青岛大学附属中学数学一元二次方程单元试卷(word版含答案)
第4章 一元二次方程数学九年级上册-单元测试卷-青岛版(含答案)

第4章一元二次方程数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、方程x(x﹣1)=x的两个根分别是()A.x1=x2=1 B.x1=0,x2=1 C.x1=0,x2=﹣2 D.x1=0,x2=22、一元二次方程x2+px-2=0的一个根为2,则p的值为()A.1B.2C.-1D.-23、若实数a,b满足a﹣ab+b2+2=0,则a的取值范围是()A.a≤﹣2B.a≥4C.a≤﹣2或a≥4D.﹣2≤a≤44、若关于x的一元二次方程ax2+bx+5=0(a )的一个解是x=1,则2017-a-b的值是()A.2022B.2012C.2018D.20165、对于ax2+bx+c=0,有9a+3b+c=0和4a-2b+c=0成立,则的值为()A.7B.-7C.5D.-56、若关于x的一元二次方程kx2﹣4x+2=0有实数根,则k的非负整数值为()A.1B.0,1C.1,2 D.0,1,27、设—元二次方程x2-2x-4=0的两个实根为x1和x2,则下列结论正确的是()A.x1+x2=2 B.x1+x2=-4 C.x1·x2=-2 D.x1·x2=48、二次函数y=ax2+bx+c(a,b,c为常数,a<0)的图象经过点(﹣1,1),(4,﹣4).下列结论:①<0;②当x>1时,y的值随x值的增大而减小;③x=4是方程ax2+(b+1)x+c=0的一个根;④当﹣1<x<4时,ax2+(b+1)x+c>0.其中正确的是()A.①③B.①②④C.①③④D.②③④9、若关于x的一元二次方程的两根之和为3,两根之积为2,则这个方程是()A.x 2+3x﹣2=0B.x 2﹣3x+2=0C.x 2﹣2x+3=0D.x2+3x+2=010、若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是()A. 且 kB. 且C.D. 且11、已知一次函数y=ax+c的图象如图所示,那么一元二次方程ax2+bx+c=0的根的情况是()A.方程有两个不相等的实数根B.方程有两个相等的实数根C.方程没有实数根D.无法判断12、如果关于x的一元二次方程ax2+x-1=0有两个不相等的实数根,则a的取值范围是()A.a>-B.a≥-C.a≥- 且a≠0D.a>- 且a≠013、下列方程是关于x的一元二次方程的是()A. B. C. D.14、关于x的一元二次方程有两个实数根,则m的取值范围是()A.m≤1B.m<1C.﹣3≤m≤1D.﹣3<m<115、已知方程x2+bx+a=0的一个根是a(a≠0),则代数式a+b的值是()A.﹣1B.1C.0D.以上答案都不是二、填空题(共10题,共计30分)16、若一元二次方程x²-2mx+m²=0的一根为x=-1,则m的值为________。
青岛青大附中九年级数学上册第一单元《一元二次方程》检测(答案解析)

一、选择题1.下列方程中是一元二次方程的是( ) A .210x +=B .220x -=C .21x y +=D .211x x+= 2.方程22x x =的解是( ) A .0x = B .2x =C .10x =,22x =D .10x =,22x =3.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b4.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -= C .2(1)0x -=D .2(1)20x ++=5.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( ) A .12B .15C .12或15D .186.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( ) A .1,0B .1,0-C .1,1-D .2,2-7.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( ) A .x (40-x )=75B .x (20-x )=75C .x (x +40)=75D .x (x +20)=78.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( ) A .有两个相等的实数根 B .没有实数根 C .有两个不相等的实数根 D .无法确定9.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人. A .40B .10C .9D .810.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5-B .5C .10319-D .1031911.不解方程,判断方程2x 2+3x ﹣4=0的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .只有一个实数根 D .没有实数根 12.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2二、填空题13.已知12,x x 是一元二次方程21402x mx m -+-=的两个实数根且12111x x +=,则m的值为______.14.方程220x x +-=的两个根分别为,m n ,则11m n+的值为_________. 15.用配方法解方程x 2+4x+1=0,则方程可变形为(x+2)2=_____.16.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.17.有一人患了流感,经过两轮传染后共有81人患了流感,若每轮传染中平均每个人传染的人数相同,那么第三轮过后,共有______人患有流感.18.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.19.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______. 20.若()22214x y +-=,则22x y +=________.三、解答题21.解方程. (1)2560x x -+=.(2)23(21)(21)x x -=-.(3)23139x x x -=--. 22.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0. (1)求证:无论k 为何实数,方程总有实数根; (2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值. 23.先阅读理解下面的例题,再按要求解答下面的问题: 例题:说明代数式m 2+2m+4的值一定是正数. 解:m 2+2m+4=m 2+2m+1+3=(m+1)2+3.∵(m+1)2≥0, ∴(m+1)2+3≥3,∴m 2+2m+4的值一定是正数.(1)说明代数式﹣a 2+6a ﹣10的值一定是负数.(2)设正方形面积为S 1,长方形的面积为S 2,正方形的边长为a ,如果长方形的一边长比正方形的边长少3,另一边长为4,请你比较S 1与S 2的大小关系,并说明理由. 24.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元?25.某水果超市以每千克20元的价格购进一批大枣,规定每千克大枣的售价不低于进价又不高于40元.经市场调查发现:大枣的日销售量y (千克)与每千克售价x (元)之间满足一次函数关系,其部分对应数据如下表所示:(2)该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为多少元? 26.若关于x 的一元二次方程x 2-6x +m +1=0的两根是x 1,x 2,且x 12+x 22=24,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】直接利用一元二次方程的定义分析得出答案. 【详解】解:A.210x +=,是一元一次方程,故本选项不符合题意. B.220x -=,是一元二次方程,故本选项符合题意. C.21x y +=,是二元二次方程,故本选项不符合题意.D.211x x+=,该方程分式方程,故本选项不符合题意. 故选B . 【点睛】此题主要考查了一元二次方程的定义,正确把握定义是解题关键.2.C解析:C 【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解. 【详解】解:移项,得220x x -=, 因式分解,得()20x x -=, ∴0x =或20x -=, 解得10x =,22x =,故选:C . 【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键.3.C解析:C 【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出ab的值即可得到a 、b 的关系式 . 【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭,∴133a a b b ==,(舍去), ∴a=3b , 故先C . 【点睛】本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.4.D解析:D 【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得. 【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D . 【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.5.B解析:B 【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意. 【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6, 当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15. 故选:B . 【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.6.D解析:D 【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根. 【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②,①-②=40b =,得0b =, ①+②=820a c +=, ∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得,∵240ax bx a +-=,240ax a -= 24ax a =∴2x =± 故选:D . 【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.7.B解析:B 【分析】根据长方形的周长可以用x 表示另一边,然后根据面积公式即可列出方程. 【详解】解:设矩形的一边为x 米,则另一边为(20-x )米, ∴x (20-x )=75, 故选:B. 【点睛】此题考查一元二次方程的实际应用,根据题意抽象出一元二次方程是解题的关键.8.C解析:C 【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案. 【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8. ∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根. 故选:C . 【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.9.D解析:D 【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人, 由题意,得:(1+x )+x(1+x)=81, 即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去), 故每轮传染中平均一个人传染了8人, 故选:D . 【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.10.A解析:A 【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解. 【详解】解:由219990n n ++=可得211199910n n⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A . 【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.11.B解析:B 【分析】求出根的判别式,只要看根的判别式△=b 2-4ac 的值的符号就可以了. 【详解】解:∵△=b 2﹣4ac =9﹣4×2×(﹣4)=41>0, ∴方程有两个不相等的实数根, 故选:B . 【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根; (2)△=0⇔方程有两个相等的实数根; (3)△<0⇔方程没有实数根.12.D解析:D 【分析】方程x (x ﹣2)=x ﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决. 【详解】解:x (x ﹣2)=x ﹣2,移项,得x (x ﹣2)﹣(x ﹣2)=0, 提公因式,得(x ﹣2)(x ﹣1)=0, ∴x ﹣2=0或x ﹣1=0, 解得x =2或x =1. 故选:D . 【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程.二、填空题13.-8【分析】先利用根与系数的关系得到再把变形为从而代入得到方程解之即可【详解】解:∵是一元二次方程的两个实数根∴∵∴即解得:m=-8故答案为:-8【点睛】本题考查了根与系数的关系根据根与系数的关系找解析:-8 【分析】先利用根与系数的关系得到12x x m +=,12142x x m ⋅=-,再把12111x x +=变形为1212x x x x +=,从而代入得到方程,解之即可.【详解】解:∵12,x x 是一元二次方程21402x mx m -+-=的两个实数根, ∴12x x m +=,12142x x m ⋅=-, ∵12111x x +=, ∴1212x x x x +=,即142m m =-, 解得:m=-8, 故答案为:-8. 【点睛】本题考查了根与系数的关系,根据根与系数的关系,找出12x x m +=,12142x x m ⋅=-是解题的关键.14.;【分析】根据根与系数的关系可得出m+n=-1mn=-2将其代入中即可求出结论【详解】解:∵方程x2+x ﹣2=0的两个根分别为mn ∴m+n =﹣1mn =﹣2故答案为:【点睛】本题考查了根与系数的关系牢解析:12; 【分析】根据根与系数的关系可得出m+n=-1,mn=-2,将其代入11n m m n mn++=中即可求出结论. 【详解】解:∵方程x 2+x ﹣2=0的两个根分别为m ,n , ∴m +n =﹣1,mn =﹣2,111122n m n m m n mn mn mm +-∴+=+===-. 故答案为:12. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于ca是解题的关键. 15.3【分析】先移项再两边配上4写成完全平方公式即可【详解】解:∵∴即故答案为:3【点睛】本题考查了用配方法解一元二次方程掌握用配方法解一元二次方程的步骤即可解析:3 【分析】先移项,再两边配上4,写成完全平方公式即可. 【详解】解:∵241x x +=-,∴24414x x ++=-+,即()223x +=, 故答案为:3. 【点睛】本题考查了用配方法解一元二次方程,掌握用配方法解一元二次方程的步骤即可.16.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x 根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增 解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解. 【详解】解:设平均每年增产的百分率为x ; 第一年粮食的产量为:3000(1+x );第二年粮食的产量为:3000(1+x )(1+x )=3000(1+x )2; 依题意,可列方程:3000(1+x )2=3630; 解得:x=-2.1(舍去)或x=0.1=10% 故答案为:10%. 【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .17.729【分析】设每轮传染中平均每人传染了x 人根据经过两轮传染后共有81人患了流感可求出x 进而求出第三轮过后共有多少人感染【详解】设每轮传染中平均每个人传染的人数为x 人由题意可列得解得(舍去)即每轮传解析:729 【分析】设每轮传染中平均每人传染了x 人,根据经过两轮传染后共有81人患了流感,可求出x ,进而求出第三轮过后,共有多少人感染. 【详解】设每轮传染中平均每个人传染的人数为x 人, 由题意可列得,()1181x x x +++=, 解得18x =,210x =-(舍去),即每轮传染中平均每个人传染的人数为8人,经过三轮传染后患上流感的人数为:81881729+⨯=(人). 故答案为:729. 【点睛】本题考查理解题意的能力,先求出每轮传染中平均每人传染了多少人,然后求出三轮过后,共有多少人患病.18.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形 【分析】先利用因式分解法解方程得到x 1=4,x 2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x 2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x 1=4,x 2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.19.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10%【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可.【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍).故答案为10%.【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.20.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.三、解答题21.(1)12x =,23x =;(2)112x =,22x =;(3)2x =- 【分析】(1)利用因式分解法解方程,即可得到答案;(2)先移项,然后利用因式分解法解方程,即可得到答案;(3)先把分式方程化为整式方程,然后解方程即可得到答案.【详解】解:(1)2560x x -+=, (2)(3)0x x --=,∴12x =,23x =,∴原方程的解为:12x =,23x =.(2)23(21)(21)x x -=-,∴2(21)3(21)0x x ---=,∴(21)(213)0x x ---=,∴(21)(24)0x x --=, ∴112x =,22x =. ∴原方程的解为:112x =,22x =. (3)23139x x x -=--, ∴2(3)39x x x +-=-,∴22339x x x +-=-,∴36x =-,∴2x =-,经检验:2x =-为原方程的解,∴原方程的解为2x =-.【点睛】本题考查了解一元二次方程,解分式方程,解题的关键是熟练掌握解方程的方法,注意解分式方程时组要检验.22.(1)见解析;(2)-1或13【分析】 (1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.23.(1)见解析;(2)S 1>S 2,见解析【分析】(1)利用配方法,将原式化成含平方代数式形式﹣(a ﹣3)2﹣1,可判断其值为负数; (2)用a 分别表示出S 1与S 2,再作差比较即可.【详解】解:(1)﹣a 2+6a ﹣10=﹣(a 2﹣6a+9)﹣1=﹣(a ﹣3)2﹣1,∵(a ﹣3)2≥0,∴﹣(a ﹣3)2≤0,∴﹣(a ﹣3)2﹣1<0,∴代数式﹣a 2+6a ﹣10的值一定是负数;(2)S 1>S 2,理由是:∵S 1=a 2,S 2=4(a ﹣3),∴S 1﹣S 2=a 2﹣4(a ﹣3)=a 2﹣4a+12=a 2﹣4a+4+8=(a ﹣2)2+8,∵(a ﹣2)2≥0,∴(a ﹣2)2+8≥8,∴S 1﹣S 2>0,∴S 1>S 2.【点睛】本题主要考查配方法的应用,掌握配方法是解题的关键,注意两数比较大小时可用作差法.24.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键. 25.(1)2160y x =-+;(2)商贸公司该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为30元.【分析】(1)用待定系数法求解即可;(2)根据总利润=每千克利润×数量列方程求解即可.【详解】解:(1)设一次函数解析式为:y kx b =+,将:()25,110;()30,100代入,得 ∴2511030100k b k b +=⎧⎨+=⎩解得:2160k b =-⎧⎨=⎩, ∴一次函数解析式为:2160y x =-+;,(2)由题意得:()()2021601000x x --+=整理得:210021000x x -+=,解得130x =,270x =(不合题意,舍去),即商贸公司该水果超市想要获利1000元的日销售利润,每千克大枣的售价应定为30元.【点睛】本题考查了待定系数法求函数解析式,一元二次方程的应用,熟练掌握待定系数法是解(1)的关键,列出方程式解(2)的关键.26.m =5.【分析】先根据根与系数的关系求得x 1+x 2=6、x 1x 2=m +1,再对x 12+x 22=24变形,然后将x 1+x 2=6、x 1x 2=m +1代入得到关于m 的方程,最后求解即可.【详解】解:∵x 1,x 2是关于x 的一元二次方程x 2-6x +m +1=0的两根,∴x 1+x 2=6,x 1x 2=m +1,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=24,∴62-2(m +1)=24,解得:m=5.【点睛】本题主要考查了一元二次方程根与系数的关系和完全平方公式的应用,正确应用完全平方公式成为解答本题的关键.。
第4章 一元二次方程数学九年级上册-单元测试卷-青岛版(含答案)

第4章一元二次方程数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、已知a,b是关于x的一元二次方程x2+nx﹣1=0的两实数根,则式子的值是()A.n 2+2B.﹣n 2+2C.n 2﹣2D.﹣n 2﹣22、方程x2+x-1=0的根是()A. B. C. D.3、已知关于x的方程x2-kx+6=0有两个实数根,则k的值不可能是()A.5B.-8C.2D.44、方程x2-(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是 ( )A.-2或3B.3C.-2D.-3或25、规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若(x﹣3)(mx﹣n)=0是倍根方程,则n=6m或3n=2m;④若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2﹣3x+n=0是倍根方程.上述结论中正确的有()A.②B.①③C.②③④D.②④6、小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为()A.x 2﹣3x+6=0B.x 2﹣3x﹣6=0C.x 2+3x﹣6=0D.x 2+3x+6=07、关于x的方程的二次项系数和一次项系数分别是()A.3,B.3,2C.2,D.2,8、若关于x的方程k2x2﹣(2k+1)x+1=0有实数根,则k的取值范围是()A.﹣B.C.D.k≥﹣且k≠09、关于的一元二次方程有两个相等的实数根,那么的值是()A. B. C. D.10、受新冠肺炎疫情影响,某企业生产总值从元月份的300万元,连续两个月降至260万元,设平均降低率为x,则可列方程()A.300(1-x) 2=260B.300(1-x 2)=260C.300(1-2x)=260 D.300(1+x) 2=26011、若一元二次方程x2+x-2=0的解为x1、x2,则x1•x2的值是()A.1B.-1C.2D.-212、方程x2﹣3x=0的解是()A.x=3B.x1=0,x2=3 C.x1=0,x2=﹣3 D.x1=1,x2=﹣313、下列方程中是一元二次方程的是()A.2x+1=0B.y 2+x=1C.x 2+1=0D.14、关于x的一元二次方程x2﹣mx+(m﹣2)=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定15、方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5和4B.5和﹣4C.5和﹣1D.5和1二、填空题(共10题,共计30分)16、如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是________.17、已知方程的两个实数根是,那么________.18、写出一个以3和1为根的一元二次方程是________.19、如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是________.20、已知关于x的方程x2+x+2a﹣1=0的一个根是0,则a=________.21、已知方程2x2+4x﹣3=0的两根分别为出x1和x2,则x1+x2+x1x2=________.22、若关于x的方程x2﹣2x+m=0有一根为3,则m=________;方程另一个根为________.23、若二次函数的对称轴为直线,则关于的方程的解为________.24、a、b是一元二次方程的两根,则值为________.25、a、b是一元二次方程的两根,则值为________.三、解答题(共5题,共计25分)26、计算27、解方程:x2+x-2=028、“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了l20千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加m小时,求m的值.29、若a≠0且a2-2a=0,求方程16x2-4ax+1=3-12x的根。
第4章 一元二次方程数学九年级上册-单元测试卷-青岛版(含答案)

第4章一元二次方程数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、x1, x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+ =0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在2、将方程x2﹣6x+2=0配方后,原方程变形为()A.(x+3) 2=﹣2B.(x﹣3) 2=﹣2C.(x﹣3) 2=7D.(x+3) 2=73、若方程x2-4x+m=0有两个相等的实数根,则m的值是().A.4B.-4C.D.4、若关于x的方程(k+1)x2﹣x+ =0有实数根,则k的取值范围是()A.k≤2且k≠﹣1B.k≤且k≠﹣1C.k≤D.k≥5、若关于x的一元二次方程x2﹣mx﹣2=0的一个根为﹣1,则另一个根为()A.1B.﹣1C.2D.﹣26、已知m是方程的一个根,则代数的值等于()A.-1B.0C.1D.27、若某商品的原价为100元,连续两次涨价后的售价为144元,设两次平增长率为x.则下面所列方程正确的是()A.100(1﹣x)2=144B.100(1+x)2=144C.100(1﹣2x)2=144 D.100(1+2x)2=1448、关于的一元二次方程的根的情况是()A.有两不相等实数根B.有两相等实数根C.无实数根D.不能确定9、一元二次方程的根的情况是()A.有两个不相等的实根B.有两个相等的实根C.无实数根D.不能确定10、用配方法解方程,配方后的方程是()A. B. C. D.11、关于x的一元二次方程(m﹣1)x2+3x+m2﹣1=0的一根为0,则m的值是()A.±1B.±2C.﹣1D.﹣212、某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035B.x(x-1)=1035C. x(x+1)=1035D. x(x-1)=103513、已知等腰三角形的三边长分别为,且a、b是关于的一元二次方程的两根,则的值是()A. B. C. 或 D. 或14、一元二次方程x2﹣2x=0的一次项系数是()A.2B.﹣2C.1D.015、下列方程是一元二次方程的是()A.x 2﹣2x=7B.3x﹣y=1C.xy﹣4=0D.x+ =1二、填空题(共10题,共计30分)16、若方程(m﹣2)x|m|+4mx+1=0是关于x的一元二次方程,则m的值为________.17、关于x的一元二次方程有两个相等的实数根,则________.18、方程x(x﹣1)=2(1﹣x)的解是________.19、关于的一元二次方程有两个相等的实数根,则的值为________.20、若关于x的方程x2﹣2x+m=0有一根为3,则m=________;方程另一个根为________.21、如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是________.22、关于x的一元二次方程x2﹣(k+2)x+ k2﹣1=0的两根互为倒数,则k的值是________.23、已知m,n是方程的两实数根,则________.24、关于的一元二次方程有两个相等的实数根,则m的值是________.25、已知关于x的方程x2+mx﹣6=0的一个根为2,则m=________,另一个根是________.三、解答题(共5题,共计25分)26、请从以下四个一元二次方程中任选三个,并用适当的方法解这三个方程.⑴x2﹣x﹣1=0 (2)(2x﹣1)2﹣25=0 (3)(1+m)2=m+1 (4)t2﹣4t=5我选择第小题.27、解方程:x(x-3)=0.28、已知x=﹣1是一元二次方程x2﹣mx﹣2=0的一个根,求m的值和方程的另一个根.29、已知,求一元二次方程bx2﹣x+a=0的解.30、一个三角形的两边长分别为3厘米和7厘米,第三边长为a厘米,且a满足a2﹣10a+21=0,求三角形的周长.参考答案一、单选题(共15题,共计45分)1、A2、C3、A4、C5、C6、D7、B8、A9、C11、C12、B13、A14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。
青岛版九年级数学上册《第四章一元二次方程》单元测试卷-附答案

青岛版九年级数学上册《第四章一元二次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.(2022山东聊城模拟)已知关于x的方程(a-3)x|a-1|+x-1=0是一元二次方程,则a的值是()A.-1B.2C.-1或3D.32.(2022山东青岛期中)根据下列表格的对应值,可判断方程x2+12x-15=0必有一个解x满足()x -1 1 1.1 1.2x2+12x-15 -26 -2 -0.59 0.84A.-1<x<1B.1<x<1.1C.1.1<x<1.2D.-0.59<x<0.843.若关于x的一元二次方程(m-√3)x2+x+m2-3=0有一个解为x=0,则m的值是()A.-√3B.√3C.3D.±√34.【新独家原创】若(a2+b2+3)(a2+b2-3)=55,则a2+b2的值为()A.8B.-8C.±8D.6或85.若x=−(−2)±√(−2)2−4×3×(−1)是某个一元二次方程的根,则这个一元二次方程是()2×3A.3x2+2x-1=0B.2x2+4x-1=0C.-x2-2x+3=0D.3x2-2x-1=06.(2022四川宜宾中考)若关于x的一元二次方程ax2+2x-1=0有两个不相等的实数根,则a的取值范围是()A.a≠0B.a>-1且a≠0C.a≥-1且a≠0D.a>-17.(2022内蒙古呼和浩特中考)已知x1,x2是方程x2-x-2 022=0的两个实数根,则代数式x13-2 022x1+x22的值是()A.4 045B.4 044C.2 022D.18.(2023山东菏泽郓城期中)我市某楼盘准备以每平方6 000元的均价对外销售,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4 860元的均价开盘销售,则平均每次下调的百分率是()A.8%B.9%C.10%D.11%9.已知一个两位数等于它个位上的数字的平方,并且十位上的数字比个位上的数字小3,则这个两位数为()A.25B.25或36C.36D.-25或-3610.【数学文化】(2023山东德州庆云校级月考)欧几里得的《原本》中记载,形如x2+2ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=a,AC=b,再在斜边AB上截取BD=a,则该方程的一个正根是()A.AD的长B.AC的长C.BC的长D.CD的长二、填空题(每小题3分,共18分)11.(2022广东中考)若x=1是方程x2-2x+a=0的根,则a=。
第4章 一元二次方程数学九年级上册-单元测试卷-青岛版(含答案)

第4章一元二次方程数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、下列方程是一元二次方程的是( )A.ax 2+bx+c=0B.3x 2-2x=3(x 2-2)C.x 3-2x-4=0D.(x-1)2+1=02、已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0.下列说法正确的是( )A.①②有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解3、若关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,则p、q的值分别是()A.-3,2B.3,-2C.2,-3D.2,34、有x支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是()A.x(x﹣1)=21B.x(x﹣1)=42C.x(x+1)=21D.x(x+1)=425、为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x)2=256B.256(1﹣x)2=289C.289(1﹣2x)=256 D.256(1﹣2x)=2896、一元二次方程2x2-x-3=0的而次项系数、常数项分别是()A.2,1,3B.2,1,﹣3C.2,﹣1,3D.2,﹣1,﹣37、一元二次方程3x2-4x-7=0的二次项系数、一次项系数、常数项分别是()A.3,-4,-7B.3,-4,7C.3,4,7D.3,4,-78、用配方法解方程时,原方程应变形为()A. B. C. D.9、若是一元二次方程的根,则判别式和完全平方式的关系是()A. B. C. D.大小关系不能确定10、关于x的方程(a为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根一个负根D.无实数根11、若x1, x2是一元二次方程x2-2x-3=0的两个根,则x1·x2的值是( )A.2B.-2C.4D.-312、体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,设应邀请x队参加比赛,则可列方程为()A.x(x+1)=28B.x(x﹣1)=28C. x(x+1)=28D. x (x﹣1)=2813、将一元二次方程x2+3=x化为一般形式后,二次项系数和一次项系数是()A.0、3B.0、1C.1、3D.1、﹣114、已知⊙O1和⊙O2的半径分别是方程x2﹣4x+3=0的两根,且两圆的圆心距等于4,则⊙O1与⊙O2的位置关系是()A.外离B.外切C.相交D.内切15、已知x1, x2是一元二次方程x2﹣6x+4=0的两根,则x1x2的值是()A.﹣2B.1C.4D.﹣4二、填空题(共10题,共计30分)16、若(x-1)2 =4.则x=________.17、关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1, x2,且x12+x22=3,则m=________.18、关于x的一元二次方程2x2﹣3x+m=0有两个相等的实数根,则实数m=________.19、已知一元二次方程的一个根为2,则它的另一个根为________.20、若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为________.21、已知一元二次方程x2﹣6x+c=0有一个根为2,则c=________.22、已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n=________.23、对于任意实数k,方程,总有一个根为1,则m+n=________24、若一元二次方程的两根分别是、,则________.25、阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间有如下关系:x1+x2=-,x1·x2=.根据该材料填空:已知x1、x2是方程x2+6x+3=0的两实数根,则的值为________.三、解答题(共5题,共计25分)26、解方程:(x﹣5)2=16.27、解方程:x﹣=1.28、已知关于x的方程(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.29、已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求:代数式x4+x3y+x2y2+xy3+y4的值.30、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、B5、A6、D7、A8、A9、A11、D12、D13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、30、。
第4章 一元二次方程数学九年级上册-单元测试卷-青岛版(含答案)

第4章一元二次方程数学九年级上册-单元测试卷-青岛版(含答案)一、单选题(共15题,共计45分)1、若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=-1,x2=2,则抛物线y=x2+bx+c的对称轴为直线()A.x=1B.x=C.x=D.x=2、方程X2=4X的解是()A.X=4B.X1=X2=2 C.X1=2,X2=-2 D.X1=4,X2=03、方程x2+3x﹣1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根 D.只有一个实数根4、一元二次方程2x2﹣3x+1=0化为(x+a)2=b的形式,正确的是()A. B. C. D.以上都不对5、一元二次方程2x2-3x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根6、方程x2=2x的解为()A. x=2B. x=0C. x1=0,x2=2D. x1=0,x2=-27、把一元二次方程(x+2)(x-3)=4化成一般形式,得().A.x 2+x-10=0B.x 2-x-6=4C.x 2-x-10=0D.x 2-x-6=08、若关于x的一元二次方程(a+1)x2+x+a2﹣1=0的一个根是0,则这个方程的另一个根是()A. B.- C.1 D.-19、一个等腰三角形的两条边长分别是方程x2﹣3x+2=0的两根,则该等腰三角形的周长是()A.5或4B.4C.5D.310、方程2x2﹣6x+3=0较小的根为p,方程2x2﹣2x﹣1=0较大的根为q,则p+q等于()A.3B.2C.1D.11、教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则正确的方程为()A. B. C. D.12、若方程x2-5x=0的一个根是a,则a2-5a+2的值为( )A.-2B.0C.2D.413、若m、n是一元二次方程x2﹣5x+2=0的两个实数根,则m+n﹣mn的值是()A.7B.﹣7C.3D.﹣314、某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4B.5C.6D.715、对于方程x2+bx-2=0,下面观点正确的是( )A.方程有无实数根,要根据b的取值而定B.无论b取何值,方程必有一正根、一负根C.当b>0时,方程两根为正;b<0时.方程两根为负 D.∵-2<0,∴方程两根肯定为负二、填空题(共10题,共计30分)16、用配方法解方程,配方后方程可化为________.17、一元二次方程的解为________.18、按照下图所示的操作步骤,若输出y的值为22,则输入的值x为________.19、如图,直线y=- x+4 分别与x轴,y轴相交于点A,B,点C在直线AB上,D是坐标平面内一点.若以点0,A,C,D为顶点的四边形是菱形,则点D的坐标是________.20、若△ABC的两边长分别为2和3,第三边的长是方程x2﹣9x+20=0的根,则△ABC的周长是________.21、设a、b是方程x2+x-2018=0的两个不相等的实数根,则a2+2a+b的值为________ .22、设,是方程的两个实数根,则的值为________.23、已知关于x的一元二次方程有一个根为,则a的值为________.24、已知是方程的两个实数根,则________.25、以3、-5为根且二次项系数为1的一元二次方程是________.三、解答题(共5题,共计25分)26、解方程:27、某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?28、青山村种的水稻平均每公顷产7200kg,平均每公顷产8450kg,求水稻每公顷产量的年平均增长率.29、解方程组:30、某商店9月份的利润是2500元,要使11月的利润达到3600元,平均每月增长的百分率是多少?参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、C5、A6、C7、C9、C10、B11、A12、C13、C14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、30、。
青岛大学附属中学九年级数学上册第一单元《一元二次方程》检测(含答案解析)

一、选择题1.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±- 2.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x +=3.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .16 4.等腰三角形的底边长为6,腰长是方程28150x x -+=的一个根,则该等腰三角形的周长为( )A .12B .16C .l2或16D .155.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++=6.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( ) A .(x ﹣2)2=1 B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5 7.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1 B .m =1 C .m ≥1D .m ≠0 8.下列方程是一元二次方程的是( ) A .20ax bx c ++= B .22(1)x x x -=-C .2325x x y -+=D .2210x +=9.下列方程中,有两个不相等的实数根的是( ) A .x 2=0 B .x ﹣3=0 C .x 2﹣5=0 D .x 2+2=010.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022 B .2021 C .2020 D .201911.如果2是方程x²−3x+k=0的一个根,则此方程的另一根为( )A .2B .1C .−1D .−212.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2二、填空题13.对于实数m ,n ,定义一种运算“*”为:*m n mn n =+.如果关于x 的方程()**1x a x 4=-有两个相等的实数根,则a =_______. 14.将方程2630x x +-=化为()2x h k +=的形式是______.15.一元二次方程(x +2)(x ﹣3)=0的解是:_____.16.写出有一个根为1的一元二次方程是______.17.一元二次方程()422x x x +=+的解为__.18.若关于x 的一元二次方程()23x c -=有实根,则c 的值可以是_________________.(写出一个即可)19.已知关于x 的方程2x m =有两个相等的实数根,则m =________.20.函数()2835m y m x -=+-是一次函数,则m =______.三、解答题21.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x ﹣1)2=(3﹣x )2.22.解方程:2410y y --=.23.解方程:(1)()2316x -=(2)22410x x --=(用公式法解)24.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 25.解方程.(1)230x x +-=. (2)4(21)12x x x -=-.26.阅读下列材料:对于任意的正实数a ,b ,总有a b +≥成立(当且仅当a b =时,等号成立),这个不等式称为“基本不等式”利用“基本不等式”可求一些代数式的最小值.例如:若0x >,求式子1x x+的最小值.解:∵0x >,∴112212x x x x+≥⋅==,∴1x x +的最小值为2.(1)若0x >,求9x x+的最小值; (2)已知1x >,求2251x x x -+-的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,AOB 、COD △的面积分别为4和9,求四边形ABCD 面积的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【详解】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解. 2.D解析:D【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误;C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误;D 223x x +=符合一元二次方程的定义,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.B解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.4.B解析:B【分析】利用因式分解法解方程求出x 的值,再根据等腰三角形的概念和三角形三边关系确定出三角形三边长度,继而得出答案.【详解】解:∵x 2-8x+15=0,∴(x-3)(x-5)=0,则x-3=0或x-5=0,解得x 1=3,x 2=5,①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去; ②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形,所以该等腰三角形的周长为5+5+6=16,故选:B .【点睛】本题主要考查等腰三角形的概念、三角形三边的关系、解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.5.C解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.6.B解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x 2﹣4x ﹣1=0x 2-4x=1x 2-4x+4=1+4(x-2)2=5,故选:B .【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.7.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.8.D解析:D【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可.【详解】解:A 、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B 、该方程化简整理后是一元一次方程,故本选项不符合题意.C 、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意.D 、该方程符合一元二次方程的定义,故本选项符合题意.故选:D .【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.9.C解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意;故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 10.A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 11.B解析:B【分析】设方程的另一个根为x 1,根据根与系数的关系可得出关于x 1的一元一次方程,解之即可得出结论.【详解】设方程的另一个根为x 1,根据题意得:2+x 1=3,∴x 1=1.故选:B .【点睛】本题考查了根与系数的关系,牢记两根之和与系数的关系是解题的关键.12.D解析:D【分析】方程x (x ﹣2)=x ﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决.【详解】解:x (x ﹣2)=x ﹣2,移项,得x (x ﹣2)﹣(x ﹣2)=0,提公因式,得(x ﹣2)(x ﹣1)=0,∴x ﹣2=0或x ﹣1=0,解得x =2或x =1.故选:D .【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程.二、填空题13.0【分析】由于定义一种运算*为:m*n=mn+n 所以关于x 的方程x*(a*x )=变为(a+1)x2+(a+1)x+=0而此方程有两个相等的实数根所以根据判别式和一元二次方程的一般形式的定义可以得到关解析:0由于定义一种运算“*”为:m*n=mn+n,所以关于x的方程x*(a*x)=14-变为(a+1)x2+(a+1)x+14=0,而此方程有两个相等的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a的关系式,即可解决问题.【详解】解:由x*(a*x)=14-得(a+1)x2+(a+1)x+14=0,依题意有a+1≠0,△=(a+1)2-(a+1)=0,解得,a=0,或a=-1(舍去).故答案为:0.【点睛】此题考查了新定义,一元二次方程的判别式,解题时首先正确理解新定义的运算法则得到关于x的方程,然后根据判别式和一元二次方程的定义得到关系式解决问题.14.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x+=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x+-=∴263x x+=∴26939x x+++=∴()2312x+=故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.15.x1=﹣2x2=3【分析】利用因式分解法把原方程化为x+2=0或x﹣3=0然后解两个一次方程即可【详解】(x+2)(x﹣3)=0x+2=0或x﹣3=0所以x1=﹣2x2=3故答案为x1=﹣2x2=3解析:x1=﹣2,x2=3利用因式分解法把原方程化为x+2=0或x ﹣3=0,然后解两个一次方程即可.【详解】(x +2)(x ﹣3)=0,x +2=0或x ﹣3=0,所以x 1=﹣2,x 2=3.故答案为x 1=﹣2,x 2=3.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).16.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考 解析:20x x -=(答案不唯一)【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1.【详解】可以用因式分解法写出原始方程,然后化为一般形式即可,如()10x x -=,化为一般形式为:20x x -=故答案为:20x x -=.【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.17.【分析】利用因式分解法解一元二次方程提取公因式【详解】解:故答案是:【点睛】本题考查解一元二次方程解题的关键是掌握一元二次方程的解法 解析:114x =,22x =- 【分析】利用因式分解法解一元二次方程,提取公因式()2x +.【详解】解:()422x x x +=+ ()()4220x x x +-+=()()4120x x -+=114x =,22x =-. 故答案是:114x =,22x =-. 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的解法.18.1(答案不唯一)【分析】根据非负数的性质可得于是只要使c 的值非负即可【详解】解:若关于的一元二次方程有实根则所以的值可以是1(答案不唯一)故答案为:1(答案不唯一)【点睛】本题考查了一元二次方程的解 解析:1(答案不唯一)【分析】根据非负数的性质可得0c ≥,于是只要使c 的值非负即可.【详解】解:若关于x 的一元二次方程()23x c -=有实根,则0c ≥,所以c 的值可以是1(答案不唯一).故答案为:1(答案不唯一).【点睛】本题考查了一元二次方程的解法,正确理解题意、掌握非负数的性质是关键. 19.0【分析】先将方程化成一般式然后再运用根的判别式求解即可【详解】解:∵关于的方程有两个相等的实数根∴关于的方程有两个相等的实数根∴△=02-4m=0解得m=0故答案为0【点睛】本题主要考查了一元二次 解析:0【分析】先将方程化成一般式,然后再运用根的判别式求解即可.【详解】解:∵关于x 的方程2x m =有两个相等的实数根,∴关于x 的方程20x m -=有两个相等的实数根,∴△=02-4m=0,解得m=0.故答案为0.【点睛】本题主要考查了一元二次方程根的判别式,掌握“当△=0时,方程有两个相等的实数根”是解答本题的关键.20.3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0据此求得m 的值【详解】解:依题意得:m2-8=1且m+3≠0 解得m=3 故答案是:3【点睛】本题考查了一次函数的定义一般地形如y=kx+b解析:3;根据一次函数的定义得到m 2-8=1且m+3≠0,据此求得m 的值.【详解】解:依题意得:m 2-8=1且m+3≠0,解得m=3.故答案是:3.【点睛】本题考查了一次函数的定义.一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.会利用x 的指数构造方程,会解方程,会利用k 限定字母的值是解题关键三、解答题21.(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=,∴x 1=1x 2=1 (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.22.12y =,22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键.23.(1)11x =21x =-2)11x =+,21x =. 【分析】(1)两边除以3后再开方,即可得出两个一元一次方程,求解即可;(2)求出24b ac -的值,代入公式求出即可.【详解】解:(1)()2316x -=方程两边除以3,得:()212x -=,两边开平方,得:1x -=则:11x =+21x =(2)22410x x --=∵2a =,4b =-,1c =-,∴()()224442124b ac -=--⨯⨯-=∴x ==,∴11x =21x =; 【点睛】 本题考查了解一元二次方程的应用,熟悉相关的解法是解题的关键.24.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+(2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键. 25.(1)1211,22x x ==-.(2)1211,24x x ==-. 【分析】(1)用配方法解即可;(2)先移项然后提取公因式,即可求解.【详解】(1)23+=x x , ∴211344x x ++=+, ∴211324x ⎛⎫+= ⎪⎝⎭,∴12x +=12x x ∴== (2)移项,得4(21)(21)0x x x -+-=,提取公因式,得(21)(41)0x x -+=,210x ∴-=或410x +=,1211,24x x ∴==-. 【点睛】本题考查了一元二次方程的解法,掌握基本解法并熟练进行解题是关键.26.(1)6;(2)4;(3)25.【分析】(1)将原式变形为9x x +≥ (2)结合阅读材料将原式变形为()411x x -+-后即可确定最小值; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:BOC AOB COD AOD S S S S =△△△△,用含x 的式子表示出36AOD S x =△,再按照题中所给公式求得最小值,加上常数即可. 【详解】解:(1)∵0x >,∴9x x +≥又∵6=, ∴96x x+≥ ∴9x x+的最小值为6; (2)∵1x >∴10x ->, ∴222521411x x x x x x -+-++=--()2141x x -+=-()411x x =-+-≥∵∴22541x x x -+≥- ∴2251x x x -+-的最小值为4. (3)设(0)BOC S x x =>△,则由等高三角形可知:BOC AOB COD AODS S S S =△△△△ ∴49AOD x S =△,即36AOD S x=△, ∴四边形ABCD面积364913x x =+++≥, ∵13=25,当且仅当x=6时,取等号, ∴四边形ABCD 面积的最小值为25.【点睛】本题考查了配方法在最值问题中的应用,同时本题还考查了等高三角形的在面积计算中的应用.对不能直接应用公式的,需要正确变形才可以应用,本题中等难度略大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青岛大学附属中学数学一元二次方程单元试卷(word 版含答案)一、初三数学 一元二次方程易错题压轴题(难)1.如图,在长方形ABCD 中,边AB 、BC 的长(AB <BC )是方程x 2-7x +12=0的两个根.点P 从点A 出发,以每秒1个单位的速度沿△ABC 边 A →B →C →A 的方向运动,运动时间为t (秒).(1)求AB 与BC 的长;(2)当点P 运动到边BC 上时,试求出使AP 长为10时运动时间t 的值;(3)当点P 运动到边AC 上时,是否存在点P ,使△CDP 是等腰三角形?若存在,请求出运动时间t 的值;若不存在,请说明理由.【答案】(1) AB =3,BC =4;(2) t =4;(3) t 为10秒或9.5秒或535秒时,△CDP 是等腰三角形.【解析】试题分析:(1)解一元二次方程即可求得边长;(2)结合图形,利用勾股定理求解即可; (3)根据题意,分为:PC =PD ,PD =PC ,PD =CD ,三种情况分别可求解.试题解析:(1)∵x 2-7x +12=(x -3)(x -4)=0∴1x =3或2x =4 .则AB =3,BC =4(2)由题意得()223t-310?+=()∴14t =,22t =(舍去)则t =4时,AP 10.(3)存在点P ,使△CDP 是等腰三角形.①当PC =PD =3时, t =3431++ =10(秒). ②当PD =PC(即P 为对角线AC 中点)时,AB =3,BC =4. 2234+=5,CP 1=12AC =2.5 ∴t=34 2.51++ =9.5(秒)③当PD=CD=3时,作DQ⊥AC于Q.1341221552DQ⨯⨯==⨯,22129355PQ⎛⎫=-=⎪⎝⎭∴PC=2PQ=18 5∴183453515t++==(秒)可知当t为10秒或9.5秒或535秒时,△CDP是等腰三角形.2.阅读与应用:阅读1:a,b为实数,且a>0,b>0,因为()2≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L.若该汽车以每小时x公里的速度匀速行驶,1h的耗油量为yL.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量.【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度.【详解】(1)∵x +≥2=4,∴当x = 时,2(x +)有最小值8.即x =2时,周长的最小值为8;故答案是:2;8;问题2:,当且仅当, 即x =90时,“=”成立,所以,当x =90时,函数取得最小值9,此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L .【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.3.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x 元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x 的值.【答案】(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克, b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩ 答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.4.有n 个方程:x 2+2x ﹣8=0;x 2+2×2x ﹣8×22=0;…x 2+2nx ﹣8n 2=0.小静同学解第一个方程x 2+2x ﹣8=0的步骤为:“①x 2+2x=8;②x 2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x 1=4,x 2=﹣2.” (1)小静的解法是从步骤 开始出现错误的.(2)用配方法解第n 个方程x 2+2nx ﹣8n 2=0.(用含有n 的式子表示方程的根)【答案】(1)⑤;(2)x 1=2n ,x 2=﹣4n .【解析】【分析】(1)根据移项要变号,可判断;(2)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半,使左边是一个完全平方式,然后用直接开平方法求解.【详解】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为⑤;(2)x 2+2nx ﹣8n 2=0,x 2+2nx=8n 2,x 2+2nx+n 2=8n 2+n 2,(x+n )2=9n 2,x+n=±3n ,x 1=2n ,x 2=﹣4n .5.已知关于x 的一元二次方程x 2﹣x +a ﹣1=0.(1)当a=﹣11时,解这个方程;(2)若这个方程有两个实数根x 1,x 2,求a 的取值范围;(3)若方程两个实数根x 1,x 2满足[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,求a 的值.【答案】(1)123,4x x =-=(2)54a ≤(3)-4 【解析】【分析】(1)根据一元二次方程的解法即可求出答案;(2)根据判别式即可求出a 的范围;(3)根据根与系数的关系即可求出答案.【详解】(1)把a =﹣11代入方程,得x 2﹣x ﹣12=0,(x +3)(x ﹣4)=0,x +3=0或x ﹣4=0,∴x 1=﹣3,x 2=4;(2)∵方程有两个实数根12x x ,,∴△≥0,即(﹣1)2﹣4×1×(a ﹣1)≥0,解得54a ≤:; (3)∵12x x ,是方程的两个实数根,222211221122101011x x a x x a x x a x x a -+-=-+-=∴-=--=-,,,. ∵[2+x 1(1﹣x 1)][2+x 2(1﹣x 2)]=9,∴221122229x x x x ⎡⎤⎡⎤+-+-=⎣⎦⎣⎦,把22112211x x a x x a -=--=-,代入,得:[2+a ﹣1][2+a ﹣1]=9,即(1+a )2=9,解得:a =﹣4,a =2(舍去),所以a 的值为﹣4.点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系.6.(本题满分10分)如图,在平面直角坐标系中,直线AB 与x 轴、y 轴分别交于点A 、B ,直线CD 与x 轴、y 轴分别交于点C 、D ,AB 与CD 相交于点E ,线段OA 、OC 的长是一元二次方程-18x+72=0的两根(OA >OC ),BE=5,tan ∠ABO=.(1)求点A ,C 的坐标;(2)若反比例函数y=的图象经过点E ,求k 的值;(3)若点P 在坐标轴上,在平面内是否存在一点Q ,使以点C ,E ,P ,Q 为顶点的四边形是矩形?若存在,请写出满足条件的点Q 的个数,并直接写出位于x 轴下方的点Q 的坐标;若不存在,请说明理由.【答案】(1)、A (12,0),C (﹣6,0);(2)、k=36;(3)、6个;Q 1(10,﹣12),Q 2(﹣3,6﹣3).【解析】试题分析:(1)、首先求出方程的解,根据OA>OC求出两点的坐标;(2)、根据∠ABO的正切值求出OB的长度,根据Rt△AOB得出AB的长度,作EM⊥x轴,根据三角形相似得出点E的坐标,然后求出k的值;(3)、分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q.试题解析:(1)由题意,解方程得:x1=6,x2=12.∵OA>OC,∴OA=12,OC=6.∴A(12,0),C(﹣6,0);(2)∵tan∠ABO=,∠AOB=90°∴∴OB=16.在Rt△AOB中,由勾股定理,得AB=20∵BE=5,∴AE=15.如图1,作EM⊥x轴于点M,∴EM∥OB.∴△AEM∽△ABO,∴,即:∴EM=12,AM=9,∴OM=12﹣9=3.∴E(3,12).∴k=36;(3)满足条件的点Q的个数是6,x轴的下方的Q1(10,﹣12),Q2(﹣3,6﹣3);方法:如下图①分别以CE为矩形的边,在点C、E处设计直角,垂线与两坐标轴相交,得到点P,进而得到点Q;(有三种)②以CE为矩形对角线,则以CE的中点为圆心做圆,与两坐标轴相交,得到点P,再得点Q;(有三种)如图①∵E (3,12),C (﹣6,0),∴CG=9,EG=12, ∴EG 2=CG•GP , ∴GP=16,∵△CPE 与△PCQ 是中心对称,∴CH=GP=16,QH=FG=12, ∵OC=6, ∴OH=10,∴Q (10,﹣12),如图②作MN ∥x 轴,交EG 于点N ,EH ⊥y 轴于点H ∵E (3,12),C (﹣6,0),∴CG=9,EG=12, ∴CE=15, ∵MN=CG=, 可以求得PH=3﹣6,同时可得PH=QR ,HE=CR ∴Q (﹣3,6﹣3), 考点:三角形相似的应用、三角函数、一元二次方程.7.如图,在ABC ∆中,90ACB ∠=︒,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=︒,求ACD ∠的度数;(2)设BC a =,AC b =;①线段AD 的长度是方程2220x ax b +-=的一个根吗?说明理由.②若线段AD EC =,求a b的值. 【答案】(1)ACD ∠=31︒;(2)①是;②34a b =. 【解析】【分析】(1)根据三角形内角和定理求出∠B ,根据等腰三角形的性质求出∠BCD ,计算即可; (2)①根据勾股定理求出AD ,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【详解】(1)在ABC ∆中,90ACB ∠=︒.∴90B A ∠=︒-∠9028=︒-︒62=︒,∵BC BD =, ∴1802B BCD BDC ︒-∠∠=∠= 180622︒-︒= 59=︒.∴DCA ACB BCD ∠=∠-∠9059=︒-︒31=︒.(2)①BD BC a ==,∴AD AB BD =-AB a =-.在Rt ABC ∆中,90ACB ∠=︒,AB ==∵2220x ax b +-=,∴x =a =-a AB =-±.∴线段AD 的长度是方程2220x ax b +-=的一个根.②∵AE AD =, 又∵AD EC =,∴2b AE EC ==, ∴2b AD =. 在Rt ABC ∆中,222AB AC BC =+,∴2222b a b a ⎛⎫+=+ ⎪⎝⎭, 22224b a ab b a ++=+, ∴234b ab =. ∵0b >, ∴34b a =, ∴34a b =. 【点睛】本题考查的是勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.8.如图,在平面直角坐标系中,正方形ABCD 的顶点A 在y 轴正半轴上,顶点B 在x 轴正半轴上,OA 、OB 的长分别是一元二次方程x 2﹣7x+12=0的两个根(OA >OB ). (1)求点D 的坐标.(2)求直线BC 的解析式.(3)在直线BC 上是否存在点P ,使△PCD 为等腰三角形?若存在,请直接写出点P 的坐标;若不存在,说明理由.【答案】(1)D(4,7)(2)y=3944x (3)详见解析【解析】试题分析:(1)解一元二次方程求出OA、OB的长度,过点D作DE⊥y于点E,根据正方形的性质可得AD=AB,∠DAB=90°,然后求出∠ABO=∠DAE,然后利用“角角边”证明△DAE 和△ABO全等,根据全等三角形对应边相等可得DE=OA,AE=OB,再求出OE,然后写出点D的坐标即可;(2)过点C作CM⊥x轴于点M,同理求出点C的坐标,设直线BC的解析式为y=kx+b (k≠0,k、b为常数),然后利用待定系数法求一次函数解析式解答;(3)根据正方形的性质,点P与点B重合时,△PCD为等腰三角形;点P为点B关于点C 的对称点时,△PCD为等腰三角形,然后求解即可.试题解析:(1)x2﹣7x+12=0,解得x1=3,x2=4,∵OA>OB,∴OA=4,OB=3,过D作DE⊥y于点E,∵正方形ABCD,∴AD=AB,∠DAB=90°,∠DAE+∠OAB=90°,∠ABO+∠OAB=90°,∴∠ABO=∠DAE,∵DE⊥AE,∴∠AED=90°=∠AOB,∵DE⊥AE∴∠AED=90°=∠AOB,∴△DAE≌△ABO(AAS),∴DE=OA=4,AE=OB=3,∴OE=7,∴D(4,7);(2)过点C作CM⊥x轴于点M,同上可证得△BCM≌△ABO,∴CM=OB=3,BM=OA=4,∴OM=7,∴C(7,3),设直线BC的解析式为y=kx+b(k≠0,k、b为常数),代入B(3,0),C(7,3)得,,解得,∴y=x﹣;(3)存在.点P与点B重合时,P1(3,0),点P与点B关于点C对称时,P2(11,6).考点:1、解一元二次方程;2、正方形的性质;3、全等三角形的判定与性质;4、一次函数9.已知:如图,在平面直角坐标系中,矩形AOBC的顶点C的坐标是(6,4),动点P从点A出发,以每秒1个单位的速度沿线段AC运动,同时动点Q从点B出发,以每秒2个单位的速度沿线段BO运动,当Q到达O点时,P,Q同时停止运动,运动时间是t秒(t >0).(1)如图1,当时间t=秒时,四边形APQO是矩形;(2)如图2,在P,Q运动过程中,当PQ=5时,时间t等于秒;(3)如图3,当P,Q运动到图中位置时,将矩形沿PQ折叠,点A,O的对应点分别是D,E,连接OP,OE,此时∠POE=45°,连接PE,求直线OE的函数表达式.【答案】(1)t=2;(2)1或3;(3)y=12 x.【解析】【分析】先根据题意用t表示AP、BQ、PC、OQ的长.(1)由四边形APQO是矩形可得AP=OQ,列得方程即可求出t.(2)过点P作x轴的垂线PH,构造直角△PQH,求得HQ的值.由点H、Q位置不同分两种情况讨论用t表示HQ,即列得方程求出t.根据t的取值范围考虑t的合理性.(3)由轴对称性质,对称轴PQ垂直平分对应点连线OC,得OP=PE,QE=OQ.由∠POE =45°可得△OPE是等腰直角三角形,∠OPE=90°,即点E在矩形AOBC内部,无须分类讨论.要求点E坐标故过点E作x轴垂线MN,易证△MPE≌△AOP,由对应边相等可用t表示EN,QN.在直角△ENQ中利用勾股定理为等量关系列方程即求出t.【详解】∵矩形AOBC中,C(6,4)∴OB=AC=6,BC=OA=4依题意得:AP=t,BQ=2t(0<t≤3)∴PC=AC﹣AP=6﹣t,OQ=OB﹣BQ=6﹣2t(1)∵四边形APQO是矩形∴AP=OQ∴t=6﹣2t解得:t=2故答案为2.(2)过点P作PH⊥x轴于点H∴四边形APHO是矩形∴PH=OA=4,OH=AP=t,∠PHQ=90°∵PQ=5=∴HQ3①如图1,若点H在点Q左侧,则HQ=OQ﹣OH=6﹣3t∴6﹣3t=3解得:t=1②如图2,若点H在点Q右侧,则HQ=OH﹣OQ=3t﹣6∴3t﹣6=3解得:t=3故答案为1或3.(3)过点E作MN⊥x轴于点N,交AC于点M∴四边形AMNO是矩形∴MN=OA=4,ON=AM∵矩形沿PQ折叠,点A,O的对应点分别是D,E∴PQ垂直平分OE∴EQ=OQ=6﹣2t,PO=PE∵∠POE=45°∴∠PEO=∠POE=45°∴∠OPE=90°,点E在矩形AOBC内部∴∠APO+∠MPE=∠APO+∠AOP=90°∴∠MPE=∠AOP在△MPE与△AOP中PME OAP90MPE AOPPE0P︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△MPE≌△AOP(AAS)∴PM=OA=4,ME=AP=t∴ON=AM=AP+PM=t+4,EN=MN﹣ME=4﹣t∴QN=ON﹣OQ=t+4﹣(6﹣2t)=3t﹣2∵在Rt△ENQ中,EN2+QN2=EQ2∴(4﹣t)2+(3t﹣2)2=(6﹣2t)2解得:t1=﹣2(舍去),t2=43∴AM=43+4=163,EN=4﹣43=83∴点E坐标为(163,83)∴直线OE的函数表达式为y=12x.【点睛】本题考查了矩形的判定和性质,勾股定理,轴对称的性质,全等三角形的判定和性质,解一元一次和一元二次方程.在动点题中要求运动时间t的值,常规做法是用t表示相关线段,再利用线段相等或勾股定理作为等量关系列方程求值.要注意根据t的取值范围考虑方程的解的合理性.10.如图,某农家拟用已有的长为8m的墙或墙的一部分为一边,其它三边用篱笆围成一个面积为12m2的矩形园子.设园子中平行于墙面的篱笆长为ym(其中y≥4),另两边的篱笆长分别为xm.(1)求y关于x的函数表达式,并求x的取值范围.(2)若仅用现有的11m长的篱笆,且恰好用完,请你帮助设计围制方案.【答案】(1)y=;1.5≤x≤3;(2)长为8m,宽为1.5m.【解析】【分析】(1)由矩形的面积公式可得出y关于x的函数表达式,结合4≤y≤8可求出x的取值范围;(2)由篱笆的长可得出y=(11﹣2x)m,利用矩形的面积公式结合矩形园子的面积,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】(1)∵矩形的面积为12m2,∴y=.∵4≤y≤8,∴1.5≤x≤3.(2)∵篱笆长11m,∴y=(11﹣2x)m.依题意,得:xy=12,即x(11﹣2x)=12,解得:x1=1.5,x2=4(舍去),∴y=11﹣2x=8.答:矩形园子的长为8m,宽为1.5m.【点睛】本题考查了一元二次方程的应用以及反比例函数的应用,解题的关键是:(1)利用矩形的面积公式,找出y关于x的函数表达式;(2)找准等量关系,正确列出一元二次方程.。