2.2 二次函数的图象与性质(第3课时)优秀教学设计
二次函数图像和性质教学设计【优秀3篇】

二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。
苏科版九年级数学下册 二次函数的图像和性质3教案

《二次函数的图像和性质》教案1教学目标1.会用描点法画出二次函数的图象,能通过图象和关系式认识二次函数的性质.2.会运用配方法确定二次函数图象的顶点、开口方向和对称轴.重点难点重点:二次函数的图象与性质. 难点:二次函数的图象与性质.教学过程由前面的知识,我们知道,函数22x y =的图象,向上平移2个单位,可以得到函数222+=x y 的图象;函数22x y =的图象,向右平移3个单位,可以得到函数2)3(2-=x y 的图象,那么函数22x y =的图象,如何平移,才能得到函数2)3(22+-=x y 的图象呢?实践与探索1.在同一直角坐标系中,画出下列函数的图象.221x y =,2)1(21-=x y ,2)1(212--=x y ,并指出它们的开口方向、对称轴和顶点坐标.解:列表.描点、连线,画出这三个函数的图象,如图所示.它们的开口方向都向,对称轴分别为____,顶点坐标分别为____.请同学们完成填空,并观察三个图象之间的关系.回顾与反思二次函数的图象的上下平移,只影响二次函数2)(h x a y -=+k 中k 的值;左右平移,只影响h 的值,抛物线的形状不变,所以平移时,可根据顶点坐标的改变,确定平移前、后的函数关系式及平移的路径.此外,图象的平移与平移的顺序无关.探索你能说出函数2)(h x a y -=+k (a 、h 、k 是常数,a ≠0)的图象的开口方向、对称轴和顶点坐标吗?试填写下表.2)(h x a y -=+k 开口方向对称轴顶点坐标 0>a0<a2.把抛物线c bx x y ++=向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,求b 、c 的值.分析抛物线2x y =的顶点为(0,0),只要求出抛物线c bx x y ++=2的顶点,根据顶点坐标的改变,确定平移后的函数关系式,从而求出b 、c 的值.解c bx x y ++=2c b b bx x +-++=442224)2(22b c b x -++=. 向上平移2个单位,得到24)2(22+-++=b c b x y ,再向左平移4个单位,得到24)42(22+-+++=b c b x y ,其顶点坐标是)24,42(2+---b c b ,而抛物线2x y =的顶点为(0,0),则⎪⎪⎩⎪⎪⎨⎧=+-=--0240422b c b解得⎩⎨⎧=-=148c b探索把抛物线c bx x y ++=2向上平移2个单位,再向左平移4个单位,得到抛物线2x y =,也就意味着把抛物线2x y =向下平移2个单位,再向右平移4个单位,得到抛物线c bx x y ++=2.那么,本题还可以用更简洁的方法来解,请你试一试.巩固练习1.将抛物线1)4(22--=x y 如何平移可得到抛物线22x y =( ) A .向左平移4个单位,再向上平移1个单位 B .向左平移4个单位,再向下平移1个单位 C .向右平移4个单位,再向上平移1个单位 D .向右平移4个单位,再向下平移1个单位 2.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为_____.3.抛物线22121x x y -+=可由抛物线221x y -=向平移个单位,再向平移个单位而得到.本课小结1.通过本课的学习,你有什么收获? 2.你对本节课还有什么不明白的? 布置作业教材第18页练习第1题,20页第6题.《二次函数的图像和性质》教案2教学目标1.通过探究、归纳、类比,用配方法把二次函数化成2)(h x a y -=+k 的形式,从而确定开口方向、对称轴和顶点坐标;2.使学生掌握用图象或配方确定抛物线的开口方向、对称轴和顶点坐标; 3.体会先确定顶点坐标再对称取值画出的抛物线的对称美.重点难点重点用描点法画出二次函数y =ax 2+bx +c 的图象和通过配方确定抛物线的开口方向、对称轴和顶点坐标.难点利用配方法将二次函数y =ax 2+bx +c 化成ab ac a b x a y 44)2(22-++=. 教学设计 (一)情境引入1.你能说出二次函数y =-4(x -2)2+1图象的开口方向、对称轴、顶点坐标和增减性吗?2.不画图象,你能直接说出函数的图象的开口方向、对称轴和顶点坐标吗? (二)实践探索1问题通过配方,确定抛物线的开口、对称轴、顶点坐标和增减性,再描点画图. 解6422++-=x x y []8)1(261)1(26)112(26)2(22222+--=+---=+-+--=+--=x x x x x x因此,抛物线开口向下,对称轴是直线x =1,顶点坐标为(1,8).当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小;当x =1时,函数取得最大值,最大值y =8由对称性列表:回顾与反思(1)列表时选值,应以对称轴x =1为中心,函数值可由对称性得到.(2)描点画图时,要根据已知抛物线的特点,一般先找出顶点,并用虚线画对称轴,然后再对称描点,最后用平滑曲线顺次连结各点.(三)实践探索2问题为了方便找到对称轴、顶点坐标,我们面对形如c bx ax y ++=2的函数该如何处理?x … -2-10 1 2 3 4…y… -10 0 686-10 …y =ax 2+bx +c =a (x 2+bax )+c =a [x 2+bax +(2b a )2-(2b a )2]+c=a [x 2+b a x +(2b a )2]+c -24b a =a (x +2b a )2+244ac b a-当a >0时,开口向上,当a <0时,开口向下.对称轴是x =-2b a ,顶点坐标是(-2b a ,244ac b a-)变式训练1.x 为任意实数,求二次函数y =x 2+2x +3取值范围. 2.如何画出美观的二次函数y =ax 2+bx +c (a ≠0)图象? 本课小结1.通过本课的学习,你有什么收获?2.二次函数的三种表达形式:(还有一种暂时未学) 一般式:y =ax 2+bx +c (a ≠0);顶点式:k h x a y +-=2)(3.形如y =ax 2+bx +c (a ≠0)的二次函数的开口方向、顶点坐标、对称轴如何确定?增减性如何判断?4.你对本节课还有什么不明白的? 布置作业教材第20页7、8、9题.。
2.2 二次函数的图象与性质 第3课时 教案

一、情境导入二次函数y =ax 2+c (a ≠0)的图象可以由y =ax 2(a ≠0)的图象平移得到: 当c >0时,向上平移c 个单位长度; 当c <0时,向下平移-c 个单位长度.问题:函数y = (x -2)2的图象,能否也可以由函数y = x 2平移得到?本节课我们就一起讨论. 二、合作探究探究点:二次函数y =a (x -h )2的图象与性质 【类型一】 二次函数y =a (x -h )2的图象顶点为(-2,0),开口方向、形状与函数y =-12x 2的图象相同的抛物线的解析式为( )A .y =12(x -2)2B .y =12(x +2)2C .y =-12(x +2)2D .y =-12(x -2)2解析:因为抛物线的顶点在x 轴上,所以可设该抛物线的解析式为y =a (x -h )2(a ≠0),而二次函数y =a (x -h )2(a ≠0)与y =-12x 2的图象相同,所以a =-12,而抛物线的顶点为(-2,0),所以h =2,把a=-12,h =2代入y =a (x -h )2得y =-12(x +2)2.故选C.方法总结:决定抛物线形状的是二次项的系数,二次项系数相同的抛物线的形状完全相同. 变式训练:见《学练优》本课时练习“课堂达标训练” 第5题 【类型二】 二次函数y =a (x -h )2的性质若抛物线y =3(x +2)2的图象上的三个点,A (-32,y 1),B (-1,y 2),C (0,y 3),则y 1,y 2,y 3的大小关系为________________.解析:∵抛物线y =3(x +2)2的对称轴为x =-2,a =3>0,∴x <-2时,y 随x 的增大而减小;x >-2时,y 随x 的增大而增大.∵点A 的坐标为(-32,y 1),∴点A 在抛物线上的对称点A ′的坐标为(2,y 1).∵-1<0<2,∴y 2<y 3<y 1.故答案为y 2<y 3<y 1.方法总结:函数图象上点的坐标满足解析式,即点在抛物线上.解决本题可采用代入求值方法,也可以利用二次函数的增减性解决.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题 【类型三】 二次函数y =a (x -h )2的图象与y =ax 2的图象的关系将二次函数y =-2x 2的图象平移后,可得到二次函数y =-2(x +1)2的图象,平移的方法是( )A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位解析:抛物线y =-2x 2的顶点坐标是(0,0),抛物线y =-2(x +1)2的顶点坐标是(-1,0).则由二次函数y =-2x 2的图象向左平移1个单位即可得到二次函数y =-2(x +1)2的图象.故选C.方法总结:解决本题要熟练掌握二次函数的平移规律.变式训练:见《学练优》本课时练习“课堂达标训练”第6题 【类型四】 二次函数y =a (x -h )2与三角形的综合如图,已知抛物线y =(x -2)2的顶点为C ,直线y =2x +4与抛物线交于A 、B 两点,试求S △ABC .解析:根据抛物线的解析式,易求得点C 的坐标;联立两函数的解析式,可求得A 、B 的坐标.画出草图后,发现△ABC 的面积无法直接求出,因此可将其转换为其他规则图形的面积求解.解:抛物线y =(x -2)2的顶点C 的坐标为(2,0),联立两函数的解析式,得⎩⎪⎨⎪⎧y =2x +4,y =(x -2)2,解得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=6,y 2=16.所以点A 的坐标为(6,16),点B 的坐标为(0,4).如图,过A 作AD ⊥x 轴,垂足为D ,则S △ABC =S 梯形ABOD -S △ACD -S △BOC =12(OB +AD )·OD -12OC ·OB-12CD ·AD =12(4+16)×6-12×2×4-12×4×16=24. 方法总结:解决本题要明确以下两点:(1)函数图象交点坐标为两函数解析式组成的方程组的解;(2)不规则图形的面积通常转化为规则图形的面积的和差.变式训练:见《学练优》本课时练习“课后巩固提升”第10题 【类型五】 二次函数y =a (x -h )2的探究性问题某抛物线是由抛物线y =-2x 2向左平移2个单位得到. (1)求抛物线的解析式,并画出此抛物线的大致图象; (2)设抛物线的顶点为A ,与y 轴的交点为B . ①求线段AB 的长及直线AB 的解析式;②在此抛物线的对称轴上是否存在点C ,使△ABC 为等腰三角形?若存在,求出这样的点C 的坐标;若不存在,请说明理由.解析:(1)抛物线y =-2x 2向左平移2个单位所得的抛物线的解析式是y =-2(x +2)2;(2)①根据(1)得出的抛物线的解析式,即可得出其顶点A 和B 点的坐标,然后根据A ,B 两点的坐标即可求出直线AB 的解析式;②本题要分三种情况进行讨论解答.解:(1)y =-2(x +2)2,图略;(2)①根据(1)得出的抛物线的解析式y =-2(x +2)2,可得A 点的坐标为(-2,0),B 点的坐标为(0,-8).因此在Rt △ABO 中,根据勾股定理可得AB =217.设直线AB 的解析式为y =kx -8,已知直线AB 过A 点,则有0=-2k -8,k =-4,因此直线AB 的解析式为y =-4x -8;②本题要分三种情况进行讨论:当AB =AC 时,此时C 点的纵坐标的绝对值即为AB 的长,因此C 点的坐标为C 1(-2,217),C 2(-2,-217);当AB =BC 时,B 点位于AC 的垂直平分线上,所以C 点的纵坐标为B 点的纵坐标的2倍,因此C 点的坐标为C 3(-2,-16);当AC =BC 时,此时C 为AB 垂直平分线与抛物线对称轴的交点.过B 作BD 垂直于抛物线的对称轴于D ,那么在直角三角形BDC 中,BD =2(A 点横坐标的绝对值),CD =8-AC ,而BC =AC ,由此可根据勾股定理求出AC =174,因此这个C 点的坐标为C 4(-2,174). 综上所述,存在四个点,C 1(-2,217),C 2(-2,-217 ),C 3(-2,-16),C 4(-2,-174).方法总结:本题主要考查了二次函数图象的平移及等腰三角形的构成情况,主要涉及分类讨论、数形结合的数学思想方法的运用.变式训练:见《学练优》本课时练习“课后巩固提升”第10题 三、板书设计二次函数y =a (x -h )2的图象与性质。
二次函数图像和性质教学设计(3篇)

二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。
学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。
之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。
重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。
教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。
4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。
观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。
(指名学生回答)。
师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。
师:这个猜想是否正确呢?这节课我们一起来验证一下。
(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。
2.2 二次函数的图象与性质 第3课时湘教版九年级下册

1.(成都·中考)把抛物线 y x 2 向右平移1个单位,所得 抛物线的函数表达式为( A. y x 1
2
)
B.
y ( x 1)
2
C. y x 1
2
D. y
( x 1)
2
【答案】D
2.(哈尔滨·中考)在抛物线y=x2-4上的一个点 是( ). B.(1,一4)
抛物线 2 y=x 2 y=X +1
开口方向
对称轴
顶点坐标
向上 向上 向上
X=0 X=0 X=0
(0,0) (0,1) (0,-1)
y=x2-1
(4)把抛物线y=x2向上平移1个单位,就得到抛物线 y=x2+1;把抛物线y=x2向下平移1个单位,就得到抛物 线y=x2-1.
(5)它们的位置是由+1、-1决定的.
2
的开口方
向、对称轴及顶点吗?它与抛物线 y
2
x
2
有什么关系?
画出二次函数 y x 1 , y x 1 的图象,并
2 2
1
1
2
2
考虑它们的开口方向、对称轴和顶点.
x
y y 1 2 1 2
·· · ·· ·
-3
-2
1 2
-1
0
1 2
1
2
3
·· · ·· · ·· ·
2.2
二次函数的图象与性质
第3课时
1.经历探索二次函数y=ax2+k(a≠0)及y=a(x+m)2(a≠0) 的图象作法和性质的过程. 2.能够理解函数y=ax2+k(a≠0)及y=a(x+m)2(a≠0)与 y=ax2的图象的关系,理解a,m,k对二次函数图象的影响. 3.能正确说出函数y=ax2+k,y=a(x+m)2的图象的开口方 向,顶点坐标和对称轴.
人教版数学九年级上册22.1《二次函数的图象和性质(3)》教学设计

人教版数学九年级上册22.1《二次函数的图象和性质(3)》教学设计一. 教材分析人教版数学九年级上册22.1《二次函数的图象和性质(3)》的内容包括:二次函数的顶点坐标、开口方向和增减性。
这部分内容是整个九年级数学的重要内容,也是中考的热点。
通过这部分的学习,学生能够掌握二次函数的基本性质,从而更好地解决实际问题。
二. 学情分析九年级的学生已经学习了二次函数的基本概念和性质,对本节课的内容有一定的了解。
但学生在理解和运用方面还存在一些问题,如对顶点坐标、开口方向和增减性的理解不够深入,解决实际问题的能力有待提高。
三. 教学目标1.理解二次函数的顶点坐标、开口方向和增减性的含义。
2.能够运用二次函数的性质解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.二次函数的顶点坐标、开口方向和增减性的理解。
2.运用二次函数的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究二次函数的性质。
2.运用多媒体辅助教学,直观展示二次函数的图象和性质。
3.采用小组合作学习,培养学生团队合作精神。
六. 教学准备1.多媒体教学设备。
2.二次函数图象和性质的相关教学素材。
3.小组合作学习的相关材料。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生运用二次函数的知识解决。
例如,一个物体从地面上升,其高度与时间的关系可以表示为一个二次函数。
让学生思考,如何根据这个二次函数的图象,求出物体上升到最高点的时间和高度。
2.呈现(10分钟)通过多媒体展示二次函数的图象,引导学生观察和分析图象的顶点坐标、开口方向和增减性。
同时,让学生结合之前的学习经验,总结二次函数的性质。
3.操练(10分钟)让学生分成小组,进行合作学习。
每个小组选一个二次函数,分析其顶点坐标、开口方向和增减性。
然后,让学生互相交流,分享各自的成果。
4.巩固(10分钟)针对学生总结的二次函数性质,进行一些巩固性的练习。
《二次函数的图象与性质(第3课时)》优秀课件

小结:
本节课主要运用了数形结合的思想方法,通过对
函数图象的讨论,分析归纳出 y a(x h)2 k
的性质:(1)a的符号决定抛物线的开口方向 (2)对称轴是直线x=h
(3)顶点坐标是(h,k)
抛物线
开口方向 对称轴 顶点坐标
y ax2 (a 0)
y ax 2 k(a 0) y a(x h)2 (a 0)
开口向上 开口向上 开口向上
直线X=0 直线X=0 直线X=h
(0,0) (0,k)
(h,0)
y a(x h)2 k(a 0) 开口向上 直线X=h (h,k)
2
直线x=-1
(- 1, 0)4,y2)(
1 4
,y3)为二次函数
y=(x-2)2图象上的三点,则y1 ,y2 ,y3的大小关系为
___y_3_<__y_2_<__y1____.
典例精析
例1 抛物线y=ax2向右平移3个单位后经过点(-1,4), 求a的值和平移后的函数关系式.
解:设平移后的函数关系式为y=a(x-3)2,
把x=-1,y=4代入,得4=a(-1-3)2, ,
∴
1 a=
4
∴平移后二次函数关系式为y= 1 (x-3)2.
4
小结
比较y=ax2 , y=ax²+k , y=a(x-h)²的图像的不同
y=ax2 y=ax²+k
对称轴 Y轴
Y轴
(直线x=0) (直线x=0)
2) 如何将抛物线y=2(x-1) 2+3经过平移得到 抛物线y=2x2
3) 将抛 物线y=2(x -1)2+3经过怎样的平移得 到抛物线y=2(x+2)2-1
4) 若抛物线y=2(x-1)2+3沿x轴方向平移后,经 过(3,5),求平移后的抛物线的解析式_______
二次函数的图像和性质 优秀教学设计(教案)

26.2 二次函数y=a(x-h)2的图象和性质
一、教学目标:
知识与技能
使学生能利用描点法画出二次函数y=a(x—h)2的图象,通过
“探究----感悟----总结——练习”,采用探究、讨论等方法进行归
纳总结得出函数性质。
过程与方法
通过类比二次函数y=ax2、y=ax2+k的图像,让学生经历探究函
数y=a(x-h)2的性质的过程,体现类比的数学思想方法。
情感态度与价值观
在证明过程中培养学生良好的学习、思维习惯,以及不畏困难的
钻研精神
二、教学重难点:
重点:会用描点法画出二次函数y=a(x-h)2的图象,理解二次
函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次
函数y=ax2的图象的关系是教学的重点。
难点:理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x
-h)2的图象与二次函数y=ax2的图象的相互关系也是教学的难点。
三、教学过程:
(一)、复习导入
1、二次函数y=ax
2、y=ax2+k图象是什么?(1)分别说出它们的
对称轴、开口方向和顶点坐标以及增减性。
(2)说出它们所具有的公
共性质。
的图象有什么联系和区别?
2.你能说出函数y=a(x-h)2图象的性质吗?
3.谈谈本节课的收获和体会。
七:板书:
函数y=a(x-h)2的图象和性质
1、复习引入
2、探究新知(得出函数的图像和性质)
3、例题讲解(1)、(2)
4、课堂练习
5、小结(1)(2)(3)
八、作业
1、教科书17页第5、7、8题
2、三导81页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二次函数的图象与性质(第3课时)》
教学设计说明
一、教学目标
1、学生会画出特殊二次函数2)(h x a y -=的图象,正确地说出它们的开口方向,对称轴和顶点坐标,能理解它们的图象与抛物线2ax y =的图象的关系,理解h a ,对二次函数图象的影响.
2、培养学生动手作图的能力,观察、类比、归纳的能力,以及用数形结合的
方法思考并解决问题的能力.
二、教学重点:二次函数2)(h x a y -=的图象与性质.
教学难点:二次函数2)(h x a y -=图象与图象2ax y =之间的关系,h a ,对二次
函数图象的影响.
三、教学过程分析
第一环节: 回顾,引入新课
1、问题1 说说二次函数y=ax2+c(a ≠0)的图象的特征.
问题2 说一说二次函数 y=ax2+c (a ≠0)与 y=ax2(a ≠ 0) 图象的平移关系?
思考 函数
的图象与函数 的图象有什么关系呢?(完成书37页的做一做)
设计意图:复习前两节课内容,唤醒学生记忆,提出问题,为下面的教学作准备.
第二环节: 合作探究,发现和验证
探究:2)(h x a y -=的图象和性质
学生独立完成课本37页上“做一做”,完成后小组内交流.
()2
12-=x y 22x y =
观察上表,比较22x 与2)1(2-x 的值,它们有什么样的关系?
2、在同一坐标系中作出22x y =与2)1(2-=x y 的图象.同伴交流:你是怎样作的?
3、结合图象,议一议
二次函数2)1(2-=x y 的图象与二次函数22x y =的图象有什么关系?它的开口方向、对称轴和顶点坐标分别是什么?当x 取哪些值时,y 的值随x 值的增大而增大?当x 取哪些值时,y 的值随x 值的增大而减小?
4、结合初二图形变换的知识,能否用移动的观点说明函数2)1(2-=x y 与22x y =的图象之间的关系呢?
5、猜一猜:2)1(2+=x y 的图象是怎么样的?它的图象与22x y =的图象之间有什么样的关系?画图验证一下!
得出结论:二次函数22x y =、2)1(2-=x y 、2)1(2+=x y 的图象都是抛物线,并且形状相同,位置不同.将22x y =的图象向右平移一个单位,就得到2)1(2-=x y 的图象; 将22x y =的图象向左平移一个单位,就得到2)1(2+=x y 的图象. 设计意图:
通过填表、画图等活动,在帮助学生获取感性材料的同时,促使他们积极思考、探索、发现规律,揭示结论.
先猜测,培养学生的合情推理能力和分析能力,再画图验证,亲身经历探索函数性质的过程.
第三环节:巩固新知:
1、将二次函数y =-2x 2的图象平移后,可得到二次函数y =-2(x +1)2的图象,平移的方法是( )
A .向上平移1个单位
B .向下平移1个单位
C .向左平移1个单位
D .向右平移1个单位
2.把抛物线y = -x 2沿着x 轴方向平移3个单位长度,那么平移后抛物线的解析式是 .
3.二次函数y =2(x - )2图象的对称轴是直线_______,顶点坐标是________.
4.指出下列函数图象的开口方向,对称轴和顶点坐标
5. 若(- ,y 1)(- ,y 2)(
,y 3)为二次函数y =(x -2)2图象上的
三点,则y 1 ,y 2 ,y 3的大小关系为_______________. 第四环节:典例解析:
例1 抛物线y =ax 2向右平移3个单位后经过点(-1,4),求a 的值和平移后的函数关系式.
第五环节:课堂小结
比较y=ax2 , y=ax ²+k , y=a(x-h)² 的图像的不同
拓展探究二:k h x a y +-=2)(的图象和性质
想一想:
由二次函数y=2x ²的图象你能得到y=2(x+3)²的图象吗?
由y=2(x+3)²的图象你能得到y=2(x+3)²- 的图象吗?
设计意图:
经过前期的探索,学生完全有能力推测出表达式的变化会引起图象的何种变化.因此,先让学生合情推理,再画图验证,培养学生的合情推理能力和分析能力, 有利于培养学生的数学直觉和感悟能力.利用图象,直观地研究二次函数的性质,可以培养学生用数形结合的方法思考,积累研究函数性质的经验.最后,总结规律, 有效地让学生从感性认识上升到了理性认识, 并形成自己对本节课重点内容的理解.
2
344
542
1
小结:
学生交流后得出结论:
当k>0时,向上平移|k| 个单位长度当k<0时,向下平移|k| 个单位长度
2.练一练: 1)若抛物线y=-x2向左平移2个单位,再向下平移4个单位所得抛物线的解析式是________ 2) 如何将抛物线y=2(x-1) 2+3经过平移得到抛物线y=2x2
3) 将抛 物线y=2(x -1)2+3经过怎样的平移得到抛物线y=2(x+2)2-1
4) 若抛物线y=2(x-1)2+3沿x 轴方向平移后,经过(3,5),求平移后的抛物线的解析式_______ 小结:
本节课主要运用了数形结合的思想方法,通过对函数图象的讨论,分析归纳出 的性质:
(1)a 的符号决定抛物线的开口方向
(2)对称轴是直线x=h。