参加《线性代数》课程培训的心得体会

合集下载

线性代数心得体会

线性代数心得体会

线性代数心得体会作为一门数学分支,线性代数一直是大学数学课程中的重头戏之一,它被广泛使用于科学、工程和经济学等许多领域。

在我大学的数学学习中,我也学习了线性代数,虽然在学习过程中也遇到了一些难以理解的部分,但最终还是能够掌握其中的精髓,今天就和大家分享一下我的心得体会。

线性代数的基础知识部分可以说是比较简单的,但必须掌握好线性空间、线性变换、矩阵及其运算这些概念,因为这些是后续内容的基础。

线性代数的核心就是线性方程组的求解,虽然这是高中数学学过的内容,但是在高维空间中依然是非常重要的。

在求解线性方程组时,可以通过高斯消元法、列主元法等方法来简化运算,但还需要注意矩阵的模型化表示方式。

此外,线性方程组的解不一定存在,解也不一定唯一,需要注意分类讨论,判断解的性质。

在学习线性代数的过程中,最抽象的内容可能是线性变换。

线性变换有很多种类型,比如旋转、幂等变换、逆变换等,需要通过几何图形进行理解。

例如,线性变换可以将空间中的点变成同一曲面上的点,这也就意味着线性变换可以保持点之间的任何关系不变,这一点在研究旋转、平移、缩放等问题时非常有用。

线性代数最常见的应用之一就是图像处理,在这个领域中,线性运算的应用尤为重要。

矩阵的储存方式对于图像处理的速度也有不小的影响。

线性代数可以将三维图像数据储存为二维矩阵,从而更加方便处理。

除此之外,在数据分析、机器学习、人工智能等领域中,线性代数也是基础而重要的学科。

总的来说,线性代数虽然看起来非常抽象,但其实是个低门槛的高深数学,掌握了基础理论,便可以探索许多令人惊奇的应用。

我个人认为,理解概念、掌握运算、熟记定理,三者缺一不可,要想在学习中达到更好的理解,也要学会多观察、多思考,从多个角度来审视问题,才能真正掌握线性代数这门学科的精髓。

线性代数心得体会

线性代数心得体会

线性代数心得体会作为一门数学学科,线性代数在大学数学课程中是非常重要的一部分。

这门学科涵盖了诸多的概念和技术,如线性空间、矩阵、行列式、向量等等。

学习线性代数不仅可以帮助我们全面掌握数学知识,更能为我们在实际应用中提供帮助。

在我的学习过程中,我有一些心得体会想要与大家分享。

首先,我们需要认识到线性代数不仅仅是一种数学理论。

实际上,线性代数最具有应用价值的部分就是矩阵运算。

矩阵运算是线性代数的核心,也是应用最广泛的领域。

矩阵可以用来表示很多实际问题,如线性方程组、统计分析、图像处理等。

因此,学习矩阵运算是很有必要的。

在学习矩阵运算时,我们需要学会使用各种基本的运算技巧,如矩阵加减法、矩阵乘法、矩阵的转置和逆等。

这些技巧是使用矩阵解决实际问题的基础。

除了矩阵运算以外,向量也是线性代数中很重要的一部分。

向量在几何学中有着广泛的应用,它可以被用来表示位置、速度等量,也可以被用来表示物理量的强度和方向。

我们需要认识到向量的重要性,并且掌握向量的一些基本概念和运算技巧,如向量的加法和减法、数量积、向量积等等。

在学习线性代数的过程中,我们还需要掌握一些基本的概念,如线性空间、Basis、维数、行列式、特征值和特征向量等等。

这些概念和技术是帮助我们理解线性代数中更高级概念和理论的核心。

总之,学习线性代数是非常重要的。

在我的学习过程中,我发现对矩阵运算和向量的掌握是非常关键的。

我们需要认识到线性代数不仅仅是一门数学理论,更是实际应用中的一个重要工具。

我们需要努力学习并掌握矩阵运算、向量的概念和技术,并在实践中灵活应用,才能够更好地掌握线性代数。

线性代数实训课程学习总结

线性代数实训课程学习总结

线性代数实训课程学习总结线性代数是现代数学的一种重要分支,广泛应用于自然科学、工程技术和社会科学的各个领域。

作为一门重要的数学学科,线性代数在大学的数学教育中占据着重要的地位。

通过参加线性代数实训课程的学习,我对线性代数的相关知识和应用有了更深入的理解和掌握。

在本文中,我将对线性代数实训课程的学习经历进行总结和回顾。

首先,在线性代数实训课程中,我学习了向量、矩阵、线性方程组等基础概念和基本性质。

通过实际操作,我深刻理解了向量的加减法、数量积、向量积等运算规则,并能够熟练地应用于实际问题中。

同时,通过矩阵的运算和转置,我掌握了矩阵的特征和性质,能够运用矩阵的特征值和特征向量解决相关的线性代数问题。

此外,我还学习了线性方程组的求解方法,包括高斯消元法、矩阵的化简等。

通过实践,我能够有效地解决线性方程组的求解问题。

其次,线性代数实训课程中,我对线性变换和矩阵的特征值与特征向量有了更深入的了解。

线性变换是线性代数的重要内容之一,通过学习线性变换的定义、性质和实例,我能够分析和理解线性变换的基本特征。

此外,通过学习矩阵的特征值和特征向量,我能够判断矩阵的类型,并应用特征值和特征向量进行矩阵的对角化和矩阵的相似性分析。

这些知识对于理解矩阵的性质和应用很有帮助。

然后,在线性代数实训课程中,我还学习了线性空间、子空间和线性变换的矩阵表示等内容。

线性空间是线性代数的核心概念之一,通过学习线性空间的定义和性质,我了解了线性空间的基数、基底、维数等概念,并能够分析和描述线性空间的性质和结构。

同时,通过学习子空间的定义和判定条件,我能够判断一个子集是否为线性空间。

此外,通过学习线性变换的矩阵表示,我能够将线性变换转化为矩阵运算,从而利用矩阵的运算特性解决线性变换相关的问题。

最后,在线性代数实训课程中,我通过实际应用案例的分析和解决,进一步巩固了线性代数的知识和技能。

通过对矩阵的运用,我能够解决线性代数在工程、物理等领域中的实际问题。

对参加《线性代数》课程培训的心得与体会

对参加《线性代数》课程培训的心得与体会
三天的《线性代数》精品课程培训马上就要结束了,时间虽然短暂,但给我的触动是很深的,启示是很大的。
首先,是关于行列式的问题,李老师从全新的角度给出了全新的定义。象李老师描述的一样,我深有同感。几乎所有的线性代数教材在介绍行列式时都是通过解二元及三元一次线性方程组而引入的,曾经有一个学生课后验证四元一次线性方程组后跟我说和行列式不符。我觉得用方程组引入行列式定义有两个困惑:第一,二元及三元一次线性方程组的求解学生早在初中就很熟悉,非要用商的形式表达解有点化简单为烦琐的味道。第二,即使解出系数行列式,也很难观察归纳总结出一般规律。基于以上两点考虑,每次讲到行列式定义时,我都是在讲完全排列,逆序数后直接给出行列式的`定义。由于理解上本身就有难度,所以我在讲解时给出详细的注释:行列式就是一个数,只是得来的过程有点麻烦;行列式具体说就是取自所有不同行不同列的n个元素乘积的代数和。然后按照定义,和学生们一起求出二阶和三阶行列式的计算公式,即对角线法则。而李老师从向量的角度,从几何上的面积空间立方体的体积以及n维向量的体积角度给出了全新的定义,是一种全新的思想和理念。当然,由于教材编排顺序以及学生接受程度的差异,要仿效和实施李老师的行列式的定义是很难的。但是李老师的数形结合、深入浅出、由几何到代数的思想却是培训留给我的最大的财富,使我对如何教好学生有了更深的体会。
最后谢谢两位老师给我们带来这么精彩而难忘的培训,辛Βιβλιοθήκη 了!请输入内容保存成功
保存失败,请稍后再试
编辑文档
《对参加《线性代数》精品课程培训的心得与体会范文.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档
下载文档
润稿
写作咨询
���
д����ѯ
我会以这次培训为契机认真总结并学习两位老师的教学思想和理念并将之贯穿于今后的教学中努力钻研教材尽可能从各个角度各个侧面理解课程内容力求融会贯通

《线性代数》学习心得800字

《线性代数》学习心得800字

《线性代数》学习心得800 字《线性代数》学习心得800 字个人简介佘可欣,中山大学国际金融学院 20XX级本科生,在 20XX学年《线性代数》的课程学习中获取了第一名的好成绩。

作为理科生,数学是极为重要,大学的专业也和数学亲密有关,可恰恰数学倒是我致命的弱项,在学好数学的路上付出了好多,也有所收获,但也不过不过皮毛。

在这里分享我的经验,希望大家有所收获。

一开始学习线代时,便感觉到线代不一样于高等数学的地方,在于它几乎从一开始就是一个崭新的看法。

其研究的范围往常都不是我们能想象到的二维空间,而是上涨到 n 维空间,而且在线性代数的学习过程中,我们几乎都是跟一些新的看法,新的定理打交道,所以理解和记忆起来有相当大的困难,常常是花好久的时间仍是理解不了。

所以需要课前预习,上课紧跟老师解说,下课练习课后习题以助更好的理解掌握。

线性代数主要研究三种对象:矩阵、方程组和向量。

这三种对象的理论是亲密有关的,大多数问题在这三种理论中都有等价说法。

所以,学习线性代数时应能够娴熟地从一种理论的表达转移到另一种中去。

假如说与实质计算联合最多的是矩阵的看法,那么向量的看法则着眼于从整体性和构造性考虑问题,因此能够更深刻、更透辟地揭露线性代数中各样问题的内在联系和实质属性。

因而可知,掌握矩阵、方程组和向量的内在联系十分重要。

线代的看法多,比方关于矩阵,有对角矩阵、陪伴矩阵、逆矩阵、相像矩阵等。

运算法例多,比方求逆矩阵,求矩阵的秩,求向量组的秩,求基础解系,求非齐次线性方程组的通解等。

内容互相纵横交织,在学到后边的知识点时常常出现需要和前面的知识点的应用,但常常记不起来,就需要不停地复习前面的知识点。

要能够做到当题干给出一个信息时一定能够想到该信息等价的其余信息,比方告诉你一个矩阵是非奇怪矩阵,它包括的信息有:第一明确它是一个n 阶方阵,它的秩是 n, 它即是满秩矩阵,它所对应的 n 阶队列式不等于零,那么 n 个 n 维向量便线性没关,还有这个方阵是可逆方阵,而且能够想到它的转置矩阵也是可逆的。

线性代数心得体会

线性代数心得体会

线性代数心得体会线性代数,作为数学中最基础的一门学科之一,是现代科学技术和工程学科的一支重要的理论基础。

在大学数学课程中,也是一门必修的课程。

在学习这门课程的过程中,我也积累了一些心得体会。

第一,线性代数的基础内容非常重要。

从矩阵的定义和性质开始,逐渐学习行列式、向量空间、线性变换等概念。

这些基础内容是后续内容的重要基础,理解和掌握了这些,才能顺畅地学习后续内容。

第二,解题思路的重要性。

线性代数的习题通常是计算题和证明题。

对于计算题,要熟练掌握基本的计算方法和技巧,注意计算过程的精度和正确性。

对于证明题,要注重建立清晰的思维框架和逻辑链条,注意使用定理和定义来证明,尤其是一些重要且常用的定理,要能够灵活运用。

第三,应用的广泛性。

线性代数不仅是一门数学学科,更是现代科学技术和工程学科的基础。

在物理学、计算机科学、经济学等领域都有着广泛的应用。

比如在物理学中,矩阵和向量的概念被广泛运用于描述物理量和物理系统;在计算机科学中,线性代数被广泛应用于数据处理、机器学习等领域。

第四,独立思考的重要性。

在学习过程中,老师讲解的重点知识和习题答案很有参考价值,但是我们也要独立思考,理解知识背后的本质和规律。

只有当我们真正理解了知识的本质和规律,才能更好地应用它们去解决问题,并且在后续学习中更好地掌握新的知识。

最后,线性代数虽然是一门数学学科,但它的学习需要结合生活和实际问题去深入理解和应用。

理论和实践相结合,才能更好地完成学习任务和增强学术素养。

在学习和探索的过程中,依靠自己的思考和努力,与同学和老师相互交流,才能真正掌握线性代数的知识和技能。

线性代数学习心得

线性代数学习心得

线性代数学习心得
学习线性代数,对于我这个大三学生来说是一件很有意思,也有很多收获的事情。


这一学期里,我了解了很多有关线性代数的知识,也有更多地深刻地认识到它在我们日常
生活中的重要性。

首先,我学习了线性代数的基本知识,掌握了线性方程组,向量,矩阵,行列式以及
其它基本概念,解决了一些相关的问题,深入了解了基要事实的原理和正确的计算方法。

另外,我也学习了矩阵的性质及其内容,掌握了基于矩阵的一些游戏,探索了矩阵的特殊
性质,丰富了我对矩阵的理解。

此外,学习线性代数时,我非常体会到它在实际应用中的重要性。

比如,在经济、工程、心理学等诸多领域,线性代数的技术已被广泛采用。

另外,线性代数的技术也可用于
解决极大的计算机数学,虚拟现实技术、机器学习等领域中的复杂问题。

因此,线性代数
在日常生活中十分重要。

在学习过程中,对于新概念,我会有着一定的坚持精神和探究精神,尤其是对于很多
复杂的问题,会采取分析、比较和考虑不同角度,努力探究真相,再以最佳的方式来解决
问题。

总而言之,线性代数是一门重要的学科,它的技术已被广泛应用到日常的科学技术领域,并且有着十分巨大的潜力发挥,所以,为了澳游我们的能力,我们更应该深入学习线
性代数的相关知识,充分利用线性代数的技术,不断提高学习成果,为自己的学习贡献力。

线性代数学习心得体会

线性代数学习心得体会

线性代数学习心得体会篇一:学习线性代数的心得体会学习线性代数的心得体会线代课本的前言上就说:“在现代社会,除了算术以外,线性代数是应用最广泛的数学学科了。

”我们的线代教学的一个很大的问题就是对线性代数的应用涉及太少,课本上涉及最多的只能算解线性方程组了,但这只是线性代数很初级的应用。

我自己对线性代数的应用了解的也不多。

但是,线性代数在计算机数据结构、算法、密码学、对策论等等中都有着相当大的作用。

线性代数被不少同学称为“天书”,足见这门课给同学们造成的困难。

在这门课的学习过程中,很多同学遇到了上课听不懂,一上课就想睡觉,公式定理理解不了,知道了知识但不会做题,记不住等问题。

我认为,每门课程都是有章可循的,线性代也不例外,只要有正确的方法,再加上自己的努力,就可以学好它。

线代是一门比较费脑子的课,所以如果前一天晚上睡得太晚第二天早上的线代课就会变成“催眠课”。

那么,就应该在第二天有线代课时晚上睡得早一点。

如果你觉得上课跟不上老师的思路那么请预习。

这个预习也有学问,预习时要“把更多的麻烦留给自己”,即遇到公式、定理、结论马上把证明部分盖住,自己试着证一下,可以不用写详细的过程,想一下思路即可;还要多猜猜预习的部分会有什么公式、定理、结论;还要想一想预习的内容能应用到什么领域。

当然,这对一些同学有困难,可以根据个人的实际情况适当调整,但要尽量多地自己思考。

一定要重视上课听讲,不能使线代的学习退化为自学。

上课时干别的会受到老师讲课的影响,那为什么不利用好这一小时四十分钟呢?上课时,老师的一句话就可能使你豁然开朗,就可能改变你的学习方法甚至改变你的一生。

上课时一定要“虚心”,即使老师讲的某个题自己会做也要听一下老师的思路。

上完课后不少同学喜欢把上课的内容看一遍再做作业。

实际上应该先试着做题,不会时看书后或做完后看书。

这样,作业可以帮你回忆老师讲的内容,重要的是这些内容是自己回忆起来的,这样能记得更牢,而且可以通过作业发现自己哪些部分还没掌握好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参加《线性代数》课程培训的心得体会
————————————————————————————————作者:
————————————————————————————————日期:
参加《线性代数》课程培训的心得体会
祖建西南石油大学理学院
尊敬的李老师,您好!
我是西南石油大学理学院的一名老师,教了《线性代数》这门课程两遍.有幸参加了这次全国高校教师《线性代数》课程的网络培训,领悟到了李教授的授课风采.
c)设 和 都是n阶可逆矩阵,则 也是可逆矩阵,且 .
一般地,若同阶矩阵 都可逆,则 也可逆,且
.
d)若 可逆,则 也可逆,且 .
e)若 可逆,则 也可逆,且 .
证明
a)设 、 都是 的逆矩阵,则 ;由 知, , .
b)事实上, .
c)事实上,
d)事实上,
e)事实上,因为,
.
【说明】(1)、不能将 写为 ;
在我们学校《线性代数》是《高等数学》的后继课程,它是工科学生必修的一门重要基础课.《线性代数》是从解线性方程组和讨论二次方程的图形等问题的基础上而发展起来的一门数学学科.《线性代数》介绍代数学中线性关系的经典理论,它的基本概念、理论和方法具有较强的逻辑性、抽象性.由于线性问题广泛存在于科学技术的各个领域,而某些非线性问题在一定条件下,可以转化为线性问题,因此《线性代数》课程所介绍的理论和方法也具有广泛的实用性.尤其在计算机日益普及的今天,该课程的地位与作用更显得重要.《线性代数》课程主要讲授矩阵与行列式、向量、线性方程组、方阵相似对角化和二次型以及《线性代数》实验等内容.《线性代数》教学不仅关系到学生在整个大学期间甚至研究生期间的学习质量,而且还关系到学生的思维品质、思辨能力、创造潜能等科学和文化素养,《线性代数》教学既是科学的基础教育,又是文化的基础教育,是素质教育的一个重要的方面.
事实上,因为
= , .
【注意】一般地,
4、逆矩阵的应用举例
例4设 ,求 的值.
解因为 ,所以 可逆,从而 , ,
.
例5设 阶方阵 满足 求
【分析】(1)、由 得, 即, 所以,
(2)、(凑因式法)
即, 所以,
例6解矩阵方程 ,其中 .
【分析】求满足一定关系式的未知矩阵,一般应先根据矩阵的运算化简关系式,再求出出相关矩阵的逆矩阵,最后求出未知矩阵.
(2)、
(3)、如果 可逆,那么矩阵方程 有唯一解
例2设 ,且 可逆,证明 .
证明 .
【问题2】在什么条件下矩阵 是可逆的?如果 可逆,怎样求 ?
3、矩阵可逆的条件
定义2设 , 为 中元素 的代数余子式,则称矩阵
为 的伴随矩阵.
的伴随矩阵 与 有如下重要关系;
命题1设 为n阶方阵 的伴随矩阵,则 .
由 得,
以下是我根据这次的学习,所设计的关于逆矩阵这一节的教案,敬请李教授指导.谢谢!
§1.4逆矩阵
在本章第三节里,我们定义了矩阵的加法、减法和乘法三种运算.而在矩阵乘法运算中,我们看到单位矩阵 的作用类似于数 在数的乘法中的作用,即对于任意 阶矩阵 ,有

(下面用类比于数的性质引出逆矩阵的概念)
在数的乘法运算中,对于非零数 ,则存在唯一一个数 ,使得
1、逆矩阵的定义
定义1设 是 阶方阵,如果存在 阶方阵 使 ,则称 为可逆矩阵,简称 可逆,并称 为 的逆矩阵,记作 ,即, .
显然, .单位矩阵 是可逆矩阵,其逆矩阵为自身;零矩阵不是可逆矩阵.
【说明】(1)、可逆矩阵及其逆矩阵都是方阵,并且它们的阶数相同;
(2)、可逆矩阵与其逆矩阵可交换;
(3)、只有方阵才有逆矩阵.
我们学校开设本课程的目的是不仅使学生掌握该课程的基本理论与基本方法,在数学的抽象性、逻辑性与严密性方面受到必要的训练和熏陶,使他们具有理解和运用逻辑关系、研究和领会抽象事物,为学生学习后继数学课程、其它基础课程和专业课程提供必要的基础知识和思想方法,而且培养学生较强的运算能力、抽象思维能力、逻辑推理能力和归纳判断能力,培养学生运用所学知识去分析问题、建立数学模型以及利用计算机解决实际问题的能力和意识,为学生将来从事科学研究工作奠定良好的理论基础,提供一种重要的数学工具,积累一定的运用计算机解决实际问题的实践经验.
推论3设方阵 满足 ,则 ,且 ,
例如,若 ﻩ则下列成立的是:
【说明】
(1)、当 时, 称为奇异矩阵(退化矩阵);
当 时, 称为非奇异矩阵(非退化矩阵).
(2)、定理1不仅给出了一矩阵可逆的条件,同时也给出了求矩阵的逆矩阵的公式,即提供了一种求矩阵的逆矩阵的方法——伴随矩阵法(公式法).
例3设
,
则 , .
.
我们自然要问:非零矩阵是否也有类似这样的性质?
我们先看下面的引例:
引例
(1)设 ,则对任意 ,都有 .
(2)设 ,则存在 ,使得 .
引例1说明,对于非零矩阵 ,不一定存在矩阵 ,使得 .如果这样的矩阵 存在,我们就称 为可逆矩阵,而称 为 的逆矩阵.
可逆矩阵是一类重要的矩阵,而它的逆矩阵在矩阵的运算中起着重要作用.下面,我们来介绍可逆矩阵的定义、性质和矩阵是可逆矩阵的条件,最后介绍一种求逆矩阵的方法.
通过这次培训,我领悟到了《线性代数》的抽象概念并非枯燥难懂,而是源于自然,充满魅力和威力.我们对《线性代数》课程的教学设计要让抽象回归自然,代数几何熔一炉.从几何直观引入抽象概念,易于接受,更容易懂.我们工科学校要结合学校的特色,根据学生的实际情况进行教学,突出重点,突出我们的特色.我们的课程设计要以学生为中心.
【问题1】如何求引例1(2)中的矩阵 的逆矩阵?
【方法】由逆矩阵的定义,设 ,由 ,则可求出矩阵 .即,采用待定元素的方法.
例1设方阵 满足 ,证明 可逆.
证明因为 ,所以 可逆.
2、可逆矩阵的性质
(以下均设 是 阶方阵)
a)若 可逆,则 的逆矩阵唯一,记为 ,且 也可逆, , .
b)若 可逆,数 ,则 可逆,且 .
证明由行列式按一行(列)展开和行列式的性质知,
,
于是

同理 .
推论1设 为n阶方阵 的伴随矩阵,则
【说明】
命题2若 ,则 , .
事实上,由命题1,有 ;
定理1方阵 可逆 .
证明必要性若 可逆,则存在 阶方阵 使 ,从而 .
充分性由命题2可得.
推论2设方阵 满足 ,则 可逆.
由推论2,我们只需验证 ,就知道 可逆,且 .
相关文档
最新文档