求最小生成树问题,常用的方法
运筹学试题

运筹学试题Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998运筹学试题一、填空题(本大题共8小题,每空2分,共20分)1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。
2.线性规划模型有三种参数,其名称分别为价值系数、___和___。
3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。
4.求最小生成树问题,常用的方法有:避圈法和 ___。
5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。
6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。
7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。
8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。
二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
多选无分。
9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】A.有唯一的最优解 B.有无穷多最优解C.为无界解 D.无可行解10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】A.b列元素不小于零 B.检验数都大于零C.检验数都不小于零 D.检验数都不大于零11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】A.3 B.2C.1 D.以上三种情况均有可能12.如果要使目标规划实际实现值不超过目标值。
则相应的偏离变量应满足【】13.在运输方案中出现退化现象,是指数字格的数目【】A.等于 m+n B.等于m+n-1C.小于m+n-1 D.大于m+n-114.关于矩阵对策,下列说法错误的是【】A.矩阵对策的解可以不是唯一的C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值【】A.2 8.—l C.—3 D.116.关于线性规划的原问题和对偶问题,下列说法正确的是【】A.若原问题为元界解,则对偶问题也为无界解B.若原问题无可行解,其对偶问题具有无界解或无可行解c.若原问题存在可行解,其对偶问题必存在可行解D.若原问题存在可行解,其对偶问题无可行解17.下列叙述不属于解决风险决策问题的基本原则的是【】A.最大可能原则 B.渴望水平原则C.最大最小原则 D.期望值最大原则18.下列说法正确的是【】A.线性规划问题的基本解对应可行域的顶点也必是该问题的可行解D.单纯形法解标准的线性规划问题时,按最小比值原则确定换出基变量是为了保证迭代计算后的解仍为基本可行解三、多项选择题(本大题共5小题,每小题2分,共l0分)在每小题列出的四个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。
克鲁斯卡尔算法的时间复杂度

克鲁斯卡尔算法的时间复杂度
第一段:克鲁斯卡尔算法是一种求解最小生成树问题(MinimumSpanningTreeProblem)和求最短路径问题(ShortestPathProblem)的算法,是图论中最常用的算法之一。
它
有效地找到一幅给定的加权图中的最小生成树,并对相关的最短路径问题提供了优化的解决方案。
本文将讨论克鲁斯卡尔算法的时间复杂度,包括它的最佳情况和最坏情况。
第二段:克鲁斯卡尔算法的时间复杂度在最佳情况下是线性的,即O(n)。
具体而言,如果一个图中存在一个可以完全覆盖所有边的
最小生成树,则克鲁斯卡尔算法只需要遍历一次图来找到最小生成树,所以它的时间复杂度是O(n)。
第三段:然而,在最坏情况下,克鲁斯卡尔算法的时间复杂度是平方的,即O(n2)。
这是因为最坏情况下,算法将遍历图中的所有边,一共有O(n2)个边,这样它将在遍历完所有边之后才能完成寻找最小生成树的过程,所以它的时间复杂度是O(n2)。
第四段:此外,克鲁斯卡尔算法的时间复杂度还可能受到图的形状和连接方式的影响,这可能会严重影响算法的运行时间。
例如,如果一个图的边比较多,但是连接方式却比较规则,这样算法能够更快地找到最小生成树,导致克鲁斯卡尔算法的时间复杂度低于最坏情况下的O(n2)。
第五段:总而言之,克鲁斯卡尔算法的时间复杂度由图的状况决定。
它在最佳情况下是线性的,即O(n),在最坏情况下则是平方的,
即O(n2)。
然而,它的时间复杂度还可能受到图的形状和连接方式的影响,有时可能低于最坏情况下的O(n2)。
运筹学最小生成树破圈法例题

运筹学最小生成树破圈法例题引言运筹学是一门研究如何优化决策的学科,它可以帮助我们在面对各种约束条件和目标函数的情况下,找到一个最优解。
其中一个重要的问题是最小生成树(Minimum Spanning Tree,MST)问题,它用于解决图论中的连通性问题。
在本文中,我们将重点讨论用破圈法(Cycle Breaking Algorithm)求解最小生成树问题的例题。
什么是最小生成树问题?最小生成树问题是在一个加权连通图中,找到一个边的子集,使得这个子集形成一棵树,并且这棵树上所有边的权重之和最小。
最小生成树问题常被用于网络设计、电力传输、通信网络等领域。
最小生成树破圈法为了解决最小生成树问题,我们介绍一种常用的算法——破圈法。
该算法的基本思想是不断将新的边加入到当前的生成树中,同时保证生成树中不会形成闭合的回路。
下面通过一个例题来详细介绍破圈法的具体步骤。
例题描述假设我们有一个无向连通图,共有6个顶点,边的权重如下表所示:边权重AB 4AD 6AC 5BC 1BD 2BE 3CE 7DE 8DF 9边权重EF 10我们的目标是找到这个图的最小生成树。
破圈法求解步骤以下是破圈法求解最小生成树问题的具体步骤:1.初始化:选择一个起始顶点作为生成树的根节点,将该顶点加入生成树的顶点集合V’中,将该顶点的所有相邻边加入到候选边集合E’中,并按权重从小到大排序。
2.迭代:从候选边集合E’中选择一条权重最小且不会形成回路的边e,将该边的两个顶点加入到顶点集合V’中,并将这条边加入生成树的边集合中。
同时更新候选边集合,将与新加入顶点有关的边加入候选边集合,并按权重排序。
3.终止条件:重复步骤2,直到生成树包含了全部的n-1个顶点,其中n为原图的顶点个数。
破圈法求解最小生成树例题解析根据以上步骤,我们逐步求解例题中给出的图的最小生成树。
Step 1: 初始化我们选择顶点A作为起始顶点,并将其加入生成树的顶点集合V’中。
PRIM算法求最小生成树

xx学院《数据结构与算法》课程设计报告书课程设计题目 PRIM算法求最小生成树院系名称计算机科学与技术系专业(班级)姓名(学号)指导教师完成时间一、问题分析和任务定义在该部分中主要包括两个方面:问题分析和任务定义;1 问题分析本次课程设计是通过PRIM(普里姆)算法,实现通过任意给定网和起点,将该网所对应的所有生成树求解出来。
在实现该本设计功能之前,必须弄清以下三个问题:1.1 关于图、网的一些基本概念1.1.1 图图G由两个集合V和E组成,记为G=(V,E),其中V是顶点的有穷非空集合,E是V中顶点偶对的有穷集,这些顶点偶对称为边。
通常,V(G)和E(G)分别表示图G的顶点集合和边集合。
E(G)也可以为空集。
则图G只有顶点而没有边。
1.1.2 无向图对于一个图G,若边集E(G)为无向边的集合,则称该图为无向图。
1.1.3 子图设有两个图G=(V,E)G’=(V’,),若V’是V的子集,即V’⊆V ,且E’是E的子集,即E’⊆E,称G’是G的子图。
1.1.4 连通图若图G中任意两个顶点都连通,则称G为连通图。
1.1.5 权和网在一个图中,每条边可以标上具有某种含义的数值,该数值称为该边的权。
把边上带权的图称为网。
如图1所示。
1.2 理解生成树和最小生成树之间的区别和联系1.2.1 生成树在一个连通图G中,如果取它的全部顶点和一部分边构成一个子图G’,即:V(G’)= V(G)和E(G’)⊆E(G),若边集E(G’)中的边既将图中的所有顶点连通又不形成回路,则称子图G’是原图G的一棵生成树。
1.2.2 最小生成树图的生成树不是唯一的,把具有权最小的生成树称为图G的最小生成树,即生成树中每条边上的权值之和达到最小。
如图1所示。
图1.网转化为最小生成树1.3 理解PRIM(普里姆)算法的基本思想1.3.1 PRIM算法(普里姆算法)的基本思想假设G =(V,E)是一个具有n个顶点的连通网,T=(U,TE)是G的最小生成树,其中U是T的顶点集,TE是T的边集,U和TE的初值均为空集。
《运筹学》试题及答案01

《运筹学》试题及答案(代码:8054)一、填空题(本大题共8小题,每空2分,共20分)1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加_人工变量__的方法来产生初始可行基。
2.线性规划模型有三种参数,其名称分别为价值系数、_技术系数__和_限定系数__。
3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是_无非负约束(或无约束、或自由__变量。
4.求最小生成树问题,常用的方法有:避圈法和_破圈法__。
5.排队模型M/M/2中的M,M,2分别表示到达时间为__负指数_分布,服务时间服从负指数分布和服务台数为2。
6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为__不确定__型决策。
7.在风险型决策问题中,我们一般采用__效用曲线_来反映每个人对待风险的态度。
8.目标规划总是求目标函数的_最小__信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的_优先因子(或权重)___。
二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
多选无分。
9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【D】A.有唯一的最优解B.有无穷多最优解C.为无界解D.无可行解10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【D】A.b列元素不小于零B.检验数都大于零C.检验数都不小于零D.检验数都不大于零11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【A】A.3B.2C.1D.以上三种情况均有可能12.如果要使目标规划实际实现值不超过目标值。
则相应的偏离变量应满足【B】13.在运输方案中出现退化现象,是指数字格的数目【C】A.等于m+n B.等于m+n-1C.小于m+n-1D.大于m+n-114.关于矩阵对策,下列说法错误的是【D】A.矩阵对策的解可以不是唯一的C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值【A】A.28.—l C.—3D.116.关于线性规划的原问题和对偶问题,下列说法正确的是【B】A.若原问题为元界解,则对偶问题也为无界解B.若原问题无可行解,其对偶问题具有无界解或无可行解c.若原问题存在可行解,其对偶问题必存在可行解D.若原问题存在可行解,其对偶问题无可行解17.下列叙述不属于解决风险决策问题的基本原则的是【C】A.最大可能原则B.渴望水平原则C.最大最小原则D.期望值最大原则18.下列说法正确的是【D】A.线性规划问题的基本解对应可行域的顶点也必是该问题的可行解D.单纯形法解标准的线性规划问题时,按最小比值原则确定换出基变量是为了保证迭代计算后的解仍为基本可行解三、多项选择题(本大题共5小题,每小题2分,共l0分)在每小题列出的四个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。
运筹学试卷及答案(2)

运筹学试题(代码:8054)一、填空题(本大题共8小题,每空2分,共20分)1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。
2.线性规划模型有三种参数,其名称分别为价值系数、___和___。
3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。
4.求最小生成树问题,常用的方法有:避圈法和 ___。
5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。
6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现的概率,那么这种决策类型称为____型决策。
7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。
8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。
二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
多选无分。
9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】A.有唯一的最优解 B.有无穷多最优解C.为无界解 D.无可行解10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】A.b列元素不小于零 B.检验数都大于零C.检验数都不小于零 D.检验数都不大于零11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】A.3 B.2C.1 D.以上三种情况均有可能12.如果要使目标规划实际实现值不超过目标值。
则相应的偏离变量应满足【】13.在运输方案中出现退化现象,是指数字格的数目【】A.等于 m+n B.等于m+n-1C.小于m+n-1 D.大于m+n-114.关于矩阵对策,下列说法错误的是【】A.矩阵对策的解可以不是唯一的C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值【】A.2 8.—l C.—3 D.116.关于线性规划的原问题和对偶问题,下列说法正确的是【】A.若原问题为元界解,则对偶问题也为无界解B.若原问题无可行解,其对偶问题具有无界解或无可行解c.若原问题存在可行解,其对偶问题必存在可行解D.若原问题存在可行解,其对偶问题无可行解17.下列叙述不属于解决风险决策问题的基本原则的是【】A.最大可能原则 B.渴望水平原则C.最大最小原则 D.期望值最大原则18.下列说法正确的是【】A.线性规划问题的基本解对应可行域的顶点也必是该问题的可行解D.单纯形法解标准的线性规划问题时,按最小比值原则确定换出基变量是为了保证迭代计算后的解仍为基本可行解三、多项选择题(本大题共5小题,每小题2分,共l0分)在每小题列出的四个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。
最小树问题

i 2在 , X 2 中e 2 选 ,4 边 E 3 E 2 e 2 4e 1,e 2 2,e 3 2,4 3 X X 2 v 4 v 1 ,v 2 ,v 3 ,v 4 ,X 3 v 5 ,v 6 ,
i 3在 , X 3 中e 4 选 ,5 边 E 4 E 3 e 4 5e 1,e 2 2,e 3 2,e 4 4,5 4 X X 3 v 5 v 1 ,v 2 ,v 3 ,v 4 ,v 5 ,X 4 v 6 ,
i 4在 , X 4 中e 5 选 ,6 边 E 5 E 4 e 5 6e 1,e 2 2,e 3 2,e 4 4,e 5 5,6 5 X X 4 v 6 v 1 ,v 2 ,v 3 ,v 4 ,v 5 ,v 6 V ,
设v1是T的一个悬挂点,考虑图T-{v1},则图T{v1} 的顶点数为K,由归纳假设可得 :
,因为 m T(v1) nT(v1)1 nT(v1) nT 1 , nT(v1) nT 1,则 mT(v1) mT1 ,证毕。
定理3:图T是树的充分必要条件是任意两个顶点之间恰 有一条链。
证明:必要性 因T是连通的,故任两个点之 间至少有一条链。但如果某两个点之间有两条链 的话,那么图T中含有圈,这与树的定义矛盾, 从而任两个点之间恰有一条链。
7
4 v6
5
v4
v2 2
v5
4
3
4 v6 v4
v5
4
3
4 v6 v4
v3 5
6
v1 1
7
5
v2 2
v5
v3 5
4
6
3
v1 1
7
4 v6 5
v4
v2 2
v5
4
3
4 v6 v4
最小生成树问题

2.1 最小生成树
树T(V,E)的性质:
E 树的边数等于其顶点数减“1”,即 V 1 ; 树的任意两个顶点之间恰有一条初级链相连接; 在树中任意去掉一条边后,便得到一个不连通的 图; 在树中任意两个顶点之间添加一条新边,所得新 图恰有一个初级圈。
例如,图 6.4.1 给出的 G1 和 G2 是树,但 G3 和 G4 则不是树。
44
44 69
结果显示于图
求最小生成树的 Prim 算法
Prim 算法的直观描述 假设 T0 是赋权图 G 的最小生成树。任选一 个顶点将其涂红,其余顶点为白点;在一个端 点为红色,另一个端点为白色的边中,找一条 权最小的边涂红,把该边的白端点也涂成红色; 如此,每次将一条边和一个顶点涂成红色,直 到所有顶点都成红色为止。最终的红色边便构 成最小生成树 T0 的边集合。
在求最小生成树的有效算法中,最著名的两个是 Kruskal(克罗斯克尔)算法和 Prim(普瑞姆)算法, 其迭代过程都是基于贪婪法来设计的。 1.求最小生成树的 Kruskal 算法
Kruskal 算法的直观描述 假设 T0 是赋权图 G 的最小生成树,T0 中的边和 顶点均涂成红色,初始时 G 中的边均为白色。 ① 将所有顶点涂成红色; ② 在白色边中挑选一条权值最小的边,使其与红 色边不形成圈,将该白色边涂红; ③ 重复②直到有 n1 条红色边,这 n1 条红色边 便构成最小生成树 T0 的边集合。
最小生成树算法
一个简单连通图只要不是树,其生成树就不唯 一,而且非常多。一般地,n 个顶点地完全图,其 不同地生成树个数为 nn2。因而,寻求一个给定赋 权图的最小生成树,一般是不能用穷举法的。例如, 30 个顶点的完全图有 3028个生成树,3028 有 42 位, 即使用最现代的计算机,在我们的有生之年也是无 法穷举的。所以,穷举法求最小生成树是无效的算 法,必须寻求有效的算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求最小生成树问题,常用的方法
最小生成树(Minimum Spanning Tree)问题是一个经典的图论问题,其涉及到给定一个加权无向图,求其最小的生成树。
在实际问题中,求解最小生成树问题非常重要。
例如,最小生成树问题被广泛应用于网络设计、电路布线、机器学习等众多领域。
本文将介绍求解最小生成树问题的常用方法,包括Kruskal算法、Prim算法和Boruvka算法。
我们将详细介绍这些算法的原理和步骤,并给出各种算法的优缺点和适用情况。
1. Kruskal算法
Kruskal算法是一种基于贪心策略的算法。
它首先将所有边按照权重大小排序,然后从小到大遍历边。
对于每个边,如果它连接了两个不同的连通块,则将这两个连通块合并成一个。
重复这个过程,直到所有的边都被考虑完。
最终的联通块就构成了最小生成树。
Kruskal算法具有简单、高效、容易实现的特点。
它的时间复杂度为O(E log E),其中E为边的数量。
Kruskal 算法的实现需要使用并查集。
Kruskal算法的优点是它是一种局部最优的策略,因此它能够在众多情况下得到最优解。
另外,它能够处理稀疏图和稠密图,因为它不需要全局访问图的结构。
2. Prim算法
Prim算法也是一种基于贪心策略的算法。
它从一个任意的节点开始,不断加入与已经加入的节点相邻的最短边,直到所有节点都被加入。
这个过程类似于将一个连通块逐渐扩张为最小生成树。
Prim算法的时间复杂度为O(E log V),其中E为边的数量,V为节点的数量。
Prim算法的实现需要使用堆数据结构来进行边的最短距离的管理。
Prim算法的优点是它比Kruskal算法更加容易实现和理解。
另外,Prim算法能够处理不连通图,因为它从任意一个节点开始加入边。
此外,Prim算法也能够处理含有负权重的边的图。
3. Boruvka算法
Boruvka算法是一种基于分治策略的算法。
它首先将所有的节点看作单独的连通块,然后每个连通块都选择当前权重最小的边加入。
当所有连通块都加入了边之后,算法递归地对新的连通块进行同样的操作,直到只剩下一个连通块。
Boruvka算法的时间复杂度为O(E log V),其中E为边的数量,V为节点的数量。
Boruvka算法的实现需要使用并查集来管理连通块。
Boruvka算法的优点是它非常适合于分布式实现,因为每个连通块都可以在独立的处理器上进行处理。
此外,Boruvka算法能够处理无向图和有向图,还可以处理含有负权重的边的图。
4. 总结
最小生成树问题是一个非常重要的图论问题。
本文介绍了三种常用的求解最小生成树问题的算法:Kruskal算法、Prim算法和Boruvka算法。
每个算法都具有不同的特点和适用情况。
Kruskal算法适用于稀疏图和稠密图,Prim 算法适用于不连通图和含有负权重的图,Boruvka算法适用于分布式处理。
选择正确的算法能够帮助我们更加高效地解决最小生成树问题。