浅谈学习线性代数的心得体会
线性代数学习体会与理解

线性代数学习体会与理解
古典的线性代数学习实质上是通过数学模型化、研究向量空间中向量、线性变换等内
容来探讨线性方程组和空间变换的过程。
在学习中,首先要培养学生的经验、提高对数学
模型表达的能力,运用合理恰当的概念来构建数学模型,以帮助学生有效的学习线性代数,掌握数学分析和计算的技巧。
在线性代数学习中,学习者需要掌握一些重要的概念,包括线性无关向量,线性映射
变换,线性无关集,范数,矩阵乘法,行列式,矩阵的迹,矩阵的特征值,特征向量、二
次型以及它们之间的关系等。
这些概念和知识点可以帮助学生深入理解和研究线性代数的
原理和技巧,这是线性代数学习的重要基础。
此外,线性代数的学习还需要科学、有效的训练。
因此教学中应该首先给学生提供一
些有关线性代数的基本实例,有助于学生理解线性代数概念和知识点、掌握线性代数分析
和计算技巧,这是学习线性代数的基本前提。
接下来,应该给出一些相关的例子和习题,
这样学生才能通过练习更加熟练地掌握数学模型的分析和解决方法,提高学习线性代数的
效率和能力。
总之,线性代数学习需要学生掌握一些基本概念、熟练掌握数学模型的分析和解决方法,并且要坚持科学有效的训练。
只有这样,才能够更好的理解和运用线性代数研究和分析,为今后学习和发展作好基础。
对参加《线性代数》课程培训的心得与体会

首先,是关于行列式的问题,李老师从全新的角度给出了全新的定义。象李老师描述的一样,我深有同感。几乎所有的线性代数教材在介绍行列式时都是通过解二元及三元一次线性方程组而引入的,曾经有一个学生课后验证四元一次线性方程组后跟我说和行列式不符。我觉得用方程组引入行列式定义有两个困惑:第一,二元及三元一次线性方程组的求解学生早在初中就很熟悉,非要用商的形式表达解有点化简单为烦琐的味道。第二,即使解出系数行列式,也很难观察归纳总结出一般规律。基于以上两点考虑,每次讲到行列式定义时,我都是在讲完全排列,逆序数后直接给出行列式的`定义。由于理解上本身就有难度,所以我在讲解时给出详细的注释:行列式就是一个数,只是得来的过程有点麻烦;行列式具体说就是取自所有不同行不同列的n个元素乘积的代数和。然后按照定义,和学生们一起求出二阶和三阶行列式的计算公式,即对角线法则。而李老师从向量的角度,从几何上的面积空间立方体的体积以及n维向量的体积角度给出了全新的定义,是一种全新的思想和理念。当然,由于教材编排顺序以及学生接受程度的差异,要仿效和实施李老师的行列式的定义是很难的。但是李老师的数形结合、深入浅出、由几何到代数的思想却是培训留给我的最大的财富,使我对如何教好学生有了更深的体会。
最后谢谢两位老师给我们带来这么精彩而难忘的培训,辛Βιβλιοθήκη 了!请输入内容保存成功
保存失败,请稍后再试
编辑文档
《对参加《线性代数》精品课程培训的心得与体会范文.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载文档
润稿
写作咨询
���
д����ѯ
我会以这次培训为契机认真总结并学习两位老师的教学思想和理念并将之贯穿于今后的教学中努力钻研教材尽可能从各个角度各个侧面理解课程内容力求融会贯通
线性代数心得体会

线性代数心得体会线性代数,作为数学中最基础的一门学科之一,是现代科学技术和工程学科的一支重要的理论基础。
在大学数学课程中,也是一门必修的课程。
在学习这门课程的过程中,我也积累了一些心得体会。
第一,线性代数的基础内容非常重要。
从矩阵的定义和性质开始,逐渐学习行列式、向量空间、线性变换等概念。
这些基础内容是后续内容的重要基础,理解和掌握了这些,才能顺畅地学习后续内容。
第二,解题思路的重要性。
线性代数的习题通常是计算题和证明题。
对于计算题,要熟练掌握基本的计算方法和技巧,注意计算过程的精度和正确性。
对于证明题,要注重建立清晰的思维框架和逻辑链条,注意使用定理和定义来证明,尤其是一些重要且常用的定理,要能够灵活运用。
第三,应用的广泛性。
线性代数不仅是一门数学学科,更是现代科学技术和工程学科的基础。
在物理学、计算机科学、经济学等领域都有着广泛的应用。
比如在物理学中,矩阵和向量的概念被广泛运用于描述物理量和物理系统;在计算机科学中,线性代数被广泛应用于数据处理、机器学习等领域。
第四,独立思考的重要性。
在学习过程中,老师讲解的重点知识和习题答案很有参考价值,但是我们也要独立思考,理解知识背后的本质和规律。
只有当我们真正理解了知识的本质和规律,才能更好地应用它们去解决问题,并且在后续学习中更好地掌握新的知识。
最后,线性代数虽然是一门数学学科,但它的学习需要结合生活和实际问题去深入理解和应用。
理论和实践相结合,才能更好地完成学习任务和增强学术素养。
在学习和探索的过程中,依靠自己的思考和努力,与同学和老师相互交流,才能真正掌握线性代数的知识和技能。
浅谈线性代数学习感想

从线性代数知识内容感想浅谈当代应用一、前言感想从大学大一下半学期开始,学校就开设了这门课程,经过一个学期的学习,对其中的一些知识要点也有了深刻的认识与体会。
在我的身边,线性代数被不少同学排斥,足见这门课给同学们造成的困难。
在这门课的学习过程中,很多同学上课听不懂,一上课就想睡觉{包括我自己},公式定理理解不了,知道了知识但不会做题,记不住等问题。
慢慢的,我发现,只要有正确的方法,再加上自己的努力,就可以学好它。
一定要重视上课听讲,不能使线代的学习退化为自学。
上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的生。
上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。
当然,说句实话,线性代数给我个人的感觉是要比高数《微积分》要难许多。
首先,它涉及到的知识内容有很多,很多都是前后关联的;其次,它其中的定义概念很多,重点知识也要熟记才能够得心应手的应用;第三,概念抽象,很难去理解,只能是通过做题来理解加深印象;最后,计算繁琐,一步错,步步错,需要耐心仔细等等。
这些都是个人的一些感受。
而我课余为了多加强练习,也从网上找了很多试题来练习等等方法。
下面就说说一些个人感觉线性代数的基本应用。
二、当代应用矩阵。
应该说矩阵是一种非常常见的数学现象。
从学校的课表、工厂里的生产进度表、价目表、数据分析表等等都可以看到它的影子,它是表述或处理大量的生活、生产与科研问题的有力的工具。
矩阵的重要作用主要是它能把头绪纷繁的十五按一定的规则清晰地展现出来,并通过矩阵的运算或变各种换来揭示事物之间的内在联系。
矩阵的初等变化,矩阵的秩,初等矩阵,线性方程组的解。
向量组的线性相关,向量空间,向量组的秩等,这些都是线性代数的核心概念。
如我们土木老师所说的,通过计算机并广泛应用于解决桥梁设计,交通规划,石油勘探,经济管理等科学领域。
当然,线性代数也应用于自然科学和社会科学中。
线性代数在数学、物理学和技术学科中也有各种重要应用,因而它在各种代数分支中占居首要地位;线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。
线性代数学习心得体会

线性代数学习心得体会篇一:学习线性代数的心得体会学习线性代数的心得体会线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。
”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。
我自己对线性代数的应用了解的也不多。
但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。
线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。
在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。
我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。
线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。
那么,就应该在第二天有线代课时晚上睡得早一点。
如果你觉得上课跟不上老师的思路那么请预习。
这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。
当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。
一定要重视上课听讲,不能使线代的学习退化为自学。
上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。
上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。
上完课后不少同学喜欢把上课的内容看一遍再做作业。
实际上应该先试着做题,不会时看书后或做完后看书。
这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。
学习线性代数的心得体会

学习线性代数的心得体会线性代数被不少同学称为“天书”,足见这门课给同学们造成之困难。
在这门课之学习过程中,你是否也遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。
不要怕,线性代数之学习是有章可循之,只要有正确之方法,再加上自己之努力,任何学科都不会“打倒”你。
线性代数是一门对理工科学生极其重要数学学科。
线代课本之前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛之数学学科了。
”你是不是觉得这好像是在吹,之确,我们之线代教学之一个很大之问题就是对线性代数之应用涉及太少,课本上涉及最多之只能算解线性方程组了,但这只是线性代数很初级之应用。
我只上大二,对线性代数之应用了解之也不多。
但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大之作用。
没有应用到之内容很容易忘,我现在高数还基本记得,但线代已忘了大半。
因为高数在很多课程中都有广泛之应用,尤其第二学期开设之大学物理课。
所以,如果有时间之话,要尽可能地到网上或图书馆了解线性代数在各方面之应用。
如:《线性代数》(居余马等编,清华大学出版社)上就有线性代数在“人口模型”、“马尔可夫链”、“投入产出数学模型”、“图之邻接矩阵”等方面之应用。
也可以试着用线性代数之方法和知识证明以前学过之定理或高数中之定理,如老之高中解析几何课本上之转轴公式,它就可以用线性代数中之过渡矩阵来证明。
线性代数难懂和琐碎也跟教学中没有涉及线代之应用有很大关系。
线代是一门比较费脑子之课,所以如果前一天晚上睡得太晚第二天早上之线代课就会变成“催眠课”。
那么,请在第二天有线代课时晚上睡得早一点,“卧谈会”开得短一点。
如果你觉得上课跟不上老师之思路那么请预习。
这个预习也有学问,预习时要“把更多之麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细之过程,想一下思路即可;还要多猜猜预习之部分会有什么公式、定理、结论;还要想一想预习之内容能应用到什么领域。
学习线性代数的感想

学习线性代数的感想一、线性代数概述线性代数是一门应用性很强,而且理论非常抽象的数学学科,它主要讨论了矩阵理论、与矩阵结合的有限维向量空间及其线性变换的理论.在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、经济学、网络技术等无不以线性代数为基础.但是在线性代数中,大部分的计算太过繁琐.例如当把方程的阶次提高到了三元以上时,不但要求较高的抽象思维能力,而且也要求用十分繁琐的计算步骤才能解决问题,这使得大多数的学生对线性代数感到乏味枯燥。
二、当前我们在线性代数学习中面临着许多问题(1)老师讲课方式单一。
(2)课程内容抽象,定理和概念繁多。
(3)与现代化技术结合得不好,多为理论讲解少了实践计算机练习。
二、国内外线代学习比较而在国外大学,线性代数的教材只是教他们一些简单的线代计算,而对于比较复杂的计算题来说国外的学生大都是在计算机上完成,并且还与实际应用问题相结合,这也许与他们从小受到的教育有关。
在国外,一般都采用“放羊”式的教育方法,因此,也就使学生们从小养成了自己独立思考的一种习惯,所以这使得计算机成为他们学习的有力武器,解决起来一些比较复杂的线代问题更为得心应手。
在中国也正是因为传统教育观念的影响,让我们总是处于一种“被逼迫”学习的状态,不会自主独立的学习,一些知识都是由老师强加给的,很少有学生会自己独立的思考、独立的学习。
在平时为了搞清楚一个问题而去图书馆翻阅相关资料,一般都是由老师提出问题,再有老师回答问题,而在这个过程中,我们中国的学生只是处于一个“旁观者”,不参与探索。
三、解决复杂线代问题的工具---MATLAB由于MATLAB可以帮助使用者摆脱繁重的计算过程,所以在美国大学中,MATLAB已广泛应用到线性代数中去,成为许多大学生和研究生使用的重要工具.在国外的高校中,熟练掌握MATLAB已成为大学及以上学历必须掌握的基本技能.大多数国外学校对数学的研究主要是运用计算机解决问题,真正动手演算很少,所以即使中国学生在理论知识上比外国学生强,但对于实际应用和动手能力却远远不如外国学生.在我们小组用MATLAB工具计算的过程中,我们发现运用计算机计算更加方便快捷,相对于手算来说,用计算机计算的结果更准确,并且我们还发现可以用这个工具来解决一些实际问题比如工业上的生产链以及物流链,都可以将其数字化加以监控与检测,有利于生产链和物流链的管理。
学习线性代数的心得体会

学习线性代数的心得体会
学习线性代数的心得体会:
1. 线性代数是一门基础且重要的学科,它为各个数学领域和其他学科提供了基本的数学工具和理论基础。
2. 学习线性代数需要掌握一定的数学基础,如矩阵运算、向量空间等。
建议在学习线性代数之前,先进行数学基础的复习和巩固,以便更好地理解和应用线性代数的概念和方法。
3. 在学习线性代数的过程中,需要注重理论和实践的结合。
通过解题、编程等实际操作,可以更好地理解和运用线性代数的知识。
4. 线性代数的概念和性质相对较为抽象和复杂,需要进行积极的思考和理解。
在遇到困难时,可以多进行思考、讨论和请教他人,以便更好地理解和掌握相关内容。
5. 线性代数是一个渐进性的学科,各个概念和方法之间都有一定的联系。
建议在学习过程中保持积极的学习态度,不断拓展自己的知识和能力。
6. 线性代数作为一门基础学科,在计算机科学、物理、工程等领域都有广泛的应用。
学习线性代数不仅可以提升数学素养,还可以为其他学科的学习和研究提供强大的支持。
学习线性代数需要保持充分的学习热情和积极的学习态度,注
重理论和实践的结合,培养抽象思维和问题解决能力,为自己的学习和发展打下坚实的数学基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳药科大学选修课结课论文沈阳药科大学浅谈学习线性代数的心得体会学校:沈阳药科大学姓名:***学号:********专业:药物制剂年级:2010级班级:03班一、内容摘要线性代数是一门较抽象的数学课程,但是线性代数除了其抽象之外还具有另外一个重要的特点:“实用性”,由于计算机的飞速发展和广泛应用,线性代数已成为越来越多的科技工作者必不可少的数学工具。
掌握线性代数的基本概念、基本理论与基本方法,为解决工科各专业的实际问题,为进一步学习相关课程及扩大数学知识都将奠定必要的数学基础。
在初步学习了高等数学这门课程后,里面涉及了一些线性代数的求解方法,听老师说,某些题目用线性代数的方法求解更容易,但是由于我们还未系统的学习这门课程,老师也是一带而过,并未深讲。
致使我对线性代数这门学科有了浓厚的兴趣,在首先简单了解了这门学科的背景后,发现线性代数是一门丰富多彩充满未知的科学,在看到学校开设了这门课程的选修课后,我义无反顾的叫我们全寝室的人都选修了这门奇妙的课程。
学习线性代数的初步感受就是它的概念多,推理论证多,基本理论与结论多,线性代数在内容上,思想方法上及论证方法上都与“高等数学”有所区别。
它具有较强的逻辑性和抽象性,一开始就要高度重视。
它又与中学所学的代数有一定的联系,所以有些内容并不是完全陌生的。
我相信只要我每节每章地,一步一个脚印的弄懂、弄通,记住有关的概念和结论,并通过反复的应用(练习)来掌握它,循序渐进掌握这门课程是容易的。
关键词:数学线性代数背景应用计算方法感受二、绪论2.1 线性代数的发展史由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。
直到十八世纪末,线性代数的领域还只限于平面与空间。
十九世纪上半叶才完成了到n维向量空间的过渡,矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点。
1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。
托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中。
线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。
不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。
“代数”这一个词在中国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,之后一直沿用。
2.2 线性代数在数学中的地位线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
① 性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。
② 计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分。
③ 线性代数这门学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的。
④ 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。
2.3 课程主要内容㈠ 行列式①阶与三阶行列式的计算——对角线法则例: 解线性方程组解:由于方程组的系数行列式⎪⎩⎪⎨⎧=-+-=-++-=+-.0,132,22321321321x x x x x x x x x 111312121----=D ()111-⨯⨯=()()()132-⨯-⨯-+121⨯⨯+()111-⨯⨯-()()122-⨯⨯--()131⨯-⨯-5-=,0≠同理可得故方程组的解为: ② 全排列及其逆序数例:用两种方法求排列16352487的逆序数。
解:方法1 1 6 3 5 2 4 8 7方法2 由前向后求每个数的逆序数。
③ n 阶行列式的定义: n 阶行列式(定义1)设有n^2个数,排成n 行n 列的表 ,作出表中位于不同行不同列的n 个数的乘积,并冠以符号(-1)t ,的形式如下的项,其中为自然数1,2,...,n 的一个排列,t 为这个排列的逆序数.由于这样的排列共有n!个,这n!项的代数和称为n 阶行列式。
④ 对换的定义:在排列中,将任意两个元素对调,其余元素不动,这种作出新排列的手续叫做对换。
将相邻两个元素对调,叫做相邻对换。
⑤ 行列式的性质及应用⑥ 克拉默法则的应用㈡ 矩阵① 矩阵及矩阵的运算② 逆矩阵的概念和性质及其求法③ 分块矩阵的运算法则④ 矩阵的初等变换及消元法⑤ 线性方程组的解 例 求解齐次线性方程组 解: 对系数矩阵A 实施初等行变化 13122r r r r --1103111221----=D ,5-=1013121212----=D ,10-=0111122213---=D ,5-=,111==D D x ,222==D D x .133==D D x 01012130+++++++=t 8=.810231100=+++++++=t .034022202432143214321⎪⎩⎪⎨⎧=---=--+=+++x x x x x x x x x x x x ⎪⎪⎪⎭⎫ ⎝⎛-----=341122121221A ⎪⎪⎪⎭⎫ ⎝⎛------463046301221⎪⎪⎪⎪⎭⎫ ⎝⎛0000342101221⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--00003421035201即得与原方程组同解的方程组 由此即得 ⑥ 初等矩阵的概念及其应用㈢ N 维向量① N 维向量的概念及其表示方法② 向量组线性相关性的概念及判定③ 向量组的秩与矩阵的关系④ 向量空间的概念及其基与维数⑤ 线性方程组的解的结构㈣ 相似矩阵与二次型① 矩阵的特征值与特征向量及其求法② 相似矩阵及其性质③ 矩阵对角化的充要条件及其方法④ 实对称矩阵的相似对角矩阵⑤ 二次型及其矩阵表示⑥ 线性无关的向量组正交规范化的方法⑦ 正交变换与正交矩阵的概念及性质⑧ 用正交变换化二次型为标准形⑨ 用配方法化二次型为平方和,二次型的规范形 212r r -)3(223-÷-r r r ⎪⎪⎩⎪⎪⎨⎧=++=--,0342,0352432431x x x x x x ⎪⎪⎩⎪⎪⎨⎧--=+=,342,352432431x x x x x x ).可任意取值,(43x x 形式,把它写成通常的参数,令2413c x c x ==⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=+=,,,342,3522413222221c x c x c c x c c x .1034350122214321⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛∴c c x x x x⑩惯性定理、二次型的秩、二次型的正定性及其判别三、心得体会从素未谋面到一知半解,或许将来会有相见恨晚。
总之到现在为止,经过将近一个30个学时的学习,我对线性代数有了一些小小的感想。
首先,我从一些资料了解到线性代数是数学的一个分支,它的研究对象是向量,向量空间,线性变换和有限维的线性方程组。
向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。
线性代数的理论已被泛化为算子理论。
由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。
其次,通过查阅资料、阅读课本及其目录,我知道了线性代数的主要内容是研究代数学中线性关系的经典理论。
由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下,可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。
尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。
而线代不同于高等数学的是,它几乎从一开始就是一个全新的概念,至少给我的感觉是这样。
我们都知道,线性代数研究的范围通常都不是我们能想象到的二维空间,而是上升到n维空间,并且在线性代数的学习过程中,我们几乎都是跟一些新的概念,新的定理打交道,因此理解和记忆起来有相当大的困难,常常是花很久的时间还是理解不了。
给我们上课的姜老师对细节的要求比较高,他会时不时询问学生对知识的理解情况,经常会多次讲解,这真的是一个好现象。
不过说实话,由于课时的限制,老师不可能把所有东西都讲解得很透彻,尽管老师尽力讲解了,可每次上完课我仍会有些许疑惑。
第一堂课,姜老师介绍过,线性代数主要研究了三种对象:矩阵、方程组和向量。
这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法。
因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质。
如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性。
俗话说得好:“学而不思则罔”。
记得姜老师说过,当给你一个信息的时候,尤其是一些不太明显的信息,你要能立刻理解它的内涵,也就是说能够马上联想到与它等价的一些信息。
比如说,告诉你一个矩阵是非奇异矩阵,它包含的信息有:首先明确它是一个n阶方阵,它的秩是n,它便是满秩矩阵,它所对应的n阶行列式不等于零,那么n个n维向量便线性无关,还有这个方阵是可逆方阵,并且可以想到它的转置矩阵也是可逆的•,还有一点,在线性代数的学习过程中,有些定理或推论是没有必要去背的,因为它们就是另外某个定理的特殊情况,只要我们稍微思考一下,完全可以自己概括,没有必要多记几个来增加自己的记忆负担。
比如说向量组的线性相关性的定理6的推论2:“当m>n时,m个n维向量一定线性无关”,看过定理6后你会觉得这完全就是废话嘛,所以要善于总结提高效率。
再有就是在记忆一些定理概念的时候,不一定非得按原文记忆,我们可以按照自己的理解来记忆。
在学习线性代数的过程中,联想和思考是非常重要的,通过联想和思考,把学过的知识点串起来,深化理解,我们才能把线性代数学得更好。
到现在为止,我们的线性代数课程已经快接近尾声了,但是我相信大多数同学跟我一样只感受到了线性代数的较强的逻辑性和超强的抽象性,对于所谓的广泛的实用性,并没有太深刻的体会。
说得更加“肤浅”一点,从我们的专业相关性来说,我们并不是很清楚线性代数对我们今后的专业学习有多大的帮助,我想这是许多学生对线性代数的学习热情不高的原因之一吧。