二次函数图象信息题-的四种常见类型
1 用二次函数解实际应用的四种常见类型

当x1>9时,W随x1的增大而增大, ∵11≤x1≤15,∴当x1=15时, W最大值=30×(15-9)2+9 570=10 650. 答:采购空调15台时总利润最大,最大利润为10 650元.
返回
7.某宾馆有50个房间供游客住宿.当每个房间每天的定 价为180元时,房间会全部住满;当每个房间每天的 定价每增加10元时,就会有一个房间空闲.宾馆需对 游客居住的每个房间每天支出20元的各种费用.根据 规定,每个房间每天的定价不得高于340元.设每个 房间每天的定价增加x元(x为10的整数倍).
故这次她可以拦网成功.
(3)若队员发球既要过球网,又不出边界,问排球飞行的 最大高度h的取值范围是多少(排球压线属于没出界)?
设抛物线对应的函数解析式为y=a(x-7)2+h, 将点C(0,1.8)的坐标代入,得49a+h=1.8, 即a= 1.8 h,
49
∴此时抛物线对应的函数解析式为:
y= 1.8 h (x-7)2+h.
(1)抛物线对应的函数解析式是___y_=__-__6_34__x_2_+__1_1__.
(2)已知从某时刻开始的40 h内,水面与河底ED的距
离h(m)随时间t(h)的变化满足函数关系h=-
1 128
(t
-19)2+8(0≤t≤40),且当顶点C到水面的距离不大
于5 m时,需禁止船只通行.请通过计算说明:在
(2)该商家分别以1 760元和1 700元的销售单价售出空 调和冰箱,且全部售完.在(1)的条件下,问采购 空调多少台时总利润最大?并求最大利润.
设总利润为W元, y2=-10x2+1 300=-10(20-x1)+1 300=10x1+1 100, 则W=(1 760-y1)x1+(1 700-y2)x=1 760x1-(-20x1+ 1 500)x1+(1 700-10x1-1 100)(20-x1)=1 760x1+20x21 -1 500x1+10x21-800x1+12 000=30x21-540x1+ 12 000=30(x1-9)2+9 570.
二次函数图像与性质练习题

二次函数图像与性质练习题二次函数是高中数学中的一个重要内容,它在数学中有着广泛的应用。
而对于学生来说,了解二次函数的图像和性质是非常重要的。
本文将通过一些练习题来帮助学生深入理解二次函数的图像和性质。
练习题一:给定函数 f(x) = 2x^2 + 3x - 2,求解以下问题:1. 求函数 f(x) 的顶点坐标和对称轴方程;2. 求函数 f(x) 的零点;3. 判断函数 f(x) 的开口方向和最值。
解答:1. 首先,我们知道二次函数的顶点坐标可以通过公式 x = -b/2a 和 y = f(-b/2a) 来求解。
将函数 f(x) 的系数代入公式中,可以得出顶点坐标为 (-3/4, -23/8)。
对称轴方程为 x = -3/4。
2. 函数 f(x) 的零点即为方程 2x^2 + 3x - 2 = 0 的解。
通过因式分解或者使用求根公式,可以得到零点为 x = 1/2 和 x = -2。
3. 由于二次函数的系数 a 大于 0,所以函数的开口方向是向上的。
同时,由于顶点坐标的 y 值为 -23/8,所以函数的最值为最小值。
练习题二:给定函数 g(x) = -x^2 + 4x + 5,求解以下问题:1. 求函数 g(x) 的顶点坐标和对称轴方程;2. 求函数 g(x) 的零点;3. 判断函数 g(x) 的开口方向和最值。
解答:1. 同样地,我们可以通过公式 x = -b/2a 和 y = g(-b/2a) 来求解顶点坐标。
将函数 g(x) 的系数代入公式中,可以得出顶点坐标为 (2, 9)。
对称轴方程为 x = 2。
2. 函数 g(x) 的零点即为方程 -x^2 + 4x + 5 = 0 的解。
通过因式分解或者使用求根公式,可以得到零点为 x = -1 和 x = 5。
3. 由于二次函数的系数 a 小于 0,所以函数的开口方向是向下的。
同时,由于顶点坐标的 y 值为 9,所以函数的最值为最大值。
通过以上练习题,我们可以看到二次函数的图像和性质是与函数的系数相关的。
【二次函数强化练习】(五)求解析式的四种常见类型【部编 人教 湘教 苏教通用版】

专题训练(五)求二次函数解析式的四种常见类型►类型一已知三点求解析式1.已知:如图5-ZT-1,二次函数y=ax2+bx+c的图象经过A,B,C三点,求此抛物线的解析式.图5-ZT-12.如图5-ZT-2①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的解析式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).图5-ZT-2►类型二已知顶点或对称轴求解析式3.已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:则该二次函数的解析式为____________________.4.在平面直角坐标系内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的解析式.5.已知抛物线经过点A(1,0),B(0,3),且对称轴是直线x=2,求该抛物线的解析式.6.如图5-ZT-3,已知抛物线的顶点为A(1,4),与y轴交于点B(0,3),与x轴交于C,D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)当PA+PB的值最小时,求点P的坐标.图5-ZT-3►类型三已知抛物线与x轴的交点求解析式7.抛物线与x轴交于点(-1,0)和(3,0),与y轴交于点(0,-3),则此抛物线的解析式为()A.y=x2+2x+3B.y=x2-2x-3C.y=x2-2x+3D.y=x2+2x-3图5-ZT-48.如图5-ZT-4,已知抛物线过A,B,C三点,点A的坐标为(-1,0),点B的坐标为(3,0),且3AB=4OC,则此抛物线的解析式为__________________.9.已知抛物线的顶点坐标为(1,9),它与x轴有两个交点(交点的横坐标均为整数),两交点间的距离为6,求此抛物线的解析式.►类型四根据图形平移求解析式10.2017·义乌矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数解析式为y=x2,再次平移这张透明纸,使这个点与点C重合,则此时抛物线的函数解析式变为() A.y=x2+8x+14B.y=x2-8x+14C.y=x2+4x+3D.y=x2-4x+311.2017·天津已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B的左侧),顶点为M.平移该抛物线,使点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,则平移后的抛物线的解析式为()A.y=x2+2x+1B.y=x2+2x-1C.y=x2-2x+1D.y=x2-2x-112.把抛物线y=x2先向左平移1个单位长度,再向下平移4个单位长度,得到如图5-ZT-5所示的二次函数的图象.(1)求此二次函数的解析式;(2)在平移后的抛物线上存在一点M,使△ABM的面积为20,请直接写出点M的坐标.图5-ZT-513.2018·苏州如图5-ZT-6,已知抛物线y=x2-4与x轴交于点A,B(点A位于点B 的左侧),C为顶点.直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数解析式.图5-ZT-6详解详析1.解:把(-1,0),(0,-3),(4,5)代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧a -b +c =0,c =-3,16a +4b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.所以此抛物线的解析式为y =x 2-2x -3.2.解:(1)把(0,3),(3,0),(4,3)代入y =ax 2+bx +c ,得 ⎩⎪⎨⎪⎧c =3,9a +3b +c =0,16a +4b +c =3,解得⎩⎪⎨⎪⎧a =1,b =-4,c =3. 所以抛物线的解析式为y =x 2-4x +3. (2)因为y =x 2-4x +3=(x -2)2-1,所以抛物线的顶点坐标为(2,-1),对称轴是直线x =2. (3)阴影部分的面积为2. 3.[答案]y =x 2-4x +5[解析]从表格中的数据可以看出,当x =1和x =3时,函数值y =2,可见,抛物线的顶点坐标为(2,1),故可设二次函数解析式为y =a (x -2)2+1,再由二次函数图象过点(1,2),得2=a (1-2)2+1,解得a =1,故二次函数的解析式为y =(x -2)2+1,即y =x 2-4x +5.4.解:∵二次函数图象的顶点为A (1,-4),∴设该二次函数的解析式为y =a (x -1)2-4.将(3,0)代入解析式,得a =1, 故y =(x -1)2-4,即该二次函数的解析式为y =x 2-2x -3. 5.解:∵抛物线的对称轴是直线x =2且经过点A (1,0), ∴由抛物线的对称性可知,抛物线还经过点(3,0). 设抛物线的解析式为y =a (x -1)(x -3).把(0,3)代入解析式,得3=3a ,∴a =1,∴y =(x -1)(x -3), 即该抛物线的解析式为y =x 2-4x +3. 6.解:(1)∵抛物线的顶点坐标为(1,4), ∴设此抛物线的解析式为y =a (x -1)2+4. ∵抛物线过点B (0,3),∴3=a (0-1)2+4,解得a =-1,∴y =-(x -1)2+4,即此抛物线的解析式为y =-x 2+2x +3.(2)作点B 关于x 轴的对称点E (0,-3),连接AE 交x 轴于点P ,此时P A +PB 的值最小.设直线AE 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧k +b =4,b =-3,解得⎩⎪⎨⎪⎧k =7,b =-3,∴直线AE 的解析式为y =7x -3.当y =0时,x =37,∴当P A +PB 的值最小时,点P 的坐标为(37,0).7.B [解析]由抛物线与x 轴交于点(-1,0)和(3,0),设此抛物线的解析式为y =a (x +1)(x -3).又因为抛物线与y 轴交于点(0,-3),把x =0,y =-3代入y =a (x +1)(x -3),得-3=a (0+1)(0-3),即-3a =-3,解得a =1,故此抛物线的解析式为y =(x +1)(x -3)=x 2-2x -3.故选B.8.[答案]y =-x 2+2x +39.解:由抛物线的对称性可知抛物线与x 轴的两个交点分别为(-2,0)和(4,0), 所以设其解析式为y =a (x +2)(x -4). 将(1,9)代入解析式,得9=a (1+2)(1-4), 解得a =-1,所以y =-(x +2)(x -4),即此抛物线的解析式为y=-x2+2x+8.10.A[解析]因为矩形ABCD的两条对称轴为坐标轴,所以矩形ABCD关于坐标原点对称.因为A,C是矩形对角线上的两个点,所以点A,C关于原点对称,所以点C的坐标为(-2,-1),所以抛物线向左平移了4个单位长度,向下平移了2个单位长度,所以平移后抛物线的函数解析式为y=(x+4)2-2=x2+8x+14.故选A.11.A[解析]令y=0可得x2-4x+3=0,解得x1=1,x2=3,可得A(1,0),B(3,0),根据抛物线顶点坐标公式可得M(2,-1),由点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,可知抛物线向左平移了3个单位长度,向上平移了1个单位长度,根据抛物线平移规律,可知平移后的抛物线的解析式为y=(x+1)2=x2+2x+1,故选A.12.解:(1)此二次函数的解析式为y=(x+1)2-4,即y=x2+2x-3.(2)∵当y=0时,x2+2x-3=0,解得x1=-3,x2=1,∴A(1,0),B(-3,0),∴AB=4.设点M的坐标为(m,n).∵△ABM的面积为20,∴12AB·|n|=20,解得n=±10.当n=10时,m2+2m-3=10,解得m=-1+14或m=-1-14,∴点M的坐标为(-1+14,10)或(-1-14,10);当n=-10时,m2+2m-3=-10,此方程无解.故点M的坐标为(-1+14,10)或(-1-14,10).13.解:(1)由x2-4=0解得x1=2,x2=-2.∵点A位于点B的左侧,∴A(-2,0).∵直线y=x+m经过点A,∴-2+m=0,m=2.∴D(0,2).∴AD=OA2+OD2=2 2.(2)∵直线CC′平行于直线AD,并且经过点C(0,-4),∴直线CC′的函数解析式为y=x-4.∵新抛物线的顶点C′在直线y=x-4上,∴设顶点C′的坐标为(n,n-4),∴新抛物线对应的函数解析式为y=(x-n)2+n-4.∵新抛物线经过点D(0,2),∴n2+n-4=2.解得n1=-3,n2=2.∴新抛物线对应的函数解析式为y=(x+3)2-7或y=(x-2)2-2,即y=x2+6x+2或y=x2-4x+2.。
典中点二次函数专训3二次函数图像信息题的四种常见类型

典中点二次函数专训3 二次函数图像信息题的四种常见类型 ◐名师点金◑利用图像信息解决二次函数的问题主要是运用数形结合思想将图像信息转换为数学语言,掌握二次函数的图像和性质是解决此类问题的关键.类型1: 根据抛物线的特征确定a ,b ,c 及与其有关的代数式的符号1.如图,二次函数y =ax 2+bx +c(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:①abc <0; ②b 2-4ac 4a >0; ③ac -b +1=0; ④OA ·OB =-c a.其中正确结论的个数是( ) A .4 B .3 C .2 D .1(第1题) (第2题) (第3题) (第4题) 类型2: 利用二次函数的图像比较大小1.二次函数y =-x 2+bx +c 的图像如图,若点A(x 1,y 1),B(x 2,y 2)在此函数图像上,且x 1<x 2<1,则y 1与y 2的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 2类型3: 利用二次函数的图像求方程的解或不等式的解集2.二次函数y =ax 2+bx +c(a ≠0)的图像如图所示,则当函数值y >0时,x 的取值范围是( )A .x <-1B .x >3C .-1<x <3D .x <-1或x >34.如图,二次函数y =ax 2+bx +3的图像经过点A(-1,0),B(3,0),那么一元二次方程ax 2+bx =0的根是____________.类型4:根据抛物线的特征确定其他函数的图像5.二次函数y=ax2+bx的图像如左下图所示,那么一次函数y=ax+b的图像大致是( )6.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图像上.(1)求m的值和二次函数的表达式;(2)设二次函数的图像交y轴于点C,求△ABC的面积.。
2024中考备考热点05 二次函数的图象及简单应用(8大题型+满分技巧+限时分层检测)

热点05 二次函数的图象及简单应用中考数学中《二次函数的图象及简单应用》部分主要考向分为五类:一、二次函数图象与性质(每年1道,3~4分)二、二次函数图象与系数的关系(每年1题,3~4份)三、二次函数与一元二次方程(每年1~2道,4~8分)四、二次函数的简单应用(每年1题,6~10分)二次函数是初中数学三中函数中知识点和性质最多的一个函数,也是中考数学中的重点和难点,考简答题时经常在二次函数的几何背景下,和其他几何图形一起出成压轴题;也经常出应用题利用二次函数的增减性考察问题的最值。
此外,二次函数的性质、二次函数与系数的关系、二次函数上点的坐标特征也是中考中经常考到的考点,都需要大家准确记忆二次函数的对应考点。
只有熟悉掌握二次函数的一系列考点,才能在遇到对应问题时及时提取有用信息来应对。
考向一:二次函数图象与性质【题型1 二次函数的图象与性质】满分技巧1. 对于二次函数y =ax 2+bx +c (a ≠0)的图象:形状:抛物线; 对称轴:直线ab x 2-=;顶点坐标:)442(2a b ac a b --,; 2、抛物线的增减性问题,由a 的正负和对称轴同时确定,单一的直接说y 随x 的增大而增大(或减小)是不对的,必须在确定a 的正负后,附加一定的自变量x 取值范围;3、当a>0,抛物线开口向上,函数有最小值;当a<0,抛物线开口向下,函数有最大值;而函数的最值都是定点坐标的纵坐标。
1.(2023•沈阳)二次函数y=﹣(x+1)2+2图象的顶点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2023•兰州)已知二次函数y=﹣3(x﹣2)2﹣3,下列说法正确的是()A.对称轴为直线x=﹣2B.顶点坐标为(2,3)C.函数的最大值是﹣3D.函数的最小值是﹣33.(2023•陕西)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【题型2 二次函数图象上点的坐标特征】满分技巧牢记一句话,“点在图象上,点的坐标符合其对应解析式”,然后,和哪个几何图形结合,多想与之结合的几何图形的性质1.(2023•广东)如图,抛物线y=ax2+c经过正方形OABC的三个顶点A,B,C,点B在y轴上,则ac的值为()A.﹣1B.﹣2C.﹣3D.﹣42.若点P(m,n)在抛物线y=ax2(a≠0)上,则下列各点在抛物线y=a(x+1)2上的是()A.(m,n+1)B.(m+1,n)C.(m,n﹣1)D.(m﹣1,n)3.(2023•十堰)已知点A(x1,y1)在直线y=3x+19上,点B(x2,y2),C(x3,y3)在抛物线y=x2+4x ﹣1上,若y1=y2=y3,x1<x2<x3,则x1+x2+x3的取值范围是()A.﹣12<x1+x2+x3<﹣9B.﹣8<x1+x2+x3<﹣6C.﹣9<x1+x2+x3<0D.﹣6<x1+x2+x3<1【题型3 二次函数图象与几何变换】满分技巧1、二次函数的几何变化,多考察其平移规律,对应方法是:①将一般式转化为顶点式;②根据口诀“左加右减,上加下减”去变化。
二次函数图象信息题的四种常见类型

抛物线开口向上的图像
1
特点
图像开口朝上,a>0。
2
性质在抛物ຫໍສະໝຸດ 的中心处,函数取得最小值,也称为“顶点”,坐标为(f(g),-h(f(g)))。
3
例题
如果抛物线y=ax^2+bx+c的顶点是(-1,4),则方程的形式是什么?
抛物线开口向下的图像
特点
图像开口朝下,a<0。
性质
函数的最大值位于抛物线的中心 处,其坐标为(f(g),-h(f(g)))。
二次函数图象信息题的四 种常见类型
在学习二次函数时,掌握常见的四种图像类型对于学生们是非常重要的。这 个幻灯片将介绍这些类型,以及如何轻松应对与它们相关的信息问题。
什么是二次函数?
1 定义
二次函数是形如y=ax^2+bx+c的函数,其中a,b,c为常数,a不等于零。图像为开口朝 上或朝下的轮廓类似于一个U形。
例题
如果抛物线y=ax^2+bx+c的最大 值点是(2,5),则a的值是多少?
两个实根的图像
特点
图像与x轴有两个交点(实 根),a>0。
性质
当x趋近于正无穷或负无穷时, 二次函数趋近于无穷大。此 外,抛物线的轴线是根的平 均值。
例题
给定二次函数y=-2(x-4)(x-3), 求它的零点是多少?
无实根的图像
1
特点
图像可以用a(x-h)^2+k的形式表示,其中a<0。
2
性质
在抛物线的中心处,函数达到最大值。图像完全位于或高于x轴上方。
3
例题
二次方程y=x^2+4x+13有实根吗?如果不是,图像是什么样子的?
专题06二次函数的图象与性质(1)(5个知识点4种题型1个易错点)原卷版-初中数学北师大版9年级上册

专题06二次函数的图象与性质(1)(5个知识点4种题型1个易错点)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.二次函数2x y =与2x y -=的图象及性质知识点2.二次函数)0(2≠=a ax y 的图象及性质(重点)知识点3.二次函数)0(2≠+=a k ax y 的图象及性质(重点)知识点4.二次函数)0()(2≠-=a h x a y 的图象与性质(重点)知识点5.二次函数)0()(2≠+-=a k h x a y 的图象与性质(重点)【方法二】实例探索法题型1.判断二次函数图象的开口大小题型2.二次函数与一次函数的综合题型3.画二次函数的图象题型4.二次函数与几何图形的综合【方法三】差异对比法易错点:忽略了二次函数二次项系数a 的作用【方法四】成果评定法【学习目标】1.掌握二次函数)0(),0(,222≠+=≠==a c ax y a ax y x y 图象的画法及性质,并了解三个函数之间的关系。
2.掌握二次函数)0()(),0()(22≠+-=≠-=a k h x a y a h x a y 图象的画法及性质,并了解)0()()0(22≠+-=≠=a k h x a y a ax y 与图象之间的关系。
3.能灵活运用二次函数)0(2≠=a ax y 与)0()(2≠+-=a k h x a y 图象之间的关系解决问题。
4.重点:二次函数)0()(2≠+-=a k h x a y 图象的画法及性质5.难点:二次函数)0()(2≠+-=a k h x a y性质的应用【倍速学习四种方法】【方法一】脉络梳理法知识点1.二次函数2x y =与2x y -=的图象及性质二次函数y =±x 2的图象与性质抛物线y =x 2y =-x2顶点坐标(0,0)(0,0)对称轴y 轴y 轴开口方向向上向下增减性在对称轴的左侧,y 随着x 的增大而减小;在对称轴的右侧,y 随着x 的增大而增大在对称轴的左侧,y 随着x 的增大而增大;在对称轴的右侧,y 随着x 的增大而减小最值当x =0时,有最小值0当x =0时,有最大值0【例1】已知二次函数y =x 2的图象与直线y =x +2的图象如图所示.(1)判断y =x 2的图象的开口方向,并说出此抛物线的对称轴、顶点坐标;(2)设直线y =x +2与抛物线y =x 2的交点分别为A ,B ,如图所示,试确定A ,B 两点的坐标;(3)连接OA ,OB ,求△AOB 的面积.【变式】已知二次函数y =x 2,当-1≤x ≤2时,求函数y 的最小值和最大值.小王的解答过程如下:解:当x=-1时,y=1;当x=2时,y=4;所以函数y的最小值为1,最大值为4.小王的解答过程正确吗?如果不正确,写出正确的解答过程.【例2】观察二次函数y=-x2的图象,请问:(1)什么时候y随x的增大而增大?什么时候y随x的增大而减小?(2)什么时候函数有最大值或最小值?其最大值或最小值是多少?【变式】函数y=ax2(a≠0)与直线y=x-2交于点(1,b).(1)求a,b的值.(2)x取何值时,y随x的增大而增大?知识点2.二次函数)0axy的图象及性质(重点)=a(2≠二次函数y=ax2(a≠0)的图象的性质,见下表:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.│a│相同,抛物线的开口大小、形状相同.│a│越大,开口越小,图象两边越靠近y 轴,│a│越小,开口越大, 图象两边越靠近x 轴.【例3】.(2023秋•普陀区期末)下列关于抛物线y =2x 2和抛物线y =﹣2x 2的说法中,不正确的是()A .对称轴都是y 轴B .在y 轴左侧的部分都是上升的C .开口方向相反D .顶点都是原点【变式】.(2023秋•琼山区校级期中)已知抛物线y =(3m ﹣1)x 2的开口向下,则m 的取值范围是()A .B .C .D .知识点3.二次函数)0(2≠+=a k ax y 的图象及性质(重点)关于二次函数2(0)y ax c a =+≠的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:函数2(0,0)y ax c a c =+>>2(0,0)y ax c a c =+<>图象开口方向向上向下顶点坐标(0,c)(0,c)对称轴y轴y轴函数变化当0x>时,y随x的增大而增大;当0x<时,y随x的增大而减小.当0x>时,y随x的增大而减小;当0x<时,y随x的增大而增大.最大(小)值当0x=时,y c=最小值当0x=时,y c=最大值【例4】.(2023秋•日喀则市期末)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A.B.C.D.知识点4.二次函数)0()(2≠-=ahxay的图象与性质(重点)一般地,二次函数()2y a x m=+的图像是抛物线,称为抛物线()2y a x m=+,它可以通过将抛物线2y ax=向左(0m>时)或向右(0m<时)平移m个单位得到.抛物线()2y a x m=+(其中a、m是常数,且0a≠)的对称轴是过点(-m,0)且平行(或重合)于y轴的直线,即直线x=-m;顶点坐标是(-m,0).当0a>时,开口向上,顶点是抛物线的最低点;当0a<时,开口向下,顶点是抛物线的最高点.【例5】.(2023秋•西昌市校级期末)y=ax+b与y=a(x+b)2在同一坐标系中的图象可能是()A .B .C .D .知识点5.二次函数)0()(2≠+-=a k h x a y 的图象与性质(重点)二次函数()2y a x m k =++(其中a 、m 、k 是常数,且0a ≠)的图像即抛物线()2y a x m k =++,可以通过将抛物线2y ax =进行两次平移得到.这两次平移可以是:先向左(0m >时)或向右(0m <时)平移m 个单位,再向上(0k >时)或向下(0k <时)平移k 个单位.利用图形平移的性质,可知:抛物线()2y a x m k =++(其中a 、m 、k 是常数,且0a ≠)的对称轴是经过点(m -,0)且平行于y 轴的直线,即直线x =m -;抛物线的顶点坐标是(m -,k ).抛物线的开口方向由a 所取值的符号决定,当0a >时,开口向上,顶点是抛物线的最低点;当0a <时,开口向下,顶点是抛物线的最高点.【例6】.(2022秋•环江县期末)二次函数y =2(x +2)2﹣1的图象是()A .B .C .D .【变式1】.(2023•长兴县一模)抛物线y =2(x +9)2﹣3的顶点坐标是()A .(9,3)B .(9,﹣3)C .(﹣9,3)D .(﹣9,﹣3)【变式2】.(2023秋•西山区校级月考)在直角坐标系中,将抛物线y =﹣2x 2先向下平移1个单位长度,再向左平移2个单位长度,所得新抛物线的解析式为()A .y =﹣2(x +1)2﹣2B .y =﹣2(x ﹣1)2+2C .y =﹣2(x +2)2﹣1D .y =﹣2(x ﹣2)2+1【方法二】实例探索法题型1.判断二次函数图象的开口大小1.(1)在同一平面直角坐标系中,画出函数212y x =、22y x =的图像;(2)函数212y x =、22y x =的图像与函数2y x =的图像,有何异同?2.(1)在同一平面直角坐标系中,画出函数2y x =-、212y x =-、22y x =-的图像;(2)函数2y x =-、212y x =-、22y x =-的图像与函数2y x =、212y x =、22y x =的图像有何异同?题型2.二次函数与一次函数的综合3.已知直线423y x =+上有两个点A 、B ,它们的横坐标分别是3和-2,若抛物线2y ax =也经过点A ,试求该抛物线的表达式.该抛物线也经过点B 吗?请说出你的理由.4.物线2=与直线23y ax=-交于点(1,b).y x(1)求a和b的值;(2)求抛物线的解析式,并求顶点坐标和对称轴;(3)当x取何值时,二次函数的y值随x的增大而增大.题型3.画二次函数的图象(1)根据已知的图像部分画出这个函数图象的另一部分(直接在网格中作图即可)--,是否在这个函数图象上,说明理由.(2)判断点(24)y=时对应的函数图象在第一象限的点的坐标.(3)求当4题型4.二次函数与几何图形的综合6.有一个抛物线形的拱形隧道,隧道的最大高度为6m,跨度为8m,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)若要在隧道壁上点P(如图)安装一盏照明灯,灯离地面高4.5m.求灯与点B的距离.【方法三】差异对比法易错点:忽略了二次函数二次项系数a 的作用7.抛物线2y ax =与225y x =的形状相同,则a 的值为______.【方法四】成果评定法一.选择题(共9小题)1.(2023秋•长春期末)若点A 在二次函数2(5)4y x =--图象的对称轴上,则点A 的坐标可能是()A .(5,0)-B .(5,0)C .(0,4)D .(0,4)-2.(2023秋•新宾县期末)抛物线221y x =-+通过变换可以得到抛物线22(1)3y x =-++,以下变换过程正确的是()A .先向右平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向下平移2个单位D .先向左平移1个单位,再向上平移2个单位3.(2023秋•西城区校级月考)已知点1(3,)A y -,2(1,)B y ,3(4,)C y 在抛物线2(2)y x k =--+上,则1y ,2y ,3y 的大小关系是()A .123y y y <<B .231y y y <<C .132y y y <<D .312y y y <<4.(2023秋•绿园区期末)二次函数24(2)5y x =---的顶点坐标是()A .(2,5)-B .(2,5)C .(2,5)--D .(2,5)-5.(2022秋•上虞区期末)已知二次函数22y ax c =+,当2x =时,函数值等于8,则下列关于a ,c 的关系式中,正确的是()A .28a c +=B .24a c +=C .28a c -=D .24a c -=6.(2022秋•东阿县期末)已知1a >,点1(1,)A a y -,2(,)B a y ,3(1,)C a y +都在二次函数22y x =-的图象上,则()A .123y y y <<B .132y y y <<C .321y y y <<D .213y y y <<7.(2022秋•柯城区期末)将抛物线23y x =-向右平移1个单位,再向上平移2个单位后,得到的新的抛物线的解析式为()A .23(1)2y x =-++B .23(1)2y x =---C .23(1)2y x =-+-D .23(1)2y x =--+8.(2023秋•明光市期中)抛物线23y x =--的顶点坐标为()A .(3,1)--B .(1,3)--C .(0,3)-D .(2,3)-9.(2022秋•抚松县期末)已知二次函数2()1y x a =-+,当12x -时,y 的最小值为1a +,则a 的值为()A .0或1B .0或4C .1或4D .0或1或4二.填空题(共8小题)10.(2023秋•日喀则市期末)抛物线2(1)2y x =++的顶点坐标为.11.(2023秋•西城区校级月考)将二次函数y =2x 2的图象向左平移1个单位,再向下平移5个单位,得到的函数图象的表达式是.12.(2023秋•普陀区期末)如图,抛物线24y x x =-+的顶点为P ,M 为对称轴上一点,如果PM OM =,那么点M 的坐标是.13.(2023秋•普陀区期末)已知点A 在抛物线2(1)2y x =-+上,点A '与点A 关于此抛物线的对称轴对称,如果点A 的横坐标是1-,那么点A '的坐标是.14.(2023秋•徐汇区期末)将抛物线2y x =-向右平移后,所得新抛物线的顶点是B ,新抛物线与原抛物线交于点A (如图所示),联结OA 、AB ,如果AOB ∆是等边三角形,那么点B 的坐标是.15.(2023秋•宣化区期中)如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为(1,1)、(1,4)、(4,4).若抛物线2y ax =的图象与正方形ABCD 有公共点,则a 的取值范围是.16.(2022秋•松北区校级期末)二次函数2(1)5y x =-++的最大值是.17.(2022秋•凤山县期末)如图,把抛物线22y x =向左平移2个单位长度,再向下平移8个单位长度得到抛物线l ,抛物线l 的顶点为P ,它的对称轴与抛物线22y x =交于点Q ,则图中阴影部分的面积为.三.解答题(共5小题)18.(2022秋•东阿县期末)如图,A ,B ,C ,D 四点在抛物线2y ax =上,且////AB CD x 轴,与y 轴的交点分别为E ,F ,已知20AB =,10CD =,3EF =,求a 的值及OF 的长.19.(2023秋•琼山区校级期中)已知如图所示,直线l 经过点(4,0)A 和(0,4)B ,它与抛物线2y ax =在第一象限内交于点P ,且AOP ∆的面积为4.(1)求直线AB 的表达式;(2)求a 的值.20.(2023秋•安庆期中)平移抛物线212y x =,使顶点坐标为2(,)t t ,并且经过点(2,4),求平移后抛物线对应的函数表达式.21.(2022秋•运城期末)探究二次函数22(3)1y x =--及其图象的性质,请填空:①图象的开口方向是;②图象的对称轴为直线;③图象与y 轴的交点坐标为;④当x =时,函数y 有最小值,最小值为.22.(2022秋•霍邱县期末)已知抛物线2(1)y a x h =-+,经过点(0,3)-和(3,0).(1)求a 、h 的值;(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.。
专题训练(三) 二次函数图象信息题归类

专题训练(三) 二次函数图象信息题归类
4.[2018·安顺] 已知二次函数y=ax2+bx+c(a≠0)的图象如图3- ZT-5,分析下列四个结论:①abc<0;②b2-4ac>0;③3a+c
>0;④(a+c)2<b2.其中正确的结论有( B )
A.1个
B.2个
C.3个
D.4个
图3-ZT-5
专题训练(三) 二次函数图象信息题归类
0,所以 ac>0,选项 A 错误;由对称轴直线 x=-2ba>0,知 b<0,选项 B 正确; 由抛物线与 x 轴有两个不同的交点,知 b2-4ac>0,选项 C 错误;当 x=1 时, y>0,即 a+b+c>0,选项 D 错误.
专题训练(三) 二次函数图象信息题归类
2.[2018·青岛] 已知一次函数 y=bax+c 的图象如图 3-ZT-2,则 二次函数 y=ax2+bx+c 在平面直角坐标系中的图象可能是( A )
特殊 若a-b+c>0,则x=-1时,y>0
关系 当对称轴为直线x=1时,2a+b=0;当对称轴为直线x=-1
时,2a-b=0;判断2a+b大于或小于0,看对称轴与直线x=
1的位置关系;判断2a-b大于或小于0,看对称轴与直线x=
-1的位置关系
专题训练(三) 二次函数图象信息题归类
类型之一 利用二次函数图象考查以上表格中的问题
专题训练(三) 二次函数图象信息题归类
5.[2017·广安]如图3-ZT-6所示,抛物线y=ax2+bx+c的顶
点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,
以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a
=3.其中正确结论的个数是( B )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/10
讲解:XX
8
2021/3/10
讲解:XX
9
2021/3/10
讲解:XX
10
感谢您的阅读收藏,谢谢!
2021/3/10
11
2021/3/10
讲解:XX
6
Hale Waihona Puke 类型 4 根据抛物线的特征确定其他函数的图象
5.【中考·聊城】二次函数y=ax2+bx的图象如图所 示,那么一次函数y=ax+b的图象大致是( C )
2021/3/10
讲解:XX
7
同类变式
6.如图,A(-1,0),B(2,-3)两点在一次函数y1 =-x+m与二次函数y2=ax2+bx-3的图象上. (1)求m的值和二次函数的解析式. (2)设二次函数的图象交y 轴于点C,求△ABC的 面积.
习题课 阶段方法技巧训练(一)
专训 二次函数图象信息题 的四种常见类型
2021/3/10
讲解:XX
1
利用图象信息解决二次函数的问题主要是运 用数形结合思想将图象信息转换为数学语言,掌 握二次函数的图象和性质是解决此类问题的关键.
2021/3/10
讲解:XX
2
类型 1 根据抛物线的特征确定a,b,c及与其有关的代数式的符号
1.【2015·孝感】如图,二次函数y=ax2+bx+c(a≠0)的
图象与x轴交于A,B两点,与y轴交于点C,且OA=
OC. 则下列结论:
①abc<0;② b 2 4 a c >0;③ac-b+1=0;
④OA·OB=- c
4a . 其中正确结论的个数是(
B
)
a
A.4 B.3
C.2 D.1
2021/3/10
讲解:XX
3
类型 2 利用二次函数的图象比较大小
2.二次函数y=-x2+bx+c的图象如图,若点A(x1, y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1 与y2的大小关系是( B ) A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
2021/3/10
讲解:XX
4
类型 3 利用二次函数的图象求方程的解或不等式的解集
3.【中考·黄石】二次函数y=ax2+bx+c(a≠0)的图 象如图所示,则当函数值y>0时,x的取值范围 是( D ) A.x<-1 B.x>3 C.-1<x<3 D.x<-1或x>3
2021/3/10
讲解:XX
5
同类变式
4.【中考·阜新】如图,二次函数y=ax2+bx+3 的图象经过点A(-1,0),B(3,0),那么一元 二次方程ax2+bx=0的根是____________.