入射狭缝采集的复合光分解为平行光;单色元件:将复合光色散为单色光(即将光按波长排列)聚焦透镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像; 出射狭缝:采集色散后具有特定波长的光入射样品或检测器 2-3棱镜的分光原理是光的折射。
现代仪器分析知识点.

第一章、绪论分析信息:分析所依据的样品特征在分析科学中就是分析信息。
分析信号:仪器分析并不直接测定待测量,而是通过分析仪器,测定这些物理或物化特征,得到与样品待测量相关的电学、光学、热学等物理、物化参数,以这些物理量来承载分析信息,分析中它们是分析信息的载体称为分析信号。
仪器分析的一般流程:一、分析的准备 1、确定分析目标 2、选择分析技术,设计实验方法3、制备标样,采集存储样品二、分析信息的采集 4、样品的前处理 5、操作仪器,获取分析数据三、分析信息的提取 6、与标样比对,校正分析数据 7、运用数学方法,提取样品信息 8、分析数据表达为需要的分析结果 9、对分析结果的解释研究与利用仪器分析信息传递的环节:分析信息的加载、转换、关联与解析。
分析仪器的基本结构:分析信号发生器、信号检测器、信号处理器与输出信号显示器。
第二章、光谱分析导论光谱分析通过测定待测物的某种光谱,分别由样品光谱中的波长特征和强度特征进行定性、定量分析。
光学分析:凡是待测物受到某种能量作用后,产生光信号或引起光信号变化,或待测物受到光作用后,产生某种分析信号(如光声光谱分析中的声波)的分析方法,可称为光学分析。
光的波动性:时间参数:频率γ和周期Τ——描述振动状态在时间上的重复性特征;空间参数:波长λ和波数σ——描述振动状态在空间上的重复性特征;(时间参数仅取决于光源,空间参数取决于光源和传播光的介质);振幅Α——表现为宏观的光强度;相位θ c =λν =ν/σ,σ =1/λ;描述单色(只有一种波长成分)平行光的波动方程是:Y(x,t)=A cos 2π(νt-σx+θ)= A cos 2π(t/T-x/λ+θ)式中:Y(x,t)为时间t离开光源距离为x 处的电场强度;A为振幅;θ为初相位。
频率υ、周期T均为时间参数,分别指每单位时间内电场振动的次数与电场每振动一次所需时间。
υ与T互为倒数,即υ=1/T。
波数σ、波长λ均为空间参数,分别指在空间每单位(cm)中含有波的数目(单位:cm﹣1),与振动状态在一个周期内传播的距离。
仪器分析 绪论

精品课件
2、容量因子(capacity factor) 在一定温度和压力下,组分在固定相和流
动相之间分配达到平衡时的质量比,称为容量 因子,也称分配比,用k表示。
K cs cm
k c sV s c mV m
c cs、 m分别为组分在固定相和流动相的浓度(g/ml);Vm为色谱
液体中观察原子图象
上图所示的是在电解液中得到的硫酸根离子吸附在铜单晶(111)表面的STM图象。 图中硫酸根离子吸附状态的一级和二级结构清晰可见。
精品课件
5. 配合扫描隧道谱(STS)可以得到 有关表面电子结构的信息,例如表面 不同层次的态密度。表面电子阱、电 荷密度波、表面势垒的变化和能隙结 构等.
液相色谱法 液-固色谱法 液-液色谱法
精品课件
精品课件
国产气相色谱仪
色谱-质谱联用仪
精品课件
精品课件
1. 高压钢瓶 2. 减压阀 3. 载气净化
干燥管 4. 稳流阀 5. 流量计 6. 压力表 7. 进样器 8. 色谱柱 9. 检测器 10. 色谱工作站
气相色谱仪通常由五部分组成:
Ⅰ 载气系统:气源、气体净化器、气体流速控制部件。 Ⅱ 进样系统:进样器、汽化室。 Ⅲ 分离系统:色谱柱、控温柱箱。 Ⅳ 检测系统:检测器、放大器、控温装置。 Ⅴ 记录与数据处理系统:记精录品仪课件、色谱工作站。
辐射的散射 辐射的折射 辐射的衍射 辐射偏振方向的旋转
电化学分析
主要分析方法
发射光谱分析、火焰光度分析
分子发光分析法、放射分析法 紫外-可见分光光度法
原子吸收分光光度法 红外光谱法、核磁共振波谱法 浊度法、拉曼光谱法
仪器分析绪论

只在实验室里分析已远远不够,要求进行现场、在线、实时、遥感等 分析;
只作破坏性的取样分析已远远不够, 要求作非破坏性的无损、 非浸入、 活体等分析。 科学技术的进步,新理论、新概念、新材料、新技术的发现与发明,也为 仪器分析的发 展提供"空前的可能"! 分析化学(尤其是仪器分析)的发展趋势
学科的发展:分析化学正在突破纯化学分支学科的框框,与数学、物
③ 操作简便,分析速度快,易于实现自动化和智能化。 ④ 应用范围广,不但可以作组分及含量的分析,在状态、结构分析上也 有广泛的应用。
⑤ 多数仪器分析的相对误差比较大, 不适于作常量和高含量组分的测定。 ⑥ 仪器分析所用的仪器价格较高,有的很昂贵,仪器的工作条件要求较 高。
3
2 仪致分为四大类:
5
理学、计算机科学及生物、生命、环境、天文、空间等科学更紧密地联系起 来,构成一门多学科间的交叉边缘科学,即"分析科学";
新分析方法的建立: 不断吸取现代科学技术的新成就, 建立新的分析 方法、新的分析技术,朝向高灵敏、高准确、高选择、高速度的方向发展;
分析仪器的发展:计算机技术的深入应用,使仪器更加自动化,智能 化,多机联用。如计算机-色谱-质谱、计算机-色谱-其他仪器等联用, 使仪器多功能化,提高仪器的效能;
1
⑥仪器分析的仪器设备一般比较复杂,价格比 较昂贵;而化学分析使用的 仪器一般比较简单。 分析化学的发展及仪器分析的产生 分析化学的发展已经历了三次巨大的变革 第一次变革 从 16 世纪天平的发明到 20 世纪初物理化学溶液理论(特别是四大反 应的平衡理论)的发展,分析化学引入了物理化学的理论,也形成了自身的 理论。因此,这次变革的标志是,分析化学从单纯的操作技术变成为一门学 科。 第二次变革 20 世纪中期,由于科学技术的进步,特别是一些重大的科学发现和发 展, 分析化学由化学分析发展到仪器分析, 并逐渐产生了一些现代的仪器分 析新方法、新技术,这就是第二次变革的重要标志。 第三次变革 20 世纪 70 年代末以来,以计算机广泛应用为标志的信息时代的到来, 给科学技术发展带来巨大的推动力。促使分析化学进入第三次变革:计算机 处理数据的快速、准确,使分析仪器自动化、智能化,各种傅里叶变换仪器 的相继问世, 使传统的仪器更具优越性和多功能化; 计算机促进统计处理进 入分析化学, 出现了化学计量学, 它是利用数学和统计学的方法设计或选择 最优条件,并从分析测量数据中获取最大程度的化学信息。可以这样说,这 一变革使分析化学的观念发生了转变:分析化学已经成为一门信息的科学。 仪器分析定义 所谓仪器分析是指那些采用比较复杂或特殊的仪器, 通过测量表征物质 的某些物理的或物理化学的性质参数及其变化规律来确定物质的化学组成、 状态及结构的方法。 仪器分析与化学分析的联系 1. 仪器分析是在化学分析的基础上发展起来的,其不少原理都涉及到化 学分析的基本理论;
分析化学第一章 绪论

S
n ( xi x ) 2 Σ i =1 n
1
RSD
பைடு நூலகம்
Sr
=
× 100 % x
(四) 准确度 试样含量的测定值与试样含量的真实值(或标准值) 相符合的程度称为准确度。 准确度常用相对误差量度。
x μ ×100 % Er = μ
(五)检测限(Detection limit, DL) 检测限:在已知置信水平,可以检测到的待测物的最 小质量或浓度。 它和分析信号(Singnal)与空白信号的波动(噪音, Noise)有关,或者说与信噪比(S/N)有关。
提供更全面的
信息和知识
分析科学
(二)仪器分析的发展 总的趋势: (一)提高分析方法的灵敏度
(二)提高检测方法的选择性
(三)各种联用技术的应用
(四)测试的自动化和智能化、微型化
(五)在线与实时分析
(六)分析范围的不断拓宽,层次加深
各种联用技术的应用
1、气相色谱—质谱法(GC—MS) 2、气相色谱—质谱法—质谱法(GC—MS—MS) 3、气相色谱—原子发射光谱法(GC—AED) 4、液相色谱—质谱法(HPLC—MS)
3. 处理好整体与局部
分析仪器——结构流程——关键部件 4. 勤
书山有路勤为径,学海无边苦作舟。
四、主要参考文献 书籍 1、赵藻潘等编,仪器分析(第一版),高教出版社,1999 2、北京大学化学系编,仪器分析教程,北大出版社,1997 3、武汉大学分析化学教研室编,仪器分析习题精解,科学 出版社(第一版),1999 杂志 国内 1. 分析化学 2. 高等学校化学学报 3. 光谱学与光谱分析 国外 1.Analytical Chemistry
二、仪器分析与化学分析 1、仪器分析的特点 仪器分析 化学分析
(完整版)仪器分析习题答案-光谱分析部分
(完整版)仪器分析习题答案-光谱分析部分仪器分析部分作业题参考答案第⼀章绪论1-21、主要区别:(1)化学分析是利⽤物质的化学性质进⾏分析;仪器分析是利⽤物质的物理或物理化学性质进⾏分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能⽤于组分的定量或定性分析;仪器分析还能⽤于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度⾼,适合于常量组分分析;仪器分析灵敏度⾼、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。
2、共同点:都是进⾏组分测量的⼿段,是分析化学的组成部分。
1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的⼀种技术设备,是⼀种装置;仪器分析是利⽤仪器设备进⾏组分分析的⼀种技术⼿段。
分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的⽬的,分析仪器是仪器分析的⼯具。
仪器分析与分析仪器的发展相互促进。
1-7因为仪器分析直接测量的是物质的各种物理信号⽽不是其浓度或质量数,⽽信号与浓度或质量数之间只有在⼀定的范围内才某种确定的关系,且这种关系还受仪器、⽅法及样品基体等的影响。
因此要进⾏组分的定量分析,并消除仪器、⽅法及样品基体等对测量的影响,必须⾸先建⽴特定测量条件下信号与浓度或质量数之间的关系,即进⾏定量分析校正。
第⼆章光谱分析法导论2-1光谱仪的⼀般组成包括:光源、单⾊器、样品引⼊系统、检测器、信号处理与输出装置。
各部件的主要作⽤为:光源:提供能量使待测组分产⽣吸收包括激发到⾼能态;单⾊器:将复合光分解为单⾊光并采集特定波长的光⼊射样品或检测器;样品引⼊系统:将样品以合适的⽅式引⼊光路中并可以充当样品容器的作⽤;检测器:将光信号转化为可量化输出的信号。
信号处理与输出装置:对信号进⾏放⼤、转化、数学处理、滤除噪⾳,然后以合适的⽅式输出。
2-2:单⾊器的组成包括:⼊射狭缝、透镜、单⾊元件、聚焦透镜、出射狭缝。
各部件的主要作⽤为:⼊射狭缝:采集来⾃光源或样品池的复合光;透镜:将⼊射狭缝采集的复合光分解为平⾏光;单⾊元件:将复合光⾊散为单⾊光(即将光按波长排列)聚焦透镜:将单⾊元件⾊散后的具有相同波长的光在单⾊器的出⼝曲⾯上成像;出射狭缝:采集⾊散后具有特定波长的光⼊射样品或检测器 2-3棱镜的分光原理是光的折射。
《仪器分析》电子教案
《仪器分析》电子教案第一章:绪论1.1 课程介绍了解《仪器分析》课程的基本概念、内容、目标和意义。
强调仪器分析在科学研究和实际应用中的重要性。
1.2 仪器分析方法的分类介绍光学分析法、电化学分析法、色谱分析法等常见仪器分析方法。
解释各种方法的原理和特点。
1.3 实验操作规范强调实验室安全、实验操作规范和数据处理的要求。
第二章:光谱分析2.1 紫外-可见光谱分析解释紫外-可见光谱的原理和应用。
介绍紫外-可见光谱仪的使用方法和操作步骤。
2.2 红外光谱分析解释红外光谱的原理和应用。
介绍红外光谱仪的使用方法和操作步骤。
2.3 拉曼光谱分析解释拉曼光谱的原理和应用。
介绍拉曼光谱仪的使用方法和操作步骤。
第三章:色谱分析3.1 气相色谱分析解释气相色谱的原理和应用。
介绍气相色谱仪的使用方法和操作步骤。
3.2 高效液相色谱分析解释高效液相色谱的原理和应用。
介绍高效液相色谱仪的使用方法和操作步骤。
3.3 色谱数据处理解释色谱数据的处理方法,如峰面积计算、峰高度计算等。
介绍色谱数据处理软件的使用方法和操作步骤。
第四章:电化学分析4.1 电位分析解释电位分析的原理和应用。
介绍电位分析仪的使用方法和操作步骤。
4.2 电化学发光分析解释电化学发光分析的原理和应用。
介绍电化学发光分析仪的使用方法和操作步骤。
4.3 电化学探针技术解释电化学探针技术的原理和应用。
介绍电化学探针技术的使用方法和操作步骤。
第五章:质谱分析5.1 质谱原理和仪器解释质谱分析的原理和应用。
介绍质谱仪的使用方法和操作步骤。
5.2 质谱数据解析解释质谱数据的解析方法和技巧。
介绍质谱数据解析软件的使用方法和操作步骤。
5.3 质谱应用案例分析分析质谱在蛋白质分析、代谢组学等领域的应用案例。
强调质谱在科学研究和实际应用中的重要性。
第六章:原子吸收光谱分析6.1 原子吸收光谱原理解释原子吸收光谱的原理,包括光源、样品原子化、检测器等。
介绍原子吸收光谱仪的使用方法和操作步骤。
仪器分析第一章 绪论
精品文档
23
1)精密度(Precision)使用同一方法或步骤进行多次重复 测量所得分析数据之间符合的程度。
光散射 浊度法;拉曼光谱
光折射 折光分析;干涉法
光衍射 X-射线和电子衍射光谱
光偏转 旋光分析;旋光性色散分析;圆振二向色性分析
电 位 电位分析
四种电学特性的测量
电 荷 库仑分析
电 流 电流分析法;极谱分析
电 阻 电导分析
离 色谱分析 薄层色谱;气相色谱;液相色谱;离子色谱……..
多组份同时分离分析
操作简便,分析速度快,容易实现自
动化。
精品文档
6
仪器分析的特点(与化学分析 比较)
相对误差较大。化学分析一般可用于 常量和高含量成分分析,准确度较高, 误差小于千分之几。多数仪器分析相 对误差较大,一般为5%,不适用于常 量和高含量成分分析。 需要价格比较昂贵的专用仪器。
精品文档
7
常量分析、半微量和微量分析
(analyte, target
species)的颜色、沸熔点、气味、光学性质
(拆射、反射、衍射等)以及在不同溶剂中
精品文档
9
仪器分析 化学分离:色谱技术和毛细管电泳技术开始 取代沉淀、 萃取、蒸馏等分离方法; 定性定量方法:利用物质原子、分子、离子 等的特性, 如电导、电位、光吸收和发射、质荷比、荧 光等;
精品文档
3
分析化学—化学分析、仪器分析
分析化学是研究物质的组成、状态和结构的科学, 它包括化学分析和仪器分析两大部分。 化学分析是指利用化学反应和它的计量关系来确 定被测物质的组成和含量的一类分析方法。测定 时需使用化学试剂、天平和一些玻璃器皿。
精品文档
4
仪器分析 课件 第一章:绪论
四 课程性质与目标
1. 课程性质
仪器分析:化学+物理学+电子技术+计算机 (综合性 学科) 基础课:化学专业、应用化学、生物化学、环境化 学等专业的基础课;
2. 课程目标
培养两类人才:分析仪器的熟练应用者——解决问 题;创新型人才——发现问题,开拓新领域;
(1 ) 掌握常用仪器分析方法原理、应用,熟悉仪器结构; (2 ) 使学习者具备选择适宜的分析方法的能力;
22
应该指出:仪器分析本身不是一门独立的学 科,而是多种仪器方法的组合。可是这些 仪器方法在化学学科中极其重要。它们已 不单纯地应用于分析的目的,而是广泛地 应用于研究和解决各种化学理论和实际问 题。因此,将它们称为“化学分析中的仪 器方法”更为确切。
ห้องสมุดไป่ตู้
23
四 仪器分析与化学分析的区别
化学分析 从原理看 根据化学反应及计 量关系 仪器分析
按试样量的大小:
常量分析 半微量分析 微量分析 超微量分析
1 0 0 10~ 100 0 .1 ~ 1 0 0 .1
1 0 1~ 10 0 .1 ~ 1 0 .0 1
30
1-5 仪器分析的发展
20世纪40~50年代兴起的材料科学, 60 ~70年代发展起来的环境科学都促进了 分析化学学科的发展。80年代以来,生命 科学的发展也促进分析化学一次巨大的发 展。仪器分析是分析化学的重要组成部分, 也随之不断发展,不断地更新自己,为科 学技术提供更准确、更灵敏、更专一、更 快速、更简便的分析方法。
31
如生命科学研究的进展,需要对多肽、 蛋白质、核酸等生物大分子进行分析, 对生物药物分析,对超微量生物活性 物质,如单个细胞内神经传递物质的 分析以及对生物活体进行分析。 信息时代的到来,给仪器分析带来了 新的发展。信息科学主要是信息的采 集和处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
仪器分析课程特点
涉及多种的仪器分析方法
各种仪器的工作原理有较大的区别
依据授课时间及大纲要求,课程着重于方 法原理的介绍,数学推导及运算相对较少 注意与大学物理及物理化学课程相结合
仪器分析概述
仪器分析的最主要的功能是人类五官感触 的延伸
人类智慧利用了光、电和磁的物理特性通 过物理和化学手段将微小的物理量放大, 而获得感知 小型化集成化(芯片)、多功能化(联用 技术)和高稳定、高灵敏度检测是仪器分 析发展的最高境界
谱线:指原子特征光谱
带光谱:由许多密集排列着的谱线组成的, 并且由密集逐渐过渡到疏松的形 如带状的光谱,它包含了一个波 长范围的谱线组成的谱带,如分子 光谱。
连续光谱:波长连续、波长范围相当宽广, 由复杂分子、固态物质受激发所 产生的光谱,如白炽灯、炽热电 极头等发射的光就是连续光谱。
4、电磁辐射与物质的相互作用及其光谱
苏丹红IV(Sudan IV)化学名称1-{{2-甲基-4-[(2-甲基苯)偶氮]苯基}偶氮}-2萘酚(1-{{2-methyl-4-[(2-methylphenyl)azo]phenyl}azo]-2-naphthalenol)。
病害肉快速检测装置
日本Jascoo公司荧光分光光度计
Perkin-Elemer的原子吸收
原子发射、原子吸收和原子荧光装置示意图
二、光学分析方法
1、电磁波谱与现代仪器分析方法
波谱区 波长 跃迁类型 -射线 ~0.1nm 核能级 X-射线 远紫外光 0.1~10nm 10~200nm 原子内层电子
莫斯鲍尔光谱法:-射线原子核 -射线吸收 X-射线吸收光谱法、X-荧光光谱法: X-射线原子 内层电子X-射线吸收(特征X-射线发射) 远紫外光-真空紫外区,此部分光谱会被空气吸收
h 6.63 10 J s
34
2、电磁辐射能的特性
吸收:物质选择性吸收特定频率的辐射能,并从低 能级跃迁到高能级;
发射:将吸收的能量以光的形式释放出;
反射:光穿越折射率不同的介质界面时发生反射
散射:拉曼散射、锐利散射;
折射:光在两种介质中的传播速度不同; 色散:物质的折射率随频率或波长的变化; 干涉:光波的叠加性质; 衍射:光绕过物体而弯曲地向他后面传分析仪器 食品安全 和毒品等
GLP Lab
现场实验室
发展创新仪器
集成系统
海 洋 浮 标 与 微 型 实 验 室
战争与战场现场快速测试
苏丹红I(Sudan I)的化学名称为1-苯基偶氮-2-萘酚(1- phenylazo-2naphthalenol),分子结构式为C6H5=NC10H6OH,分子量248.28;
21世纪是能源科学、材料科学、生命科学、 环境科学和信息科学发展的时代,而解决这些 问题的关键手段之一是分析化学,特别是分析 化学中的仪器分析。通过本课程的教学,基本 掌握常见仪器分析的各类方法,其内容涵盖光、 电、色、质、及某些新技术的应用,要求对这 些方法的基本原理、仪器设备及基本结构、方 法特点及应用能较深入地理解和掌握,初步具 有根据分析对象选择合适的分析方法及解决相 应问题的能力。
苏丹红II(Sudan II)化学名称为1-[(2,4-二甲基苯)偶氮]-2-萘酚(1-[(2,4dimethylphenyl)azo]-2-naphthalenol);苏丹红III(Sudan III)化学名称为1-{[4(苯基偶氮)苯基] 偶氮}-2-萘酚(1-{[4-(phenylazo)phenyl]azo]-2-naphthalenol);
波谱区 波长
近紫外光
可见光
近红外光 中红外光
200~400nm 400~760nm 0.76~2.5m 2.5~25m
跃迁 类型
原子外层电子 分子成键电子
分子振动
原子光谱:原子发射、原子吸收、原子荧光 分子光谱:紫外-可见吸收、分子荧光/磷光、化学发光 近红外光谱法:配位化学的研究对象 中红外吸收光谱法:红外光分子吸收
第七章 原子光谱分析
第一节 光学分析法概述
一、电磁辐射及电磁波谱
1、电磁辐射的波粒二象性
波动性: 指光按波动形式传播,例如散射、折 射、反射、衍射、干涉、偏振等。
c λν
c 3 10 m / s
8
粒子性: 指光是由光量子组成的,如光电效 应、黑体辐射等。
E h hc /
原子吸收光谱(AAS)
气态基态原子的外层电子受到光激 发(元素灯)后,电子从基态跃迁到第 一激发态时的吸收谱线。
原子荧光光谱(AFS)
气态原子的外层电子受到光激发后, 会从基态跃迁到激发态,处于激发态的不 稳定电子迅速返回基态时,就要释放出能 量,若以电磁辐射的形式释放出能量,既 得到原子荧光光谱,若发射出与光源波长 一致的谱线,则称之为共振荧光,否则是 非共振荧光。
波谱区 波长 跃迁类型
远红外光 微波 射频 1~100 m 25~1000m 0.1~100cm 分子转动 电子、核自旋
远红外光谱法:有机化学中异构体的研究 电子自旋共振波谱法:微波分子未成对电子吸收 核磁共振波谱法:射频原子核自旋吸收
2、光学分析法的分类
以光的波长与强度为特征信号 光谱法:
物质的能态: 原子、离子、分子
hc E E 1 E 0 hν λ
电磁辐射的吸收与发射
hc hc c E E 1 E 0
原子光谱——线光谱
E3
E2
E1 E0
原子发射光谱
原子吸收光谱 半宽度10-2~10-5Å h i 波长Å
分子光谱——带光谱
E2
分子发射 光谱
I
E1
半宽度20~100nm
波长/nm
E0
hiA(T) 分子吸收 光谱
半宽度20~100nm
波长/nm
荧光光谱——光激发
原子荧光:线光谱 分子荧光:带光谱
E2 E3
h
E2 E1 h i
E0
h i
E1
h i
E0
原子发射光谱(AES)
气态原子或离子的核外层电子受到 热激发或电激发后,就会从基态跃迁到各 种激发态,处于各种激发态不稳定的电子 ( 寿命 <10-8s) 迅速回到低能态时,就要释 放出能量,若以电磁辐射的形式释放能量, 既得到原子发射光谱。
的仪器分析方法。
吸收光谱、发射光谱、荧光光谱、散射光谱等
以光辐射的某些性质变化为特征 非光谱法:
信号的仪器分析方法。 折射法、旋光法、圆二色法、比浊法、衍射法等
偏振:只在一个固定方向上有振动的光称为偏振光。
3、光谱中的基本概念及术语
激发:物质受到热、电和光的作用后能量 发生改变,从而导致原子、分子中 的能级发生跃迁的过程,可分为热 激发、电激发和光激发。 光谱:按波长顺序排列的电磁辐射。 线光谱:清晰地呈线状分布且有特定波长的 光谱线,如原子、离子发射光谱。