复合材料力学性能
复合材料的力学性能与结构设计

复合材料的力学性能与结构设计复合材料是由两种或两种以上的材料组合而成的材料,具有优异的力学性能和结构设计潜力。
在本文中,将探讨复合材料的力学性能以及如何进行结构设计。
一、复合材料的力学性能复合材料由于多种材料的组合,具有独特的力学性能。
以下将讨论复合材料在强度、刚度和韧性方面的性能。
1. 强度由于不同材料之间的协同作用,复合材料通常具有很高的强度。
这是由于各个组成材料的优点相互弥补,从而提高整体强度。
例如,纤维增强复合材料中的纤维可以提供很高的强度,而基体材料可以增加韧性。
2. 刚度复合材料具有很高的刚度,这是由于组成材料之间的相互作用。
纤维增强复合材料中的纤维可以提供很高的刚度,而基体材料可以提供弹性和柔韧性。
因此,复合材料在受力时可以保持其形状和结构的稳定性。
3. 韧性复合材料通常具有较高的韧性,这是由于材料的组合结构所致。
纤维增强复合材料中的纤维可以分散和吸收能量,从而提高材料的韧性。
相反,在单一材料中,这种能量分散效应很少出现。
二、复合材料的结构设计复合材料的结构设计是为了实现所需的力学性能和功能。
以下将介绍复合材料结构设计的关键因素。
1. 材料选择合理的材料选择是进行复合材料结构设计的关键因素。
不同材料具有不同的力学性能和化学特性,因此需要根据应用需求选择合适的材料组合。
例如,在需要高强度和刚度的应用中,可以选择纤维增强复合材料。
2. 界面控制复合材料中不同材料之间的界面是其力学性能的重要因素。
界面的控制可以通过界面处理和表面改性来实现。
例如,通过添加粘合剂或增加表面处理剂,可以增强纤维与基体之间的结合,提高界面的力学性能。
3. 结构设计结构设计是为了实现所需的功能和性能。
在复合材料结构设计中,需要考虑材料的排布方式、层压顺序和几何形状等因素。
通过合理设计复合材料的结构,可以充分发挥其力学性能,同时满足应用需求。
三、结论复合材料具有优异的力学性能和结构设计潜力。
通过合理选择材料、控制界面以及进行结构设计,可以充分发挥复合材料的力学性能。
复合材料力学性能

复合材料力学性能复合材料力学性能是指复合材料在力学加载下的行为和性能。
复合材料是由两种或两种以上不同类型的材料组成的复合体,通常包括增强相和基体相。
增强相是由具有较高强度和刚度的材料制成,而基体相是由具有较高韧性和耐用性的材料制成。
复合材料的力学性能直接影响着其在各种应用领域的使用。
复合材料的力学性能包括强度、刚度、韧性和抗疲劳性等方面。
首先是强度。
强度是指材料在受到外界力作用下抵抗断裂或变形的能力。
复合材料通常具有较高的强度,特别是拉伸、压缩和弯曲强度。
这是因为增强相的存在使得复合材料能够承受更大的力。
同时,复合材料还具有较高的拉伸、剪切和压缩模量,这使得它们在应力下更加稳定。
其次是刚度。
刚度是指材料对应力产生相应应变的能力。
复合材料通常具有较高的刚度,这使得它们在应用中具有更好的稳定性和振动性能。
刚度取决于增强相的类型、层数和配比等因素。
然后是韧性。
韧性是指材料在受到外界力作用下承受变形和断裂的能力。
复合材料通常具有较高的韧性,这是由于其基体相的存在,基体相能够吸收能量并阻止裂纹的扩展。
韧性通常通过测量断裂韧性来评估。
最后是抗疲劳性。
抗疲劳性是指材料在经过长时间循环加载后仍然能保持其性能和强度的能力。
复合材料通常具有较好的抗疲劳性能,这是由于增强相的存在,增强相能够在应力加载下分散和吸收应力。
除了以上几个方面,复合材料的力学性能还受到其制备工艺、层数和组织结构等因素的影响。
制备工艺的不同会导致复合材料的性能有所差异。
层数的增加会提高复合材料的强度和刚度,但也会增加制备难度。
组织结构的优化能够提高复合材料的性能。
综上所述,复合材料具有强度、刚度、韧性和抗疲劳性等优良的力学性能。
这些性能的提高在很大程度上推动了复合材料在航空、汽车、建筑等领域的广泛应用。
随着材料科学和制备技术的进步,复合材料的力学性能还将不断得到改善和优化。
复合材料力学性能ppt课件

低分子是瞬变过程
(10-9 ~ 10-10 秒)
各种运动单元的运动需要 克服内摩擦阻力,不可能
瞬时完成。
高分子是松弛过程
运动单元多重性:
键长、键角、侧基、支链、 链节、链段、分子链
需要时间
( 10-1 ~ 10+4 秒)
.
8
Tg 粘流态
Tf
Td
Tf ~ Td
分解温 度
(1)分子运动机制:整链分子产生相对位移
应变硬化
E D A
D A
O A
B
y
图2.4 非晶态聚合物的应力. -应变曲线(玻璃态)
20
2.2 高分子材料的力学性能
.
21
2.2 高分子材料的力学性能
序号 类型
1
2
硬而脆 硬而强
3 强而韧
4 软而韧
5 软而弱
曲线
模量
高
高
高
低
低
拉伸强度
中
高
高
中
低
断裂伸长率 小
中
大
很大
中
断裂能
小
中
大
大
小
F
F
A0
一点弯曲
三点弯曲
均匀压缩 体积形变 压缩应变
F
扭转
F
.
17
2.2 高分子材料的力学性能
应力-应变曲线 Stress-strain curve
标准哑 铃型试
样
实验条件:一定拉伸速率和温度
.
电子万能材料试验机
18
2.2 高分子材料的力学性能
图2.3 高分子材料三种典型的应力-应变曲线
.
19
复合材料的力学性能

18
3
三、复合材料的性能特点
1、高比强度、比弹性模量; 2、各向异性; 3、抗疲劳性能好; 4、减振性能好; 5、可设计性强。
4
四、结构设计原理
1、层次结构 一次结构(单层),不产生新相; 二次结构(铺层)有新相产生;能较好地过 渡; 三次结构(多层)形成多个铺层。 2、连续纤维与非连续纤维增强 连续纤维增强 方向性明显,性能受纤维的 粗细、数量、排列的影响。 非连续纤维增强 纤维的长度与直径之比 L/d,提高剪切强度。 返回
1 Vf Vm I: 1 Gc G f Gm (式11 - 20) 上限 下限
II II: GC G f Vf G m Vm (式11 - 26) II 合 成:G c (1 c )G 1 CG c C (式11 - 27)
9
4、泊松比υ
纵向泊松比
LT
横向泊松比
2
二、材料复合的物理冶金基础
1、界面与界面反应
界面上反应热力学与动力学: 相应温度下反应的可能性;反应常数;反应速度常数。 固溶与化合反应: 原子扩散,形成浓度不同的固溶体;新化合物。 过渡层的出现:
2、强化理论
第二相强化、弥散强化;形变带强化。 断裂及其机理: 裂纹的萌生及扩展;断裂。 聚合强度的作用。
14
二、弹性模量
弹性模量计算公式(式11-61)(式11-62)(式11-63)
三、强度
按混合定律计算。 用纤维的平均应力代替(11-39)中的纤维抗拉强度。 返回
15
§11.4 复合材料的断裂、冲击和疲劳
一、断裂
1、损伤累积机理 裂纹萌生:缺陷处 扩展: 2、非累积损伤机理 ①接力破坏 ②脆性粘接断裂机理 ③最薄弱环节破坏机理 3、复合材料的破坏形式 ①纤维断裂 ②基体变形和开裂 ③纤维脱胶 ④纤维拨出
复合材料力学性能的研究

复合材料力学性能的研究复合材料是由两种或以上的材料组成的复合体,具有优异的力学强度和轻质化优势,广泛应用于汽车、航空、航天等领域。
然而,复合材料的力学性能研究一直以来都是一个热门的研究方向。
一、复合材料的组成复合材料的组成较复杂,第一种材料通常称为基质,第二种材料称为增强材料(纤维或颗粒),第三种称为填料。
其中最常见的基质材料为树脂,增强材料有碳纤维、玻璃纤维等。
填料主要用来填充空隙,在预制过程中保持形状。
二、复合材料的力学性能复合材料具有优异的力学性能,包括强度、硬度、韧性、蠕变等方面。
通常,强度是复合材料最突出的优点,这是由于增强材料的高强度和基质材料的高韧性共同作用的结果。
但是,复合材料由于材料变化的复杂性,其确切的力学性能参数往往难以量化,这增加了其性能评估的难度。
三、复合材料力学性能的研究方法针对复合材料的力学性能研究,主要有以下几种方法。
1.试验方法试验是研究复合材料力学性能的最主要方法之一,包括拉伸试验、弯曲试验、疲劳试验、冲击试验等。
通过试验,可以得出复合材料的强度和韧性等力学性能参数,并获得材料断口形态、疲劳裂纹扩展行为等信息。
2.数值模拟方法数值模拟方法可以通过有限元分析等手段,模拟复合材料受力及响应过程。
数值模拟方法可以提供与试验相同的结果,但是具有更高的计算精度和更广的适用范围。
3.微观力学建模方法微观力学建模方法利用分子力学理论和计算力学等技术探究复合材料的微观结构与力学性能的关系。
微观力学建模方法可以研究单个增强纤维或颗粒的力学性能,并且强调了复合材料性能与其微观结构的密切关系。
四、复合材料力学性能的应用由于复合材料具有优异的力学性能,因此在汽车、航空航天、医疗器械、体育用品等领域广泛应用。
例如,在航空航天领域,即将使用的“星际飞船”使用了大量的碳纤维增强复合材料,以减轻飞船重量,提高载荷和性能。
此外,复合材料的轻质化特点也为能源、环境等领域的应用提供了更广阔的展望。
第8章复合材料力学性能

➢强度高,拉伸强度为3.62GPa; ➢模量高于GF,为125GPa; ➢韧性好,断裂伸长率为2.5%; ➢缺点:表面惰性大,与树脂界面粘结性能差,抗压、抗
扭曲性能差。
14
14
基体材料
① 基体材料选择三原则:
第一,基体材料本身力学性能较好,如有较高的内聚强 度、弹性模量;与增强纤维有相适应的断裂伸长率; 第二,对增强材料有较好的润湿能力和粘结力,保证良 好的界面粘结; 第三,工艺性优良,成型和固化方法与条件简单,固化 收缩率低。
Ⅱ型CF(高强型): 强度>3GPa; 模量为230~270GPa; 断裂伸长率为0.5~1%
联碳化合物公司P-140 型CF: 模量高达966GPa
东丽公司T1000型CF: 强度达到7.05GPa; 模量为295GPa;
13
13
③ 芳纶的力学特性
➢以Kevlar-49为代表的芳纶是一种高模量有机纤维; ➢密度小(1.44g/cm3,GF为2.54g/cm3,T300为
17
17
8.2.1 纵向拉伸性能 (1)纵向拉伸应力σL 、拉伸模量EL
单向纤维复合材料纵向拉伸加载示意图和单向板纵向拉伸 简化力学模型图如下: PL = Pf + Pm
Pf 、 Pm分别为纤维(fibre)和基体(matrix)承受的载荷
18
18
当用应力表示
PL = Pf + Pm
σL AL = σf Af + σm Am
单向(纤维增强)复合材料 双向(正交纤维)复合材料 多向(纤维增强)复合材料 三向(正交纤维增强)复合材料 短纤维增强复合材料
4
4
(1)单向(纤维增强)复合材料
第十四章复合材料力学性能_材料的宏微观力学性能

第十四章复合材料力学性能_材料的宏微观力学性能复合材料是由两种或多种不同的材料组成,具有独特的力学性能。
因为复合材料由不同材料组成,其宏微观力学性能由材料的组成、结构、形态以及其在应变、应力和温度条件下的变化所决定。
首先,复合材料的宏观性能包括强度、刚度、韧性和耐久性等。
强度是指材料抵抗外部力量破坏的能力,可以分为拉伸强度、压缩强度、剪切强度等。
刚度是指材料对应力的响应程度,可以通过弹性模量来表征。
韧性是指材料在断裂之前能够吸收的能量,可以通过断裂韧性来衡量。
耐久性是指材料在环境条件下长期使用所能保持的性能。
其次,复合材料的微观力学性能包括单根纤维或颗粒的力学性能,以及阵列结构和界面性能。
单根纤维或颗粒材料的力学性能取决于材料的成分、晶体结构、缺陷和纤维的方向。
纤维的方向对复合材料的拉伸、弯曲和剪切等性能有显著影响。
阵列结构是指纤维或颗粒的形态和分布,如纤维间距离、层厚度、纤维排布等。
界面性能是指纤维或颗粒与基体的界面结构以及其相互作用,影响着复合材料整体的性能。
另外,复合材料的力学性能还受到应变、应力和温度的影响。
应变是指物体受力后发生的形变程度,应力是物体单位面积上的力。
复合材料的应变和应力分布不均匀,因为不同材料的应变和应力响应不同,这会导致复合材料整体力学性能的非线性变化。
温度变化也会导致复合材料的线膨胀系数不同,从而对力学性能产生影响。
总体来说,对复合材料力学性能的研究需要考虑宏微观的因素,包括材料成分、结构、形态以及在应变、应力和温度条件下的变化。
这些因素的相互作用决定了复合材料的力学性能。
了解复合材料的力学性能对于材料设计和应用具有重要意义。
复合材料的力学性能分析

复合材料的力学性能分析复合材料是由两种或以上的不同材料在力学上结合形成的材料,具有高强度、高模量、低密度、耐腐蚀等优良特性,被广泛应用于汽车、航空、航天、体育用品等领域。
然而,复合材料的力学性能与其组成材料、制备工艺、结构形式密切相关,需要经过细致的分析才能充分发挥其优势。
一、组成材料的力学性能分析复合材料由纤维和基体材料结合形成,其中纤维通常是碳纤维、玻璃纤维、芳纶纤维等,基体材料通常是树脂、金属等。
因此,复合材料的力学性能与其组成材料密切相关。
1.纤维材料的力学性能纤维材料具有很高的强度和刚度,可以充分发挥复合材料的优势。
常用的纤维材料有碳纤维、玻璃纤维、芳纶纤维等。
其中,碳纤维的强度和刚度最高,但价格也最昂贵,适用于高端领域;玻璃纤维强度和刚度较低,价格相对便宜,适用于一般领域;芳纶纤维具有较高的温度和化学稳定性,适用于高温环境。
2.基体材料的力学性能基体材料主要起粘结纤维材料的作用,因此需要具有较好的强度和可塑性。
常用的基体材料有环氧树脂、酚醛树脂、聚丙烯等。
环氧树脂具有较好的成型性和高强度,适用于高端领域;酚醛树脂价格相对便宜,但强度和成型性较差,适用于一般领域;聚丙烯具有良好的化学稳定性和低密度,适用于航空、航天等领域。
二、制备工艺对力学性能的影响分析复合材料制备工艺是影响其力学性能的重要因素之一。
常用的制备工艺有手工层叠法、自动层叠机法、注塑成型法等。
1.手工层叠法手工层叠法是复合材料制备的最早方法之一,其优点是成本低,适用于小批量生产;缺点是生产效率低,工艺难以控制,制品质量不稳定,易产生接触、空气泡等缺陷。
2.自动层叠机法自动层叠机法是指利用专用机器进行自动化生产的方法,其优点是生产效率高,无人工干预,制品质量稳定;缺点是设备成本高,不适用于小批量生产,工艺仍需改进和控制。
3.注塑成型法注塑成型法是将熔融状态的树脂注入到预制的模具中,并在高温高压下形成制品的方法,其优点是最大程度地消除了接触缺陷、空气泡等缺陷,制品密实,精度高,产品性能稳定;缺点是成本高,需要专用模具,适用于大批量生产。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23
9.1.4环境条件对复合材料性能的影响
复合材料都是在一定的环境条件下使用的,因此了解 在各种环境条件下材料性能的变化是重要的。这些环境 条件如暴露于水,水蒸气或腐蚀性介质中,低温和高温 及进行长期物理和化学稳定性试验的各种条件等。一般 来讲,在这些不利的环境条件下,复合材料的性能要降 低。这是由于环境因素影响了纤维、基体材料和界面的 性能。
降低界面强度可使大范围脱胶或分层,从而增加冲 击能。 所以弱界面的拉伸强度比较低,但冲击强度比较高。
9
4)纤维拔出
当脆性的或不连续的纤维嵌于韧性基体 中时,会发生纤维拔出。
纤维断裂在其本身的薄弱横截面上,这个 截面不一定与复合材料断裂面重合。纤维断 裂在基体中引起的应力集中因基体屈服而得 到缓和,因此阻止了基体裂纹。在这种情况 下,断裂以纤维从基体中拔出的破坏方式进 行。
4
复合材料的破坏可以认为是从材料中固有 的小缺陷发源的。例如,有缺陷的纤维, 基体与纤维界面处的缺陷和界面不良反应 物等。在形成的裂纹尖端及其附近,有可 能以发生纤维断裂、基体变形和开裂、纤 维与基体分离(纤维脱粘)、纤维拔出等 模式破坏。现分述如下。
5
纤维复合材料中裂纹尖模型
6
分别讨论各种破坏机理。
25
2)基体效应
(1)在高温条件下老化。 一般来讲,有机高分子材料在高温下是不稳定的,且经 历一个由热裂解引起的化学衰变过程。如果裂解反应持续足 够长时间,或是反应的非常快,材料就会发生本质的破坏, 以至基体材料分解成气体挥发。这种激烈的裂解反应严重影 响复合材料的完整性,且限制复合材料的使用温度。温度与 时间是影响裂解过程的两个参数。基体的分解会导致复合材 料刚度和强度大大下降。可见,复合材料的最高使用温度通 常是由基体的热稳定性所支配的。
24
1)纤维强度 材料内部不可避免的存在着缺陷或裂纹。在应力和化 学介质腐蚀作用下,这种裂纹就要增长,当达到最大临 界裂纹的应力状态时,材料就要破坏,从而纤维强度下 降,这就是应力-腐蚀作用。 对于玻璃纤维,水会沿表面微裂纹渗入其内部, 产生化学作用和物理作用,化学作用使SiO2主链断裂, 物理作用减低分子间力,从而使玻璃纤维强度大大下降。 需要指出,表面处理剂能对纤维表面产生物理保 护作用,阻碍化学介质对纤维的进攻。
提高复合材料冲击韧性的途径有:基体增韧、合适 的界面强度、采用混杂纤维复合材料。
14
9.1.2 复合材料的疲劳性能
复合材料在应用过程 中,由于承受变动载 荷或反复承受应力, 即使应力低于屈服强 度,也会导致裂纹萌 生和扩展,以至构件 材料断裂而失效,或 使其力学性质变坏。
15
1)复合材料的疲劳性能特点
在这里讨论的各种能量吸收机理和破坏模式 不只是适用冲击破坏,而是具有普遍意义。
破坏模式:当一个固体承受静载荷或冲击载荷 时,材料变形首先发生;如提供的能量足够大,裂 纹可能产生并扩展;在裂纹扩展过程中,裂纹前沿 又总存在着材料变形。
吸收能量的机理有两种: ①形成新的表面;②材料变形.
3
可见,材料的总能量吸收能力(或韧 性)能够靠增加分离过程中的裂纹路径, 或者增大材料的变形能力得到提高。
17
③ 金属材料存在疲劳极限, 即经受107循环仍不破坏 就可承受无限次循环也不 会破坏,把S-N曲线上N= 107时所对应的最大应力S 最大叫做疲劳极限。
但是复合材料至今没 有确认具有这一性质,所 以循环数N= 107所对应 的最大应力S最大作为条件 疲劳极限。
18
④ 温度生高会削弱基体材料性能,从而使复合材料的疲劳 寿命下降。
19
2)影响复合材料疲劳特性的因素
复合材料的疲劳特性要受到各种材料和试验参数的 影响,如基体材料类型、增强材料类型,纤维方向和铺 层等等。这里不在长期静载荷作用下的力学性能
长期静载荷作用下的力学性能包括: 强度问题——持久强度; 变形问题——蠕变。 1)复合材料的持久强度 持久强度-材料长时期在静载荷作用下,保持一定时间 不破坏,所能承受的最大静载荷。 耐持久性-材料长时期在一定的静载荷作用下,保持不 破坏所能经受的最大时间。
①复合材料的持久强度要比短期载荷作用下的强度低得多。 ②复合材料的持久强度主要取决于基体材料,所以影响复合材料持久 强度的因素,主要是指对基体材料的影响因素。
22
2)复合材料的蠕变特性
在长时静载荷作用下,载荷不变而变形继续增加的现象,称 为蠕变。 复合材料的蠕变特性主要取决于基体的松弛特性,故复 合材料的蠕变有以下特点: ①碳纤维复合材料的蠕变比玻璃钢小; ②沿纤维方向拉伸作用下的蠕变现象最不明显; ③沿与纤维成任意α 角方向拉伸时,蠕变现象逐渐明显,沿45° 方向拉伸时最为明显; ④持久弯曲载荷作用下的蠕变,比持久拉伸载荷作用下的蠕变明 显; ⑤ 温度升高,复合材料的蠕变现象显著。 由于复合材料在长时静载荷作用下的持久强度低于短时静 强度以及存在明显的蠕变现象,设计复合材料构件时必须考虑。
裂纹在扩展中穿过层合板的一个铺层,当裂 纹尖端达到相邻铺层的纤维时,可能受到抑制。 因为邻近裂纹尖的基体中的剪应力很高,裂纹可 能分支出来,开始在平行于铺层的界面上扩展。 这样的裂纹叫做分层裂纹。存在这样的裂纹,吸 收的断裂能就高。
12
上述断裂模式,因复合材料或试验条件的不
同,而在复合材料的断裂时出现其中一种或几
28
3)界面作用。
良好的界面粘结能避免介质或水借助毛细作用沿 有缺陷的界面渗入复合材料内部,从而破坏纤维、基 体与进一步破坏界面。采用偶联剂对玻璃纤维进行表 面处理,使得纤维与基体间以化学键的方式相连,大 大提高了玻璃钢的耐沸水浸泡性。
29
第9 章
9.1
复合材料的其他力学性能
复合材料的冲击、疲劳、蠕变、环境影响、断裂及损伤
复合材料在实际应用中,往往存在冲击载荷、动载荷 等作用,存在蠕变、环境影响、损伤、断裂等问题。
影响复合材料的断裂、冲击和疲劳性能因素比金属材 料的更多,而且对它们的研究还很不够,本节将对其逐一 讨论。
1
9.1.1 复合材料的冲击性能
复合材料在应用中难免承受冲击载荷。因 此很有必要了解复合材料的冲击性能和能量 吸收机理。
冲击载荷指以较高的速度施加到材料上的 载荷,当材料在承受冲击载荷时,瞬间冲击 所引起的应力和变形比静载荷时要大的多, 因此,在制造这类材料时,就必须考虑到材 料的抵抗冲击载荷能力,即材料的冲击性能。
2
2)能量吸收机理和破坏模式
种,它们所占比例及对断裂的影响也各不相同, 有的模式的影响可能是很小的。通常总是有几 种断裂模式同时存在。
13
3)影响复合材料冲击性能的因素
讨论了复合材料的能量吸收机理之后,就不难理解 材料性质对冲击性能的影响了,因为纤维性质不同、 基体韧性不同,界面强度不同会导致不同的破坏模式, 从而大大地影响复合材料的冲击性能。
1) 纤维破坏
纤维断裂发生在其应变达到断裂应变时。
由于脆性纤维具有低的断裂应变,只产生少量变形, 因而吸收能量低。 碳纤维复合材料的冲击性能低,玻璃钢和凯芙拉的冲击 性能好。 虽然纤维是使复合材料具有高强度的主要原因,但纤 维断裂仅占总能量吸收的很小比例。但应当记住,纤维 的存在非常显著地影响破坏模式,从而也影响了总冲击 能。
①单向连续纤维增强的复合材
料在纤维方向有卓越的抗疲劳 性。这是由于在单向复合材料 里,疲劳载荷主要是由和载荷 方向一致的纤维所承担的缘故。
16
②在实际应用中,复合材料往往以多向层板形式使用, 以适应结构里的多向应力需要。
由于层板里的各层的强度不同,在疲劳过程的早 期就开始出现横向裂纹损伤。随着循环数的增加,裂 纹的长度和数量也相应增加,还会出现分层、界面脱 胶、纤维断裂或屈曲等损伤形式。这样损伤的出现, 占疲劳寿命的较大部分,并不影响材料或结构的安全 使用。 金属材料则不同,一旦出现裂纹,很快就断裂了; 复合材料疲劳过程早期就出现损伤,但扩展慢,直到 疲劳寿命的90%才迅速断裂,最终破坏可事先判明, 所以复合材料的破损安全性极好。
27
(3)渗透作用。
水或其他化学介质通过对聚合物基体的渗透,对基体有两 种作用。一种是物理作用,它是介质分子经扩散渗透进入大 分子链间空隙,破坏大分子间的次价键,引起基体材料溶胀。 这种作用实际上是增塑基体,化学介质就是增塑剂,化学介 质的吸收同材料环境温度的增大是等效的,溶胀后的基体玻 璃化温度下降、模量降低,吸湿量越大,性能下降越大。化 学介质或水能否溶胀基体,主要取决于两者的分子极性是否 接近或溶解参数是否接近。另一种是化学作用,它是介质分 子与大分子发生化学反应,如氧化、水解等,使大分子链的 主价键断裂,从而降低基体材料强度。能否发生这种作用主 要取决于大分子链中的特征基团。
10
纤维脱胶和纤维拔出两种模式间的差别: 当基体裂纹不能横断纤维而扩展时,发生纤 维脱胶;纤维拔出是起始于纤维破坏的裂纹 没有能力扩展到韧性基体中去的结果。纤维 拔出通常伴随有基体的伸长变形,而这种变 形在纤维脱胶中是不存在的, 共同点:破坏都发生在纤维基体界面,都 显著地提高断裂能。
11
5)分层裂纹
7
2)基体变形和开裂
基体破坏吸收的总能量包括基体变形能和开裂产 生的新表面能。
基体变形所吸收的能量:正比于单位体积的基体变 形到破坏所做的功。 基体开裂所吸收的能量:正比于裂纹产生的新表 面面积
8
3)纤维脱胶
在断裂过程中由于裂纹平行于纤维扩展(脱胶裂 纹),则纤维与基体材料分离。在这个过程中,纤维 与基体间的化学键与次价键的黏附均被破坏,同时形 成新表面。当纤维强而界面弱时,就发生这种开裂。
21
表9-2 几种玻璃钢在静弯曲载荷作用下的持久强度参数
玻璃刚品种
聚酯玻璃钢 环氧玻璃钢 酚醛玻璃钢 有机硅玻璃钢
静弯曲强度/MPa 短时试验 经1000h载荷作 用
持久强度/原强度