专训 二次函数图象信息题的四种常见类型

合集下载

高频题型专题:二次函数的图象信息题压轴题五种模型全攻略(解析版)

高频题型专题:二次函数的图象信息题压轴题五种模型全攻略(解析版)

高频题型专题:二次函数的图象信息题压轴题五种模型全攻略【考点导航】目录【典型例题】 (1)【考点一 二次函数与一次函数图象共存问题】 ........................................................................................ 1 【考点二 二次函数与反比例函数图象共存问题】 .................................................................................... 5 【考点三 含字母参数的二次函数的图象和性质】 .................................................................................. 10 【考点四 二次函数的图象和性质与系数a ,b ,c 的问题】 ....................................................................... 16 【考点五 二次函数的图象与几何动点问题】 (21)【典型例题】【考点一 二次函数与一次函数图象共存问题】例题:(2023春·福建福州·八年级福建省福州延安中学校考期末)函数||y a x =与()20y ax a a =−≠在同一直角坐标系中的大致图象可能是( ). . . . 【答案】C【分析】根据一次函数与二次函数的性质判断即可. 【详解】解:∵a >,∴||y a x =经过一、三象限;当0a >时,二次函数()20y ax a a =−≠开口向上,与y 轴的交点在负半轴上, 当0a <时,二次函数()20y ax a a =−≠开口向下,与y 轴的交点在正半轴上,∴只有选项C 符合题意;故选:C .【点睛】题目主要考查一次函数与二次函数图象的判断,熟练掌握一次函数与二次函数的性质是解题关键. 【变式训练】1.(2023春·重庆渝中·八年级重庆巴蜀中学校考期末)如图是一次函数y kx b =+的图象,则二次函数22y kx bx =++的图象可能为( )A .B .C .D .【答案】C【分析】先根据一次函数图象确定00k b >>,,进而确定二次函数开口向上,对称轴在y 轴左侧,由此即可得到答案.【详解】解:∵一次函数y kx b =+的图象经过第一、二、三象限且与y 轴交于y 轴的正半轴, ∴00k b >>,,∴二次函数22y kx bx =++的图象的开口向上, ∵二次函数的对称轴为直线02bx k =−<,∴二次函数的对称轴在y 轴左侧,∴四个选项中只有C 选项中的函数图象符合题意, 故选C .【点睛】本题主要考查了一次函数图象与二次函数图象综合判断,正确求出00k b >>,是解题的关键. 2.(2023春·广西南宁·八年级南宁市天桃实验学校校考期末)在同一坐标系中,一次函数1y mx =−+与二次函数,2y x m =+的图象可能是( )A .B .C .D .【答案】D【分析】根据一次函数的1b =和二次函数的1a =即可判断出二次函数的开口方向和一次函数经过y 轴正半轴,从而排除A 和C ,分情况探讨m 的情况,即可求出答案.【详解】解:二次函数为2y x m =+ , 10a ∴=>,∴二次函数的开口方向向上, ∴排除C 选项.一次函数1y mx =−+,1>0b ∴=,一次函数经过y 轴正半轴, ∴排除A 选项.当0m >时,则0m −<,一次函数经过一、二、四象限,二次函数2y x m =+经过y 轴正半轴,∴ 排除B 选项.当0m <时,则0m −>一次函数经过一、二、三象限,二次函数2y x m =+经过y 轴负半轴, ∴D 选项符合题意.故选:D.【点睛】本题考查了一次函数和二次函数的图像性质,解题的关键在于熟练掌握图像性质中系数大小与图像的关系.3.(2023·全国·九年级假期作业)在同一平面直角坐标系中,函数y mx m =+和函数222(0)y mx x m =−++≠的图象可能是( )A .B .C .D .【答案】D【分析】根据函数图象判断两个m 值,函数的图象是否正确即可得到答案.【详解】解:A 、根据函数图象可知:一次函数解析式中0m <,二次函数解析式中0m −<,即0m >,两者符号不相同,故该选项不符合题意;B 、根据函数图象可知:一次函数解析式中0m <,二次函数解析式中0m −>,即0m <,两者符号相同,但根据a m =−,2b =得抛物线的对称轴应在y 轴的左侧,与图象不符,故该选项不符合题意;C 、根据函数图象可知:一次函数解析式中0m >,二次函数解析式中0m −>,即0m <,两者符号不相同,故该选项不符合题意;D 、根据函数图象可知:一次函数解析式中0m <,二次函数解析式中0m −>,即0m <,两者符号相同,根据a m =−,2b =得抛物线的对称轴应在y 轴的左侧,与图象相符,故该选项符合题意; 故选:D .【点睛】此题考查一次函数与二次函数的图象性质,根据图象判断函数解析式中字母的取值,正确理解函数图象是解题的关键.A .B .C .D .【答案】C【分析】从二次函数图象的开口方向和对称轴的位置,可以得到a<0,0b >,可知直线y ax b =+经过第一、二、四象限.【详解】解:由二次函数的图象可知,开口向下,对称轴bx 02a =−>,∴a<0,0b >,∴一次函数y ax b =+的图象是经过第一、二、四象限. ∴只有选项C 符号条件, 故选:C .【点睛】本题考查二次函数及一次函数的图象,解题关键是由二次函数的图象得到,a b 的符号,从而判断直线的位置.【考点二 二次函数与反比例函数图象共存问题】. . . .【答案】D【分析】根据2y ax ax =+可知,二次函数图象与y 轴交点为0y =时,即二次函数图象过原点.再分两种情况即0a >,0a <时结合二次函数2y ax bx c =++中a ,b 同号对称轴在y 轴左侧,a ,b 异号对称轴在y 轴右侧来判断出二次函数与反比例函数图象所在象限,找到符合题意的即为正确答案.【详解】解:①当0a >时,二次函数2y ax ax =+开口向上,过原点,对称轴在y 轴左侧,故二次函数在一、二、三象限,反比例函数在一、三象限;②当0a <时,二次函数2y ax ax =+开口向下,过原点,对称轴在y 轴左侧,故二次函数在二、三、四象限,反比例函数在二、四象限, 观察图象可知只有D 符合, 故选:D .【点睛】本题主要考查了二次函数图象以及反比例函数图象的性质,解题的关键是根据二次函数中a 的取值确定二次函数以及反比例函数的图象. 【变式训练】A .B .C .D .【答案】D【分析】根据a 的符号变化判断反比例函数和二次函数所在象限即可得出答案. 【详解】解:当0a >时,2y ax =的图像开口向上,过一、二象限;ay x =的图像位于一、三象限,可知,D正确;当a<0时,2y ax =的图像开口向下,过三、四象限;ay x =的图像位于二、四象限,无此选.故选:D【点睛】本题考查反比例函数和二次函数的图像,理解函数表达式中的系数与函数图像的关系是解题的关键.A .B .C .D .【答案】C【分析】令0x =,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出0a >,然后确定出一次函数图象经过第一三象限,从而得解. 【详解】解:0x =时,两个函数的函数值y b =,所以,两个函数图象与y 轴相交于同一点,故B 、D 选项错误; 由A 、C 选项可知,抛物线开口方向向上,所以,0a >,所以,一次函数y ax b =+经过第一三象限, 所以,A 选项错误,C 选项正确. 故选:C .【点睛】本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y ax b =+在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.A . . . .【答案】D【分析】由抛物线开口方向,对称轴位置及抛物线与y 轴交点位置判断a ,b ,c 的符号,从而可得直线与反比例函数图象的大致图象. 【详解】解:∵抛物线开口向上, ∴0a >,∵抛物线对称轴在y 轴左侧, ∴0b >, ∴0b −<∵抛物线与y 轴交点在x 轴下方, ∴0c <,∴直线y ax b =−经过第一,三,四象限,反比例函数cy x =图象分布在第二、四象限,故选:D .【点睛】本题考查二次函数的性质,解题关键是掌握函数图象与系数的关系.A .B .C .D .【答案】A【分析】由二次函数图象分别判断出,,a b c 的符号,然后根据正比例函数与反比例函数的性质判断即可. 【详解】解:由二次函数图象可得: 开口向下, ∴a<0,对称轴在y 轴右边, ∴02b a −>,∴0b >,图象与y 轴交于正半轴, ∴0c >, ∴0b c +>,∴()y b c x =+图象过一三象限,ay x =图象过二四象限,故选:A .【点睛】本题考查了函数图象的判断,相关知识点有:一次函数、反比例函数、二次函数的图象与性质,熟悉函数的图象与性质是解题关键.A .B .C .D .【答案】C【分析】根据二次函数()20y ax bx c a =++≠的图象开口向上,得出0a >,与y 轴交点在y 轴的负半轴,得出0c <,利用对称轴02b x a −>=,得出0b <,然后对照四个选项中的图象判定即可.【详解】解:因为二次函数2y ax bx c =++的图象开口向上,得出0a >,与y 轴交点在y 轴的负半轴,得出0c <,利用对称轴02b x a −>=,得出0b <,所以一次函数y bx c =+经过二、三、四象限,反比例函数ay x =经过一、三象限.A. 一次函数y bx c =+经过一、三、四象限,反比例函数ay x =经过二、四象限,不符合题意; B. 一次函数y bx c =+经过一、二、三象限,反比例函数ay x =经过二、四象限,不符合题意; C. 一次函数y bx c =+经过二、三、四象限,反比例函数ay x =经过一、三象限,符合题意; D. 一次函数y bx c =+经过一、三、四象限,反比例函数ay x =经过一、三象限,不符合题意;故选:C .【点睛】本题考查的是由二次函数的图象判断各项系数的符号,一次函数与反比例函数的图象,熟记一次函数与反比例函数的图象的性质是解本题的关键.右图所示,则二次函数2y ax bx c =++的图象可能是( )A .B .C .D .【答案】C【分析】根据一次函数图象可得0,0a b ><,根据反比例函数可得0c <,据此即可求解. 【详解】解:∵一次函数y x b α=+的图象经过一、三、四象限, ∴0,0a b ><,∵反比例函数cy x =的图象在第二、四象限,∴0c <,∴抛物线的开口向上,对称轴在y y 轴交于负半轴, 故选:C .【点睛】本题考查了一次函数、反比例函数、二次函数图象综合判断,熟练掌握以上函数图象的性质是解题的关键.【考点三 含字母参数的二次函数的图象和性质】例题:(2023·全国·九年级专题练习)已知二次函数2(31)3(0)y ax a x a =−++≠,下列说法正确的是( ) 【答案】C【分析】根据二次函数的图象和性质,逐一进行判断即可.【详解】解:∵2(31)3(0)y ax a x a =−++≠, 当1x =时:(31)322y a a a =−++=−, ∵0a ≠, ∴222a −≠,即:点(1,2)不在该函数的图象上,故A 选项错误; 当1a =时,()224321y x x x =−+=−−,∴抛物线的开口向上,对称轴为2x =, ∴抛物线上的点离对称轴越远,函数值越大, ∵13x −≤≤,123222−−>−>−,∴当=1x −时,y 有最大值为()21218−−−=,当2x =时,y 有最小值为1−, ∴18y −≤≤,故B 选项错误; ∵[]()222(31)43961310a a a a a ∆=−+−⨯=−+=−≥,∴该函数的图象与x 轴一定有交点,故选项C 正确;当0a >时,抛物线的对称轴为:313132222a x a a +==+>, ∴该函数图象的对称轴一定在直线32x =的右侧,故选项D 错误; 故选C .【点睛】本题考查二次函数的图象和性质.熟练掌握二次函数的性质,是解题的关键. 【变式训练】A .①②B .②③C .②D .③④【答案】B【分析】根据二次函数的图象与性质进行逐一分析即可.【详解】解:∵抛物线对称轴为21==022b a a a −−−>,1=02c >,∴二次函数图象必经过第一、二象限,又∵2=4=42b ac a ∆−−,∵0a >, ∴424a −<,当420a −<时,抛物线与x 轴无交点,二次函数图象只经过第一、二象限,当0424a <−<时,抛物线与x 轴有两个交点,二次函数图象经过第一、二、四象限, 故①错误;②正确;∵抛物线对称轴为21==022b a a a −−−>,0a >,∴抛物线开口向上, ∴当1x a <时,y 随x 的增大而减小,故③正确; ∴当1x a >时,y 随x 的增大而增大,故④错误,故选:B .【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数图象与各项系数符号之间的关系是解题的关键.2.(2023·江苏南京·校考三模)已知整式22M a a =−,下列关于整式M 的值的结论: ①M 的值可能为4;②当1a >时,M 的值随a 的增大而增大; ③当a 为小于0的实数时,M 的值大于0; ④不存在这样的实数a ,使得M 的值小于1−. 其中所有正确结论的序号是( ) A .①③ B .①②④ C .②③④ D .①②③④【答案】D【分析】根据一元二次方程的知识,二次函数的图象和性质,依次判断,即可. 【详解】①当4M =,∴224M a a =−=,解得:11a =21a = ∴M 的值可能为4, ∴①正确;②设函数的解析式为:22M a a =−,如图1∴对称轴为:12b x a =−=,函数图象的开口向上,∴当1a >,函数M 随a 的增大而增大, ∴②正确;③同理,当1x <,函数M 随a 的增大而减小,∴当a<0时,函数M 在y 轴是上方,即0M >, ∴③正确;④设函数的解析式为:22M a a =−,如图1∴当1a =时,函数M 有最小值,最小值为:1− ∴无论a 取任何数,1M ≥− ∴④正确;综上所述:正确的为:①②③④ 故选:D .【点睛】本题考查一元二次方程,二次函数的图象和性质,解题的关键是掌握解一元二次方程,二次函数图象和性质,实数的性质.3.(2023·湖北武汉·统考一模)已知函数()222(y kx k x k =−++为实数),下列四个结论:①当0k =时,图象与坐标轴所夹的锐角为45︒; ②若0k <,则当1x >时,y 随着x 的增大而减小;③不论k 为何值,若将函数图象向左平移1个单位长度,则图象经过原点; ④当2k <−时,抛物线顶点在第一象限.其中正确的结论是 (填写序号) 【答案】②③④【分析】由一次函数22y x =−+即可判断①;根据二次函数的性质即可判断②;得到平移后的解析式即可判断③;求得顶点坐标即可判断④.【详解】解:①当0k =时,函数为一次函数22y x =−+,由于系数为2−,所以图象与坐标轴所夹的锐角不为45︒,故①错误;②若0k <,抛物线的对称轴为直线()2111222k x kk −+=−=+<,则当1x >时,y 随着x 的增大而减小,故②正确;③当函数图象向左平移1解析式为()()2(1)212y k x k x =+−+++,则其图象过原点,故③正确;④当2k <−时,对称轴直线()211022k x kk −+=−=+>,顶点纵坐标为228(2)(2)044k k k k k −+−=−>,故抛物线顶点在第一象限,故④正确; 故答案为:②③④.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2(,,y ax bx c a b c =++是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.4.(2023春·福建福州·八年级福建省福州延安中学校考期末)对于二次函数()25144y ax a x a =−+++.有下列说法:①若1a <−,则二次函数的图象与y 轴的负半轴相交; ②若0a >,当12x ≤≤时,y 有最大值3;③若a 为整数,且二次函数的图象与x 轴的两个公共点都为整数点,则a 的值只能等于1; ④若0a <,且()()()1232,,3,,4,A y B y C y 为该函数图象上的三点,则123y y y >>. 其中正确的是 .(只需填写序号) 【答案】①②④【分析】求出44a +的取值即可判断①;由对称轴方程可判断出当1x =时,函数在12x ≤≤时,y 有最大值3,故可判断②;根据二次函数的图象与x 轴的两个公共点都为整数点可知对称轴也是整数,可求出a ,进而判断③;分别求出A ,B ,C 三点对应的函数值,再进行比较即可判断④. 【详解】解:①对于()25144y ax a x a =−+++,令0x =,得44y a =+,由1a <−可得440y a =+<,即二次函数的图象与y 轴的负半轴相交,故①正确;②二次函数()25144y ax a x a =−+++对称轴方程为直线()512a x a−+=−512a a +=412a a a ++=122a a +=+, ∵0a >, ∴2,x >又抛物线的开口向上, ∴二次函数()25144y ax a x a =−+++的图象在12x ≤≤内,当1x =时,y 有最大值,最大值为:3;故②正确; ③∵二次函数()25144y ax a x a =−+++的图象与x 轴有两个交点,∴()()251444a a a ∆=−+−+⎡⎤⎣⎦22251011616a a a a =++−−2961a a =−+()231a =−, ∵a 为整数, ∴()2310a =−>V ,即a 为任意整数;又二次函数的图象与x 轴的两个公共点都为整数点, ∴对称轴122a x a +=+必为整数,此时a 的值不只能等于1,也可以是1−,故③错误;④∵()()()1232,,3,,4,A y B y C y 为函数()25144y ax a x a =−+++图象上的三点,∴当2x =时,22y a =−+; 当3x =时,21y a =−+;当4x =时,0y =; ∵a<0,∴22210a a −+>−+>,即123y y y >>.故④正确, 所以,正确的结论是①②④, 故答案为:①②④.【点睛】本题主要考查了二次函数图象与系数的关系,利用数形结合,从开口方向、对称轴、与x 轴(y 轴)的交点进行判断是解题的关键.【考点四 二次函数的图象和性质与系数a ,b ,c 的问题】A .1个B .2个C .3个D .4个【答案】B【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断y 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①函数的对称轴在y 轴右侧,则0ab <,抛物线与y 轴交于负半轴,则0c <,则0abc >,故①正确;②函数的对称轴为1x =,函数和x 轴的一个交点是()3,0,则另外一个交点为()1,0−,当=1x −时,0y a b c =−+=,故②错误;③函数的对称轴为12bx a =−=,即12a b =−,故③错误; ④由②③得,2b a =−,0a b c −+=,故30a c +=,而抛物线开口向上,则0a >,即50a >,故80a c +>,故选:B .【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换是解题的关键. 【变式训练】1.(2023·黑龙江齐齐哈尔·统考三模)如图,二次函数()2<0y ax bx c a =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴为直线1x =,结合图象给出下列结论:①0abc >;②240ac b −<;③30a c +<;④方程221ax bx c k ++=−−的两根和为1;⑤若()1212,x x x x <是方程20ax bx c ++=的两根,则方程()()1230a x x x x −−+=的两根(),m n m n <满足()()120a m x n x −−>;其中正确结论有( )【答案】B【分析】综合二次函数图象与各项系数之间的关系,以及二次函数与方程之间的联系进行逐项分析. 【详解】解:由题意,a<0,对称轴为直线12b x a =−=,∴2b a =−,0b >,抛物线与y 轴相交于正半轴,则0c >, ∴<0abc ,故①错误;∵抛物线与x 轴有两个不同的交点,∴240b ac −>,即:240ac b −<,故②正确;∵由图象可得,当=1x −时,函数值0y <, ∴<0a b c −+,∴30a c +<,故③正确;对于方程221ax bx c k ++=−−,整理得:2210ax bx c k ++++=,∴其两根之和12b x x a +=−,∵2b a =−, ∴122x x +=∴方程221ax bx c k ++=−−的两根和为2,故④错误;∵()1212,x x x x <是方程20ax bx c ++=的两根,∴函数2y ax bx c =++图象与x 轴的两个交点的横坐标为()1212,x x x x <, ∵方程()()1230a x x x x −−+=的两根(),m n m n <,∴抛物线2y ax bx c =++与直线3y =−的交点横坐标为(),m n m n <,∵抛物线开口向下, ∴1m x <,2n x >,∴10m x −<,20n x −>,∵a<0, ∴()()120a m x n x −−>,故⑤正确;∴正确的有②③⑤, 故选:B .【点睛】本题考查二次函数图象与性质,二次函数与一元二次方程之间的联系,掌握函数的基本性质,理解并熟练运用函数与方程之间的关系是解题关键.2.(2023·黑龙江齐齐哈尔·统考中考真题)如图,二次函数()20y ax bx c a =++≠图像的一部分与x 轴的一个交点坐标为()3,0,对称轴为直线1x =,结合图像给出下列结论:①0abc >;②2b a =;③30a c +=;④关于x 的一元二次方程220(0)ax bx c k a +++=≠有两个不相等的实数根;⑤若点()1,m y ,()22,y m −+均在该二次函数图像上,则12y y =.其中正确结论的个数是( )A .4B .3C .2D .1【答案】B【分析】根据抛物线的对称轴、开口方向、与y 轴的交点确定a 、b 、c 的正负,即可判定①和②;将点()3,0代入抛物线解析式并结合2b a =−即可判定③;运用根的判别式并结合a 、c 的正负,判定判别式是否大于零即可判定④;判定点()1,m y ,()22,y m −+的对称轴为1x =,然后根据抛物线的对称性即可判定⑤.【详解】解:抛物线开口向上,与y 轴交于负半轴, ∴00a c ><,,∵抛物线的对称轴为直线1x =, ∴12ba −=,即20b a =−<,即②错误; ∴0abc >,即①正确, 二次函数()20y ax bx c a =++≠图像的一部分与x 轴的一个交点坐标为()3,0930a b c ∴++=()9320a a c ∴+−+=,即30a c +=,故③正确;∵关于x 的一元二次方程220(0)ax bx c k a +++=≠,()2222444b a c k b ac ak ∆=−+=−−,00a c ><,,∴40ac −>,240ak −≤,∴无法判断2244b ac ak −−的正负,即无法确定关于x 的一元二次方程220(0)ax bx c k a +++=≠的根的情况,故④错误;∵()212m m +−+=∴点()1,m y ,()22,y m −+关于直线1x =对称 ∵点()1,m y ,()22,y m −+均在该二次函数图像上,∴12y y =,即⑤正确;综上,正确的为①③⑤,共3个 故选:B .【点睛】本题考查了二次函数的()20y ax bx c a =++≠的性质及图像与系数的关系,能够从图像中准确的获取信息是解题的关键.A .1个B .2个C .3个D .4个【答案】C【分析】根据二次函数的图象和性质一一判断即可. 【详解】∵抛物线对称轴1x =−,经过点()10,,∴12ba −=−,0a b c ++=, ∴23b a c a ==−,, ∵a<0,∴00b c <>,,∴0ab >且0c >,故①错误,∵抛物线对称轴-1x =,经过()10,, ∴()3,0−和()10,关于对称轴对称,∴2x =-时,0y >,∴420a b c −+>,故②正确,∵抛物线与x 轴交于()3,0−,∴4x =-时,0y <,∴1640a b c −+<,∵2b a =,∴1680a a c −+<,即80a c +<,故③错误,∵336c a a a =−=−,2b a =,∴33c a b =−,故④正确,∵直线22y x =+与抛物线2y ax bx c =++两个交点的横坐标分别为12x x ,, ∴方程()2220ax b x c +−+−=的两个根分别为12x x ,, ∴122b x x a −+=−,122=c x x a −⋅ , ∴1212x x x x ++=2222325b c a a a a a a −−−−−−+=−+=−,故⑤正确,正确的个数为3个. 故选:C .【点睛】本题考查二次函数与系数的关系,二次函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【考点五 二次函数的图象与几何动点问题】例题:(2023·河南周口·河南省淮阳中学校考三模)如图,在Rt ABC △中,908A AC AB ∠=︒==,.动点D从点A 出发,沿线段AB 以1单位长度/秒的速度运动,当点D 与点B 重合时,整个运动停止.以AD 为一边向上作正方形ADEF ,若设运动时间为x 秒()08x <≤,正方形ADEF 与ABC 重合部分的面积为y ,则下列能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【答案】D【分析】根据题目所给条件,分当04x ≤≤时和当48x <≤时,建立函数关系式,利用二次函数的性质,即可得到答案.【详解】解;当04x ≤≤时,正方形ADEF 与ABC 重合部分的面积为正方形ADEF 的面积,∴2y x =,∴当48x <≤时,设DE 与BC 相交于M ,EF 与BC 相交于N ,,此时正方形ADEF 与ABC 重合部分的面积为正方形ADEF 的面积减去三角形EMN 的面积,∵ABC 是等腰直角三角形,8AB AC ==,∴8DM DB FN FC x ====−,∴()828EM EN x x x ==−−=−,∴()222221282163216322MNE ADEF y S S x x x x x x x =−=−−=−+−=−+−正方形△,∵10−<,∴二次函数的图象为开口向下的抛物线,故选:D .【点睛】本题主要考查二次函数的解析式与图象的关系,正确列出函数关系式和判断二次函数的开口方向是解题的关键.【变式训练】 1.(2023·全国·九年级专题练习)如图,在正方形ABCD 中,4AB =,动点M ,N 分别从点A ,B 同时出发,沿射线AB ,射线BC 的方向匀速运动,且速度的大小相等,连接DM ,MN ,ND .设点M 运动的路程为()04x x ≤≤,DMN 的面积为S ,下列图像中能反映S 与x 之间函数关系的是( ). . . . 【答案】A【分析】先根据ADM DCN BMN ABCD S S S S S =−−−V V V 正方形,求出S 与x 之间函数关系式,再判断即可得出结论. 【详解】解:ADM DCN BMN ABCD S S S S S =−−−V V V 正方形,1114444(4)(4)222x x x x =⨯−⨯−⨯−−−,21282x x =−+, 21(2)62x =−+,故S 与x 之间函数关系为二次函数,图像开口向上,2x =时,函数有最小值6,故选:A .【点睛】本题考查了正方形的性质,二次函数的图像与性质,本题的关键是求出S 与x 之间函数关系式,再判断S 与x 之间函数类型. 2.(2023·安徽合肥·校考三模)如图,正方形ABCD 中,4cm AB =,动点,P Q 分别从,A D 同时出发,点P 以每秒2cm 的速度沿A B C →→运动,点Q 以每秒1cm 的速度沿→D C 运动,P 点到达点C 时运动停止.设P 点运动x (秒)时,APQ △的面积()2cm y ,则y 关于x 的函数图象大致为:( )A .B .C .D .【答案】B【分析】分两种情况:当点P 在AB 上,即02x ≤≤时,此时APQ y S =,利用三角形面积公式得到y 关于x 的函数关系;当点P 在BC 上,即24x <≤时,此时APQ ABP CPQ ADQABCD S S S S S =−−−△△△△正方形,利用正方形和三角形面积公式得到y 关于x 的函数关系.进而可得y 关于x 的分段函数,根据函数解析式即可判断函数图象.【详解】解:当点P 在AB 上,即02x ≤≤时,如图,此时,2AP x =cm ,211244(cm )22APQ y S AP BC x x ∴==⋅=⋅⋅=△;当点P 在BC 上,即24x <≤时,如图,此时,(24)cm BP x =−,DQ x =cm ,(82)cm CP x ∴=−,(4)cm CQ x =−,2111222APQ ABP CPQ ADQ ABCD S S S S S AB AB BP CP CQ AD DQ =−−−=−⋅−⋅−⋅△△△△正方形,22211144(24)(82)(4)428(cm )222y x x x x x x ∴=−⨯⋅−−−−−⨯⋅=−++;.综上,24(02)28(24)x x y x x x ≤≤⎧=⎨−++<≤⎩. 故选:B .【点睛】本题主要考查动点问题的函数图象,学会利用分类讨论思想和数形结合思想解决问题是解题关键. ,APQ 的面积为 . .C . . 【答案】D【分析】先找出运动轨迹几何运动的转折点,据此可分三段进行求解:①当点P 在AD 上运动,点Q 在AB 上运动,即04t ≤≤时;②当点P 在AD 上运动,点Q 在BC 上运动,即48t <≤时;③当点P 在CD 上运动,点Q 在BC 上运动,即812t <≤时.再根据三角形的面积公式分段求出y 关于t 的函数关系式,最后根据关系判断函数图像即可.【详解】解:①当点P 在AD 上运动,点Q 在AB 上运动,即04t ≤≤时,此时cm cm AP t AQ t ==,, ∴()22111cm 222APQ S AP AQ t t t =⋅=⋅=; ②如图:当点P 在AD 上运动,点Q 在BC 上运动,即48t <≤时,cm AP t =,∴()21142cm 22APQ S AP AB t t =⋅=⋅=; ③如图:当点P 在CD 上运动,点Q 在BC 上运动,即812t <≤时,∴()()()()8cm 4cm 12cm 12cm DP t BQ t CQ t CP t =−=−=−=−,,,, ∴APQ ABQ CPQ ADP ABCD S S S S S =−−−矩形1122AB AD CQ CP AD DP =⋅−⋅−⋅,()()()()1114844121288222t t t t =⨯−−⋅−−⋅−−⋅⋅− =2162t t ⎛⎫−+ ⎪⎝⎭2cm ; 综上,()()221422(48)168122t x t y t t t t t ⎧<<⎪⎪=<<⎨⎪⎪−+<≤⎩.故选:D .【点睛】本题主要考查了动点问题的函数图像,理解题意、分段求出函数解析式是解题关键.。

(一)二次函数图象信息题常见的四种类型

(一)二次函数图象信息题常见的四种类型

专题训练(一)二次函数图象信息题常见的四种类型►类型之一由系数的符号确定图象的位置1.[2016·合肥45中月考]在二次函数y=ax2+bx+c中,a<0,b>0,c<0,则符合条件的图象是()图1-ZT-12.[2018·安徽省合肥168教育集团]月考已知二次函数y=ax2+bx+c,若a>b>c,且a+b+c=0,则它的图象可能是图1-ZT-2中的()图1-ZT-23.已知函数y=ax和y=a(x+m)2+n,且a>0,m<0,n<0,则这两个函数在同一平面直角坐标系内的大致图象是()图1-ZT-34.已知二次函数y=x2+2ax+2a2,其中a>0,则其图象不经过第________象限.►类型之二由某一函数的图象确定其他函数图象的位置5.已知y=ax2+bx+c的图象如图1-ZT-4所示,则y=ax+b的图象一定过()图1-ZT-4A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限6.如果一次函数y=ax+b的图象经过第二、三、四象限,那么二次函数y=ax2+bx的图象可能是()图1-ZT-57.如图1-ZT-6,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能为()图1-ZT-6图1-ZT-7►类型之三由函数图象确定系数及代数式的符号8.[2017·六盘水]已知二次函数y=ax2+bx+c的图象如图1-ZT-8所示,则() A.b>0,c>0 B.b>0,c<0C.b<0,c<0 D.b<0,c>0图1-ZT-89.已知抛物线y=ax2+bx+c如图1-ZT-9所示,对称轴为直线x=1,则代数式:(1)abc;(2)a+b+c;(3)a-b+c;(4)4a+2b+c中,值为正数的个数是()A.1 B.2 C.3 D.4图1-ZT-910.[2017·杭州]设直线x =1是函数y =ax 2+bx +c(a ,b ,c 是实数,且a <0)的图象的对称轴,( )A .若m >1,则(m -1)a +b >0B .若m >1,则(m -1)a +b <0C .若m <1,则(m +1)a +b >0D .若m <1,则(m +1)a +b <011.如图1-ZT -10,抛物线y =ax 2+bx +c(a>0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(4,0)在该抛物线上,则4a -2b +c 的值为________.图1-ZT -1012.[2017·资阳]如图1-ZT -11,抛物线y =ax 2+bx +c 的顶点和该抛物线与y 轴的交点在一次函数y =kx +1(k ≠0)的图象上,它的对称轴是直线x =1,有下列四个结论:①abc<0,②a <-13,③a =-k ,④当0<x <1时,ax +b >k.其中正确结论的个数是( ) A .4 B .3 C .2 D .1图1-ZT -11► 类型之四 利用二次函数求一元二次方程的根13.小兰画了一个函数y =x 2+ax +b 的图象如图1-ZT -12,则关于x 的方程x 2+ax +b =0的解是( )A .无解B .x =1C .x =-4D .x 1=-1,x 2=4图1-ZT -1214.二次函数y =ax 2+bx +c 的图象如图1-ZT -13所示,则当函数值y >0时,x 的取值范围是( )A .x <-1B .x >3C .-1<x <3D .x <-1或x >3图1-ZT -1315.[2018·马鞍山期中]已知二次函数y =ax 2+2ax -3的部分图象如图1-ZT -14,由图象可知关于x 的一元二次方程ax 2+2ax -3=0的两个根分别是x 1=1.3和x 2=( )A .-1.3B .-2.3C .-0.3D .-3.3图1-ZT -1416.[2016·淮南期中]如图1-ZT -15所示,一次函数y 1=kx +n 与二次函数y 2=ax 2+bx +c 的图象相交于A(-1,5),B(9,2)两点,则关于x 的不等式kx +n ≥ax 2+bx +c 的解集为( )A .-1≤x ≤9B .-1≤x <9C .-1<x ≤9D .x ≤-1或x ≥9图1-ZT -15 17.[2016·南宁]二次函数y =ax 2+bx +c 和正比例函数y =23x 的图象如图1-ZT -16所示,则关于x 的一元二次方程ax 2+(b -23)x +c =0的两根之和( ) A .大于0 B .等于0C .小于0D .不能确定图1-ZT -1618.[2017·遂宁]函数y =x 2+bx +c 与函数y =x 的图象如图1-ZT -17所示,有以下结论:①b 2-4c >0;②b +c =0;③b <0;④方程组⎩⎪⎨⎪⎧y =x 2+bx +c ,y =x 的解为⎩⎨⎧x 1=1,y 1=1,⎩⎪⎨⎪⎧x 2=3,y 2=3;⑤当1<x <3时,x 2+(b -1)x +c >0.其中正确的是( )A .①②③B .②③④C .③④⑤D .②③⑤图1-ZT-17教师详解详析1.[解析] D∵a<0,b>0,c<0,∴图象开口向下,对称轴在x轴的右侧,交y轴于负半轴.只有D选项中的图象符合题意.故选D.2.[解析] D当x=1时,a+b+c=0,即抛物线经过点(1,0).当a>b>0>c时,抛物线的对称轴x=-b2a<0,没有图形符合;当a>0>b>c时,则抛物线的对称轴x=-b2a>0,选项D符合要求;而a>b>c>0和0>a>b>c都不符合a+b+c=0.综上所述,本题选D.3.[解析] B由函数表达式y=a(x+m)2+n(a>0)可知其图象开口向上,其顶点坐标为(-m,n).又因为m<0,n<0,所以顶点在第四象限,排除A,C,D.故选B.4.[答案] 三、四[解析] ∵二次项系数为1,∴抛物线开口向上.又∵对称轴是直线x=-a<0,4a2-8a2=-4a2<0,故与x轴没有交点,∴其图象不经过第三、四象限.5.[解析] D∵抛物线开口向上,∴a>0.∵对称轴为直线x=-b2a>0,a>0,∴b<0,∴y=ax+b的图象一定过第一、三、四象限.故选D.6.[解析] C∵一次函数y=ax+b的图象经过第二、三、四象限,∴a<0,b<0,∴二次函数y=ax2+bx的图象开口向下,对称轴为直线x=-b2a<0,在y轴左边.故选C.7.[解析] A由于一次函数y1=x与二次函数y2=ax2+bx+c的图象有两个不同的交点,且这两个交点都位于第一象限,所以方程ax2+bx+c=x,即ax2+(b-1)x+c=0有两个不相等的正实数根,所以函数y=ax2+(b-1)x+c的图象与x轴有两个不同的交点,且两个交点都在x轴的正半轴上.故选A.8.[解析] B∵图象的开口向下,∴a<0.∵图象的对称轴为直线x=-b2a>0,∴b>0.又∵图象与y轴的交点位于原点的下方,∴c<0.故选项B符合题意.9.[解析] B∵抛物线开口向上,∴a>0.∵抛物线的对称轴为直线x=1,-b2a=1,∴b=-2a,∴b<0.∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0.∵当x=1时,y<0,∴a+b+c<0.∵当x=-1时,y>0,∴a-b+c>0.∵当x=2时,y<0,∴4a+2b+c<0.故选B.10.[解析] C∵a<0,∴函数y有最大值.当x=1时,函数y的最大值为a+b+c①.当m>1,x=m时,函数y=m2a+mb+c②.由②-①,得(m2-1)a+(m-1)b<0.又∵m-1>0,∴(m+1)a+b<0,故选项A,B不一定正确.当m<1,x=m时,函数y=m2a+mb+c③.由③-①,得(m2-1)a+(m-1)b<0.又∵m-1<0,∴(m+1)a+b>0,故选项C正确,选项D错误.11.[答案] 0[解析] 方法一:∵抛物线的对称轴为直线x=1,由对称性可知,点P(4,0)和点(-2,0)关于直线x=1对称,因此点(-2,0)也在抛物线y=ax2+bx+c上,∴4a-2b+c=0.方法二:由题意,得方程组⎩⎪⎨⎪⎧-b 2a =1,16a +4b +c =0.从而求得⎩⎪⎨⎪⎧b =-2a ,c =-8a .把b ,c 的值代入4a -2b +c 中,得4a -2b +c =0.12.[解析] A 由抛物线的开口向下,且对称轴为直线x =1可知a <0,-b 2a=1,即b =-2a >0.由抛物线与y 轴的交点在一次函数y =kx +1(k ≠0)的图象上知c =1,则abc <0,故结论①正确.由①知y =ax 2-2ax +1.∵当x =-1时,y =a +2a +1=3a +1<0,∴a <-13,故结论②正确;∵抛物线y =ax 2+bx +c 的顶点在一次函数y =kx +1(k ≠0)的图象上,∴a +b +1=k +1,即a +b =k .又∵b =-2a ,∴a -2a =k ,即a =-k ,故结论③正确.由函数图象知,当0<x <1时,二次函数图象在一次函数图象上方,∴ax 2+bx +1>kx +1,即ax 2+bx >kx .又∵x >0,∴ax +b >k ,故结论④正确.综上所述,共有4个结论正确,故选A.13.[解析] D ∵二次函数y =x 2+ax +b 的图象与x 轴交于点(-1,0)和(4,0),即当x =-1或4时,x 2+ax +b =0,∴关于x 的方程x 2+ax +b =0的解为x 1=-1,x 2=4,故选D.14.D15.[解析] D 二次函数y =ax 2+2ax -3的图象的对称轴是直线x =-2a 2a=-1.又∵x 1与x 2关于对称轴对称,∴1.3-(-1)=-1-x 2,解得x 2=-3.3,故选D.16.[解析] A 结合图象可知一次函数图象在二次函数图象上方时,对应的x 的取值范围即本题的答案,由图可知当-1≤x ≤9时,kx +n ≥ax 2+bx +c .故选A.17.[解析] A 由图象可知二次函数y =ax 2+bx +c 和正比例函数y =23x 的图象的交点的横坐标之和大于0,即方程组⎩⎪⎨⎪⎧y =ax 2+bx +c ,y =23x的解中未知数x 的两个值的和大于0,可得ax 2+bx +c =23x 变形为方程ax 2+(b -23)x +c =0后,它的两根之和大于0. 18.[解析] B ∵函数y =x 2+bx +c 的图象与x 轴无交点,∴b 2-4c <0,故结论①错误; 当x =1时,y =1+b +c =1,则b +c =0,故结论②正确;∵对称轴在y 轴的右侧,∴a ,b 异号.又∵a =1>0,∴b <0,故结论③正确;根据抛物线与直线y =x 的交点知:方程组⎩⎪⎨⎪⎧y =x 2+bx +c ,y =x 的解为⎩⎨⎧x 1=1,y 1=1,⎩⎨⎧x 2=3,y 2=3,故结论④正确;∵当1<x <3时,二次函数值小于一次函数值,∴x 2+bx +c <x ,∴x 2+(b -1)x +c <0,故结论⑤错误.综上所述,结论②③④正确,故选B.。

专题课堂-四 二次函数图象信息题归类

专题课堂-四 二次函数图象信息题归类
A.-1≤x≤9 B.-1≤x<9 C.-1<x≤9 D.x≤-1或x≥9
专题课堂-四 二次函数图象信息题归类(PPT优秀 课件)
专题课堂-四 二次函数图象信息题归类(PPT优秀 课件)
15.如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0, -1)和C(4,5)三点.
(1)求二次函数的解析式; (2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标; (3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时 ,一次函数的值大于二次函数的值.
第二十二章 二次函数
专题课堂(四) 二次函数图象信息题归类
类型一:确定函数图象的大致位置 1.(2016·泰安)二次函数y=ax2+bx+c的图象如图所示,那么一
次函数y=ax+b的图象大致是( A )
2.在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图 象可能是( )D
类型二:利用二次函数图象确定系数之间的关系 3.(2016·常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示, 下列结论:①b<0;②c>0;③a+c<b;④b2-4ac>0, 其中正确的个数是( C) A.1个 B.2个 C.3个 D.4个
专题课堂-四 二次函数图象信息题归类(PPT优秀 ቤተ መጻሕፍቲ ባይዱ件)
专题课堂-四 二次函数图象信息题归类(PPT优秀 课件)
解:(1)y=12x2-12x-1 (2)当 y=0 时,得12x2-12x-1=0,解得 x1=2,x2=-1, ∴点 D 坐标为(-1,0) (3)-1<x<4
专题课堂-四 二次函数图象信息题归类(PPT优秀 课件)
11.(2016·南宁)二次函数 y=ax2+bx+c(a≠0)和正比例函数 y=23 x 的图象如图所示,则方程 ax2+(b-32)x+c=0(a≠0)的两根之和(A )

典中点二次函数专训3二次函数图像信息题的四种常见类型

典中点二次函数专训3二次函数图像信息题的四种常见类型

典中点二次函数专训3 二次函数图像信息题的四种常见类型 ◐名师点金◑利用图像信息解决二次函数的问题主要是运用数形结合思想将图像信息转换为数学语言,掌握二次函数的图像和性质是解决此类问题的关键.类型1: 根据抛物线的特征确定a ,b ,c 及与其有关的代数式的符号1.如图,二次函数y =ax 2+bx +c(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:①abc <0; ②b 2-4ac 4a >0; ③ac -b +1=0; ④OA ·OB =-c a.其中正确结论的个数是( ) A .4 B .3 C .2 D .1(第1题) (第2题) (第3题) (第4题) 类型2: 利用二次函数的图像比较大小1.二次函数y =-x 2+bx +c 的图像如图,若点A(x 1,y 1),B(x 2,y 2)在此函数图像上,且x 1<x 2<1,则y 1与y 2的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 2类型3: 利用二次函数的图像求方程的解或不等式的解集2.二次函数y =ax 2+bx +c(a ≠0)的图像如图所示,则当函数值y >0时,x 的取值范围是( )A .x <-1B .x >3C .-1<x <3D .x <-1或x >34.如图,二次函数y =ax 2+bx +3的图像经过点A(-1,0),B(3,0),那么一元二次方程ax 2+bx =0的根是____________.类型4:根据抛物线的特征确定其他函数的图像5.二次函数y=ax2+bx的图像如左下图所示,那么一次函数y=ax+b的图像大致是( )6.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图像上.(1)求m的值和二次函数的表达式;(2)设二次函数的图像交y轴于点C,求△ABC的面积.。

二次函数图象信息题的四种常见类型

二次函数图象信息题的四种常见类型

抛物线开口向上的图像
1
特点
图像开口朝上,a>0。
2
性质在抛物ຫໍສະໝຸດ 的中心处,函数取得最小值,也称为“顶点”,坐标为(f(g),-h(f(g)))。
3
例题
如果抛物线y=ax^2+bx+c的顶点是(-1,4),则方程的形式是什么?
抛物线开口向下的图像
特点
图像开口朝下,a<0。
性质
函数的最大值位于抛物线的中心 处,其坐标为(f(g),-h(f(g)))。
二次函数图象信息题的四 种常见类型
在学习二次函数时,掌握常见的四种图像类型对于学生们是非常重要的。这 个幻灯片将介绍这些类型,以及如何轻松应对与它们相关的信息问题。
什么是二次函数?
1 定义
二次函数是形如y=ax^2+bx+c的函数,其中a,b,c为常数,a不等于零。图像为开口朝 上或朝下的轮廓类似于一个U形。
例题
如果抛物线y=ax^2+bx+c的最大 值点是(2,5),则a的值是多少?
两个实根的图像
特点
图像与x轴有两个交点(实 根),a>0。
性质
当x趋近于正无穷或负无穷时, 二次函数趋近于无穷大。此 外,抛物线的轴线是根的平 均值。
例题
给定二次函数y=-2(x-4)(x-3), 求它的零点是多少?
无实根的图像
1
特点
图像可以用a(x-h)^2+k的形式表示,其中a<0。
2
性质
在抛物线的中心处,函数达到最大值。图像完全位于或高于x轴上方。
3
例题
二次方程y=x^2+4x+13有实根吗?如果不是,图像是什么样子的?

最新冀教版初中数学九年级下册精品专训1 二次函数图像信息题的四种常见类型

最新冀教版初中数学九年级下册精品专训1 二次函数图像信息题的四种常见类型

专训1 二次函数图像信息题的四种常见类型名师点金:利用图像信息解决二次函数的问题主要是运用数形结合思想将图像信息转换为数学语言,掌握二次函数的图像和性质是解决此类问题的关键.根据抛物线的特征确定a ,b ,c 及与其有关的代数式的符号1.【中考·孝感】如图,二次函数y =ax 2+bx +c(a ≠0)的图像与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:①abc <0;②b 2-4ac 4a >0;③ac -b +1=0;④OA·OB =-c a.其中正确结论的个数是( ) A .4 B .3 C .2 D .1(第1题)(第2题)利用二次函数的图像比较大小 2.二次函数y =-x 2+bx +c 的图像如图,若点A(x 1,y 1),B(x 2,y 2)在此函数图像上,且x 1<x 2<1,则y 1与y 2的大小关系是( )A .y 1≤y 2B .y 1<y 2C .y 1≥y 2D .y 1>y 2利用二次函数的图像求方程的解或不等式的解集3.【中考·黄石】二次函数y =ax 2+bx +c(a ≠0)的图像如图所示,则当函数值y >0时,x 的取值范围是( )A .x <-1B .x >3C .-1<x <3D .x <-1或x >3(第3题)(第4题)4.【中考·阜新】如图,二次函数y=ax2+bx+3的图像经过点A(-1,0),B(3,0),那么一元二次方程ax2+bx=0的根是____________.根据抛物线的特征确定其他函数的图像5.【中考·聊城】二次函数y=ax2+bx的图像如图所示,那么一次函数y=ax+b的图像大致是()(第5题)6.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx -3的图像上.(1)求m的值和二次函数的表达式;(2)设二次函数的图像交y轴于点C,求△ABC的面积.【导学号:89274029】(第6题)答案1.B 2.B 3.D 4.x 1=0,x 2=2 5.C6.解:(1)将点A(-1,0)的坐标代入y 1=-x +m ,得m =-1;将点A(-1,0),B(2,-3)的坐标分别代入y 2=ax 2+bx -3,得⎩⎪⎨⎪⎧a -b -3=0,4a +2b -3=-3.解得⎩⎪⎨⎪⎧a =1,b =-2. ∴y 2=x 2-2x -3.(2)易知C 点的坐标为(0,-3),一次函数的图像与y 轴的交点坐标为(0,-1).∴S △ABC =12×[-1-(-3)]×1+12×[-1-(-3)]×2=12×2×1+12×2×2=3.。

专题训练(三) 二次函数图象信息题归类

专题训练(三) 二次函数图象信息题归类

专题训练(三) 二次函数图象信息题归类
4.[2018·安顺] 已知二次函数y=ax2+bx+c(a≠0)的图象如图3- ZT-5,分析下列四个结论:①abc<0;②b2-4ac>0;③3a+c
>0;④(a+c)2<b2.其中正确的结论有( B )
A.1个
B.2个
C.3个
D.4个
图3-ZT-5
专题训练(三) 二次函数图象信息题归类
0,所以 ac>0,选项 A 错误;由对称轴直线 x=-2ba>0,知 b<0,选项 B 正确; 由抛物线与 x 轴有两个不同的交点,知 b2-4ac>0,选项 C 错误;当 x=1 时, y>0,即 a+b+c>0,选项 D 错误.
专题训练(三) 二次函数图象信息题归类
2.[2018·青岛] 已知一次函数 y=bax+c 的图象如图 3-ZT-2,则 二次函数 y=ax2+bx+c 在平面直角坐标系中的图象可能是( A )
特殊 若a-b+c>0,则x=-1时,y>0
关系 当对称轴为直线x=1时,2a+b=0;当对称轴为直线x=-1
时,2a-b=0;判断2a+b大于或小于0,看对称轴与直线x=
1的位置关系;判断2a-b大于或小于0,看对称轴与直线x=
-1的位置关系
专题训练(三) 二次函数图象信息题归类
类型之一 利用二次函数图象考查以上表格中的问题
专题训练(三) 二次函数图象信息题归类
5.[2017·广安]如图3-ZT-6所示,抛物线y=ax2+bx+c的顶
点为B(-1,3),与x轴的交点A在点(-3,0)和(-2,0)之间,
以下结论:①b2-4ac=0;②a+b+c>0;③2a-b=0;④c-a
=3.其中正确结论的个数是( B )

北师版数学下册2.5.3二次函数图象信息题的四种常见类型(练习题课件)

北师版数学下册2.5.3二次函数图象信息题的四种常见类型(练习题课件)

失量 图标
【提示】下载后此页用户可自行删除!
2.二次函数 y=-x2+bx+c 的图象如图所示,若点 A(x1,y1), B(x2,y2)在此函数图象上,且 x1<x2<1,则 y1 与 y2 的大小关 系是( B ) A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
3.【中考·黄石】二次函数 y=ax2+bx+c(a≠0)的图象如图所示, 则当函数值 y>0 时,x 的取值范围是( D ) A.x<-1 B.x>3 C.-1<x<3 D.x<-1 或 x>3
②当 y1=-x2-2x+8 时,解-x2-2x+8=0,得 x=-4 或 x=2, ∴抛物线与 x 轴的交点坐标是(-4,0)和(2,0).∵y2 随着 x 的增大而增大, 且 y2 过点 A(-1,5),∴y1 与 y 2 都经过 x 轴上的同一点(-4,0).
-k+b=5, 把点(-1,5),(-4,0)的坐标分别代入 y2=kx+b,得-4k+b=0,解得
4.如图,一次函数 y1=kx+n 与二次函数 y2=ax2+bx+c 的图 象相交于 A(-1,5),B(9,2)两点,则关于 x 的不等式 kx+n≥ax2 +bx+c 的解集为( A ) A.-1≤x≤9 B.-1≤x<9 C.-1<x≤9 D.x≤-1 或 x≥9
*5.【中考·阜新】如图,二次函数 y=ax2+bx+3 的图象经过点 A(-1,0),B(3,0),那么关于 x 的一元二次方程 ax2+bx= 0 的根是_x_1_=__0_,__x_2_=__2____.
kb= =3253, 0,∴y2=53x+230.综上,y2 的表达式为 y2=5x+10 或 y2=53x+230.
使用 说明
此课件下载后
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专训二次函数图象信息题的四种常见类型
名师点金:利用图象信息解决二次函数的问题主要是运用数形结合思想将图象信息转换为数学语言,掌握二次函数的图象和性质是解决此类问题的关键.
根据抛物线的特征确定a ,b ,c 及与其有关的代数式的符号
1.【2015·孝感】如图,二次函数y =ax 2+bx +c(a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC.则下列结论:
①abc <0;②b 2-4ac 4a
>0;③ac -b +1=0;④OA·OB =-c a .其中正确结论的个数是()
A .4
B .3
C .2
D .1(第1题)
(第2题)
利用二次函数的图象比较大小
2.二次函数y =-x 2+bx +c 的图象如图,若点A(x 1,y 1),B(x 2,y 2)在此函数图象上,且x 1<x 2<1,则y 1与y 2的大小关系是(
)
A .y 1≤y 2
B .y 1<y 2
C .y 1≥y 2
D .y 1>y 2
利用二次函数的图象求方程的解或不等式的解集
3.【中考·黄石】二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,则当函数值y >0时,x 的取值范围是(
)A .x <-1
B .x >3
C .-1<x <3
D .x <-1或x >3
(第3题)
(第4题)
4.【中考·阜新】如图,二次函数y=ax2+bx+3的图象经过点A(-1,0),B(3,0),那么一元二次方程ax2+bx=0的根是____________.
根据抛物线的特征确定其他函数的图象
5.【中考·聊城】二次函数y=ax2+bx的图象如图所示,那么一次函数y=ax+b的图象大致是()
(第5题)
6.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx -3的图象上.
(1)求m的值和二次函数的解析式.
(2)设二次函数的图象交y轴于点C,求△ABC的面积.
(第6题)
答案
1.B 2.B 3.D 4.x 1=0,x 2=2 5.C
6.解:(1)将点A(-1,0)的坐标代入y 1=-x +m ,得m =-1;
将点A(-1,0),B(2,-3)的坐标分别代入y 2=ax 2+bx -3-b -3=0,+2b -3=-3.解得=1,
=-2.
∴y 2=x 2-2x -3.
(2)易知C 点的坐标为(0,-3),一次函数的图象与y 轴的交点坐标为(0,-1).
∴S △ABC =12×[-1-(-3)]×1+12×[-1-(-3)]×2=12×2×1+12×2×2=3.。

相关文档
最新文档