2020年稽阳联考数学试题(定稿)

合集下载

2020年4月浙江省稽阳联谊学校2020届高三毕业班联考质量检测数学试题及答案解析

2020年4月浙江省稽阳联谊学校2020届高三毕业班联考质量检测数学试题及答案解析

绝密★启用前2020年浙江省稽阳联谊学校2020届高三毕业班下学期4月联考质量检测数学试题2020年4月一、选择题:本大题10小题,每小题4分,共40分1.已知全集{2,1,0,1,2}U =--,{2,0,1}A =-,{1,0}B =-,则()U C A B U = A .{2,1,1,2}--B .{2}C .{1,2}D .{0}2. 已知i 为虚数单位,其中(12)z i i +=-,则该复数的共轭复数是A .2155i +B .2155i - C .2155i -+ D .2155i --3.某几何体三视图如图所示,则该几何体的体积等于A .323πB .16643π-C .6416π-D .163π4.若,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =-的最大值是A .0B .2C .4D .55.已知函数()f x ax b =+的图象如图所示,则函数()log ()a f x x b =-+的图象是 正视图侧视图2A .B .C .D .6.设0,0a b >>,则“2a b +≥”是“222a b +≥”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7.设 1a <<,随机变量X 的分布列为 则当a 在(0,)3增大时,A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大8.已知椭圆:C 22221(0)x y a b a b+=>>,12,F F 为椭圆的左,右焦点,过2F的直线交椭圆与,A B两点,190AF B ∠=o,2223AF F B =u u u u r u u u u r ,则椭圆的离心率是A .5 B .5 C .10 D .109.如图:ABC ∆中,AB BC ⊥,60ACB ︒∠=,D 为AC 中点,ABD ∆沿BD 边翻折过程中,直线AB 与直线BC 所成的最大角,最小角分别记为11,αβ,直线AD 与直线BC 所成的最大角,最小角分别记为22,αβ,则有A .1212,ααββ<≤B .1212,ααββ<>C .1212,ααββ≥≤A DCBA。

2020.5 稽阳联考详细解答(数学)

2020.5 稽阳联考详细解答(数学)

参考答案1. B {2,1,0,1}A B =--U ,所以()U C A B U ={2}2. C 211255i z i i -==--+ 3.A 2224322433V πππ⋅⋅=⋅⋅-= 4.D 322zy x =-,有图像知取(1,1)-,最大值为55.D 因01,10a b <<-<<,有图像变换可知6.A 因为 2a b +≥可知2()22a b +≥,而222()2a b a b ++≥,7.C 计算可知2211()3(2)4()336D X a a =--=--+8.B 设22113,2,23,22F A x F B x F A a x F B a x ===-=-,则222(5)(23)(22)x a x a x =-+-,可知3a x =,15,3AB a AF a ==,13cos 5F AB ∠=,1sin 25F AB ∠=,因A为顶点,则5e = 9.D 翻折到180o 时,,AB BC 所成角最小,可知130β=o ,,AD BC 所成角最小,20β=o ,翻折0o时,,AB BC 所成角最大,可知190α=o ,翻折过程中,可知AD 的投影可与BC 垂直,所以,AD BC 所成最大角290α=o ,所以 1190,30αβ︒︒==,2290,0αβ︒︒==10.C 图像1y x =+与y x =有两个交点(0,0),(1,1),利用蛛网图,可知当10a <,则数列递减,所以0n a <,当101a <<,则数列递增,并且n a 趋向1,可知当11a >,则数列递减,并且n a 趋向1,则可知A ,B 错误,又当1x >,13111()22y x x x x =+=+-<+--=,则当11a >,2a 一定小于32,则之后均小于32,所以D 错 ,对于C 可取132a =,满足要求 11.4,y =,因1,2,a b c === 12.42,5--由定义知tan 2α=-,sin αα==4sin 22sin cos 5ααα==-13.55,423234554T C == ,23T T =的系数最大为521492 设3,4AD x CD x == 在ABC ∆中,由余弦定理可知2125499237x x x=+-⋅⋅⋅,可知7x =,7AC x ==,sin A ∠=,19322S =⋅= 15.a =222(1)1t x x a x a =++=++- ()0f t = 可知1t =-±因 ()t f x = ,可 知1()f x -±=有三解,有图像知11a -=- 解得a =另解:可知((1))0f f -=,2(1)2(1)0a a a -+-+=,0a <,可知12a -=16.40 分高三学生单独去志愿点,或与其它年级学生合去志愿点,按先分组再分到志愿点的思路,共有111222(2)22C C C +⋅⋅⋅⋅种171 因AGE ∆与PGD ∆相似,12AG AE GP DP λ==则2211(12)1212AG AP AP λλλ⋅==+++u u u v u u u v u u u v ,令12(13)t t λ=+<<,则22313()1122t t AG AP t t t-+⋅==+-≥u u u v u u u v ,当且仅当,t =,即(0,1)λ=取到 18.(本题满分14分)(Ⅰ)3()sin )26f x x x x π=+=+(3分) 所以函数()f x 的周期为2π,23()232f ππ== (7分) (Ⅱ)由(Ⅰ),则()21cos(2)332x y f x π-+==⋅,(10分)因[0,]2x π∈, 42[,]333x πππ+∈,1cos(2)[1,]32x π+∈-(12分) 则()2y f x =的取值范围为3[,3]4(14分)(Ⅱ)另解:因[0,]2x π∈, 2[,]663x πππ+∈)62x π+∈(11分)则()23[,3]4y f x =∈(14分) 19.(本题满分15分)解法(1):(Ⅰ)证:取AD 的中点O ,连结,,PO EO 由,,PO AD EO AD PO EO O ⊥⊥=I 可知AD ⊥面,PEO 且PE ⊂面,PEO 则AD PE ⊥.(6分)(Ⅱ)法一:以O 为坐标原点,建立如图所示空间直角坐标系,( 8分)作,,PQ CD PH OE ⊥⊥连HQ ,因PH ABCD ⊥平面,知HQ CD ⊥,由60PDC ∠=o 知1DQ =,1OH DQ ==,由3PO =,在Rt PHO ∆中,可知2PH =,则()1,0,2P (10分)()0,1,0A -,()0,1,0D ,()3,0,0E ,则()()()1,1,2,3,1,0,1,1,2PD DE PA =--=-=---u u u r u u u r u u u r设平面PDE 的法向量为(),,n x y z =r,则30--2z=0x y x y -=⎧⎪⎨+⎪⎩得()1,3,2n =r 为其中一个法向量,(12分)设直线PA 与平面PDE 所成角为θ,则3sin cos ,,PA n PA n PA nθ⋅===⋅u u u r ru u u r r u u u r r (14分) 则直线PA 与平面PDE 所成角为60o .(15分) 法二:(体积法)设点A 到面PDE 的距离为h ,法一中已知点P 到面ABCD 的距离PH 为2,则6PE =(9分)PDE ∆中,2,10,6PD DE PE ===,所以PDE ∆为直角三角形,由A PDE P ADE V V --=可知111126223233322PDE ADE S h S h h ∆∆⋅=⋅⇒⋅⋅⋅=⋅⋅⋅⇒=,(12分) 设直线PA 与平面PDE 所成角为θ,则3sin h PA θ==,(14分) 则直线PA 与平面PDE 所成角为60o .(15分) 20.(本题满分15分)(Ⅰ)因为2112()n n n n a a a a +++-=- ,所以数列1{}n n a a +-是公比为2的等比数列,(3分)则11222n n n n a a -+-=⋅=, 121211()()()n n n a a a a a a a a -=+-+-++-L =21n- (7分)(Ⅱ)法1:因34373431n n n n +++>+++,所以34373431n n n n <++++++则3734343133n n n n +-++-+<,所以3137234n n n +++<+(10分)又111122222n n n n n n b ++++==<=- (13分)n S ≤+++=K (15分)法(2)(数学归纳法)n b =,nS ≤①当1n =时,1S =<只要证:22<7<,所以1n =成立(9分)②假设n k =成立,即122k k S +<-,则当1n k =+,12122222k k k k k S S ++++=+<-+,要证:1222k k S ++<-,只要证:221222k k k ++++<只要证:614k <+成立,所以当1n k =+成立(14分)由①②可知,n S ≤对*n N ∈成立(15分)21.(本题满分15分)(1)抛物线2:ax y C =即y a x 12=,准线方程为:a y 41-=,Θ点)1,(b P 到焦点的距离为45,1,45411=∴=+∴a a ∴抛物线C 的方程为2x y =(4分) (Ⅱ)解1:设),(),,(222211x x N x x M ,Θ2x y =,x y 2='∴,,21x k AM =∴∴切线AM 的方程为:)(21121x x x x y -=-,即2112x x x y -=,同理可得切线BN 的方程为:2222x x x y -=(7分)由于动线段AB (B 在A 右边)在直线:l 2-=x y 上,且2||=AB ,故可设)2,(-t t A ,)1,1(-+t t B将)2,(-t t A 代入切线AM 的方程得21122x t x t -=-,即022121=-+-t tx x ,22)2(442221+--=---=∴t t t t t t x ,同理可得212)1()1(1222++++=++-+++=t t t t t t x ,(10分)21122122x x x x x x k MN+=--=Θ,当AB MN //时,1=MN k ,得121=+x x (12分)22+--∴t t t 1212=+++++t t t ,22222++-+-=∴t t t t t ,222222++++--=∴t t t t tt 得0=t 或22+-∴t t 122-=+++t t (舍去)0=∴t (15分)解法2:设设),(),,(222211x x N x x M ,Θ2x y =,x y 2='∴,,21x k AM =∴ ∴切线AM 的方程为:)(21121x x x x y -=-,即2112x x x y -=,同理可得切线BN 的方程为:2222x x x y -=(7分) 由于动线段AB (B 在A 右边)在直线:l 2-=x y 上,且2||=AB ,故可设)2,(-t t A ,)1,1(-+t t B将)2,(-t t A 代入切线AM 的方程得21122x t x t -=-,即022121=-+-t tx x ,(11分)同理:2222(1)10x t x t -++-=,两式相减,可知22121222()+210x x t x x x ----=,因为121=+x x ,所以122()0t x x --=,则0t =(15分)22.(本题满分15分)(1)()f x x =-()1f x '==,所以当0a ≤, ()0f x '≥,则3[,)2+∞上递增,当0a >,()0f x '=,232a x +=,所以233[,)22a +递减,23[,)2a ++∞递增(6分) (Ⅱ)()1()f x g x -≤,可知1axx ke --≤,对3[,)2x ∈+∞恒成立,取32x =,可知32102a k e≥>(7分)因1a ≥,则ax x ke ke ≥≥,则110ax x x ke x ke --≤-≤,1x x ke --≤,(10分)k ≤,(11分)设1()x x h x e --=,()h x '=, ()0h x '=可知2x =,72x =,则函数在3[,2)2递减,7[2,)2递增,7[,)2+∞递减, 所以max 37322237111()max{(),()}max{,}22222h x h h ee e===,所以3212k e≥(15分)。

2020年4月稽阳联考高三数学试题卷含答案

2020年4月稽阳联考高三数学试题卷含答案

2020年4月稽阳联考数学科试题卷一、选择题:本大题10小题,每小题4分,共40分1.已知全集{2,1,0,1,2}U =--,{2,0,1}A =-,{1,0}B =-,则()U C A B U = A .{2,1,1,2}-- B .{2} C .{1,2} D .{0}2. 已知i 为虚数单位,其中(12)z i i +=-,则该复数的共轭复数是A .2155i + B .2155i - C .2155i -+ D .2155i --3.某几何体三视图如图所示,则该几何体的体积等于A .323πB .16643π-C .6416π-D .163π4.若,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =-的最大值是A .0B .2C .4D .55.已知函数()f x ax b =+的图象如图所示,则函数()log ()a f x x b =-+的图象是A .B .6.设0,0a b >>,则“2a b +≥”是“222a b +≥”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 7.设 10a <<,随机变量X 的分布列为正视图则当a 在1(0,)3增大时,A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大8.已知椭圆:C 22221(0)x y a b a b +=>>,12,F F 为椭圆的左,右焦点,过2F 的直线交椭圆与,A B 两点,190AF B ∠=o,2223AF F B =u u u u r u u u u r ,则椭圆的离心率是ABCD9.如图:ABC ∆中,AB BC ⊥,60ACB ︒∠=,D 为AC 中点,ABD ∆沿BD 边翻折过程中,直线AB 与直线BC 所成的最大角,最小角分别记为11,αβ,直线AD 与直线BC所成的最大角,最小角分别记为22,αβ,则有A .1212,ααββ<≤B .1212,ααββ<>C .1212,ααββ≥≤D .1212,ααββ≥>10.已知数列{}n a满足:11n n a a +=+ ,1a a =,则一定存在a ,使数列中: A .存在*n N ∈,有120n n a a ++<B .存在*n N ∈,有12(1)(1)0n n a a ++--<C .存在*n N ∈,有1255()()044n n a a ++--<D .存在*n N ∈,有1233()()022n n a a ++--<二、填空题:本大题共7小题,多空题6分,单空题每题4分,共36分11.双曲线2213y x -=的焦距是 _________,渐近线方程是____________. 12.已知角α的终边过点(1,2)-,则 tan α=_____________,sin 2α=____________.13.5展开式中常数项是___________,最大的系数..是___________. 14.已知ABC ∆中,3,5AB BC ==,D 为线段AC 上一点,AB BD ⊥ ,34AD CD =,则AC = ____________,ABC ∆的面积是___________ .15.已知函数2()2(0)f x x x a a =++< ,若函数(())y f f x = 有三个零点,则 a =__________.A DCBADCBA16.某学校高一学生2人,高二学生2人,高三学生1人,参加,,A B C 三个志愿点的活动,每个活动点至少1人,最多2人参与,要求同年级学生不去同一志愿点,高三学生不去A 志愿点,则不同的安排方法有__________________种(用数字作答). 17.如图:已知矩形ABCD 中,1,2AD AB ==,E 为边AB 的中点,P 为边DC 上的动点(不包括端点),DP DC λ=u u u v u u u v(01λ<<),设线段AP 与DE 的交点为G ,则 AG AP ⋅u u u v u u u v的最小值是__________________.三、解答题:本大题共5小题,共74分。

2020年4月浙江省稽阳联谊学校2020届高三毕业班联考质量检测数学答案详解

2020年4月浙江省稽阳联谊学校2020届高三毕业班联考质量检测数学答案详解

1绝密★启用前2020年浙江省稽阳联谊学校2020届高三毕业班下学期4月联考质量检测数学试题参考答案解析2020年4月1. B {2,1,0,1}A B =--U ,所以()U C A B U ={2}2. C 211255i z i i -==--+ 3.A 2224322433V πππ⋅⋅=⋅⋅-= 4.D 322z y x =-,有图像知取(1,1)-,最大值为5 5.D 因01,10a b <<-<<,有图像变换可知6.A 因为 2a b +≥可知2()22a b +≥,而222()2a b a b ++≥, 7.C 计算可知2211()3(2)4()336D X a a =--=--+ 8.B 设22113,2,23,22F A x F B x F A a x F B a x ===-=-,则222(5)(23)(22)x a x a x =-+-,可知3a x =,15,3AB a AF a ==,13cos 5F AB ∠=,1sin 25F AB ∠=,因A 为顶点,则5e =9.D 翻折到180o 时,,AB BC 所成角最小,可知130β=o ,,AD BC 所成角最小,20β=o ,翻折0o 时,,AB BC 所成角最大,可知190α=o ,翻折过程中,可知AD 的投影可与BC 垂直,所以,AD BC 所成最大角290α=o ,所以 1190,30αβ︒︒==,2290,0αβ︒︒==10.C 图像1y x =+与y x =有两个交点(0,0),(1,1),利用蛛网图,可知当10a <,则数列递减,所以0n a <,当101a <<,则数列递增,并且n a 趋向1,可知当11a >,则数列。

浙江省稽阳联谊学校 2020届高三下学期4月联考 (数学)(含答案)

浙江省稽阳联谊学校 2020届高三下学期4月联考 (数学)(含答案)

稽阳联考试卷命题设计分析表一、分析二、难度分布 三、目标2020年4月稽阳联考数学科试题卷一、选择题:本大题10小题,每小题4分,共40分1.已知全集{2,1,0,1,2}U =--,{2,0,1}A =-,{1,0}B =-,则()U C A B U = A .{2,1,1,2}-- B .{2} C .{1,2} D .{0}2. 已知为虚数单位,其中(12)z i i +=-,则该复数的共轭复数是 A .2155i + B .2155i - C .2155i -+ D .2155i -- 3.某几何体三视图如图所示,则该几何体的体积等于A .323πB .16643π-C .6416π-D .163π 4.若,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =-的最大值是A .B .C .D .5.已知函数()f x ax b =+的图象如图所示,则函数()log ()a f x x b =-+的图象是A .B .C .D .6.设0,0a b >>,则“2a b +≥”是“222a b+≥”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件7.设 103a <<,随机变量的分布列为则当在(0,)3增大时,A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大8.已知椭圆:C 22221(0)xy a b a b +=>>,12,F F 为椭圆的左,右焦点,过2F 的直线交椭圆与,A B 两点,190AF B ∠=o,2223AF F B =u u u u r u u u u r ,则椭圆的离心率是A .5 B .5 C .10 D .109.如图:ABC ∆中,AB BC ⊥,60ACB ︒∠=,为AC 中点,ABD ∆沿BD 边翻折过程中,直线AB 与直线BC 所成的最大角,最小角分别记为11,αβ,直线AD 与直线BC 所成的最大角,最小角分别记为22,αβ,则有A .1212,ααββ<≤B .1212,ααββ<>C .1212,ααββ≥≤D .1212,ααββ≥>10.已知数列{}n a 满足:11n n a a +=+ ,1a a =,则一定存在,使数列中: A .存在*n N ∈,有120n n a a ++<B .存在*n N ∈,有12(1)(1)0n n a a ++--< C .存在*n N ∈,有1255()()044n n a a ++--< D .存在*n N ∈,有1233()()022n n a a ++--<二、填空题:本大题共7小题,多空题6分,单空题每题4分,共36分11.双曲线2213y x -=的焦距是 _________,渐近线方程是____________. 12.已知角的终边过点(1,2)-,则 tan α=_____________,sin 2α=____________. 13.5 展开式中常数项是___________,最大的系数..是___________. A DCBA14.已知ABC ∆中,3,5AB BC ==,为线段AC 上一点,AB BD ⊥ ,34AD CD =,则AC = ____________,ABC ∆的面积是___________ .15.已知函数2()2(0)f x x x a a =++< ,若函数(())y f f x = 有三个零点,则=__________.16.某学校高一学生2人,高二学生2人,高三学生1人,参加,,A B C 三个志愿点的活动,每个活动点至少1人,最多2人参与,要求同年级学生不去同一志愿点,高三学生不去志愿点,则不同的安排方法有__________________种(用数字作答). 17.如图:已知矩形ABCD 中,1,2AD AB ==,为边AB 的中点,为边DC上的动点(不包括端点),DP DC λ=u u u v u u u v (01λ<<),设线段AP 与DE 的交点为,则 AG AP ⋅u u u v u u u v的最小值是__________________.三、解答题:本大题共5小题,共74分。

2020年稽阳联考参考答案

2020年稽阳联考参考答案

2020年11月稽阳联考数学参考答案及评分标准第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.B3.A4.A5.C6.A7.B8.A9.D 10.D各 题 详 细 参 考 解 答1.解:由于{|14},{|23}M x x N x x =-<<=-<<,从而{|13}M N x x =-<<,选B.2. 解:由于(1i)11222i i i z i +===-+-,则||2z =.选B. 3. 解:如图,不等式组2020240x y y x y --≤⎧⎪-≤⎨⎪+-≥⎩的阴影部分,从而当4,2x y ==时,26y x +-有最小值2-,选A. 4. 解:由于sin ()2cos x xf x x=-为偶函数, 且()f x 在0x =右侧取值正,故选A.5. 解:充分性:log 2log 201110|1||1|b a a b a b a b >>⇒>>⇒->->⇒->-,充分性成立.必要性:取12,2a b ==,则1|1||b 1|12a ->-⇒>成立,而条件不成立,故log 2log 20b a >>是|1||1|a b ->-的充分不必要条件,故选C.6.解:该几何体为一个正四棱柱截去两个全等的三棱锥而成,直观图如图,()1211112247222S +⋅⋅=⨯++⨯=11152=11221323V V V ⋅=-⋅⋅-⋅⋅⋅=柱锥,故选 A.7. 解:椭圆2C 关于点00(,)P x y 的切点弦AB 的方程为003412x x y y +=.联立003412x x y y y +=⎧⎪⎨=⎪⎩得点E ⎫,同理F ,则()()()()22222200000048361213422OE OF x y y y -⋅=+==---,故选B. 8. 解:构建直三棱柱ABE CDF -,设,G H 分别为,ABE CDF ∆∆的外心,连接GH ,取其中点O ,则O 为直三棱柱ABE CDF -的外接球的球心,也为四面体ABCD 的外接球的球心,因为异面直线AB 与CD 所成的角为60,所以60ABE ∠=.设三棱柱底面三角形ABE ∆的外接圆半径为r ,则2r ==,1A2sin 6023AE r ==222222cos6012AE AB BE AB BE AB BE AB BE =+-⋅⋅⇒+-⋅=,所以22122AB BE AB BE AB BE AB BE AB BE =+-⋅≥⋅-⋅=⋅所以111sin 60332A BCD ABE CDF V V AB BE BC AB BE --==⋅⋅⋅⋅⋅=⋅≤ 故四面体ABCD 的体积的最大值为故选A. 9. 解:由于12212()()22p p p p p p a a S p a a pa ++==+≠,故选项A 错误.由于m p q n -=-,则[()][()]p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅=222[()][()]()()()()()m n m n m n a q n d a q n d a a q n d a a q n d q n d n m --⋅+--⋅=----=---22()0q n d --<,故选项B 错误.由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误. 设0x q n m p =-=->,则2()()()0pq mn n x m x mn x n m x -=+--=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+. 故222211()()22p q m n p q m n m n m nS S p q a d m n a d S S +--+--+=++>++=+.221111(1)(1)(2)(1)(1)[][]2224p q p p q q pq p q pq p q S S pa d qa d pqa a d d --+---⋅=+⋅+=++22221111(2)(1)(1)(2)(1)(1)2424mn m n mn p q mn m n mn m n mna a d d mna a d d +---+---<++≤++m n S S =⋅.由此1111p q m n m n p q p q p q m n m nS S S S S S S S S S S S S S S S ++++=>>=+,故选项D 正确. 故选D. 注:本题也可用特殊数列代入,利用排除法求解.10. 解:由于ln (21)10ln 21(1)(2)x e a x b x ex a x b +--++≤⇔+-≤+-+.此不等式对任意(0,)x ∈+∞恒成立,则需要保证10a +>.令1x e =,则11ln 21(1)2a b e e+-≤+-- 从而1(1)2a b e +≥+,从而211b a e+≤+.另一方面,当31,1a e b =-=时,ln (21)10x e a x b +--++≤即为ln 20x ex -+≤,设()ln 2(0)f x x ex x =-+>,则11'()0ex f x e x x -=-=≥得10x e <≤,故()f x 在1(0,]e 上单调递增,在1(,)e+∞上单调递减,从而1()()0f x f e ≤=,即31,1a e b =-=可使不等式恒成立,从而21b a ++可取1e .综合上述,当21b a ++取最大值1e 时,31a e =-.故选D.第Ⅱ卷(非选择题部分 共110分)二、填空题:本大题共7小题,共36分,多空题每题6分,单空题每题4分。

浙江省绍兴市稽阳联谊学校2021届高三上学期11月联考数学试题 答案

浙江省绍兴市稽阳联谊学校2021届高三上学期11月联考数学试题 答案

2020年11月稽阳联考数学参考答案及评分标准第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.B3.A4.A5.C6.A7.B8.A9.D 10.D各题详细参考解答1.解:由于{|14},{|23}M x x N x x =-<<=-<<,从而{|13}M N x x =-<< ,选B.2.解:由于(1i)11222i i i z i +===-+-,则||2z =.选B.3.解:如图,不等式组2020240x y y x y --≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域为如图所示的阴影部分,从而当4,2x y ==时,26y x +-有最小值2-,选A.4.解:由于sin ()2cos x x f x x=-为偶函数,且()f x 在0x =右侧取值正,故选A.5.解:充分性:log 2log 201110|1||1|b a a b a b a b >>⇒>>⇒->->⇒->-,充分性成立.必要性:取12,2a b ==,则1|1||b 1|12a ->-⇒>成立,而条件不成立,故log 2log 20b a >>是|1||1|a b ->-的充分不必要条件,故选C.6.解:该几何体为一个正四棱柱截去两个全等的三棱锥而成,直观图如图,()1211112247222S +⋅⋅=⨯+⋅+⨯=+.11152=11221323V V V ⋅=-⋅⋅-⋅⋅⋅=柱锥,故选A.7.解:椭圆2C 关于点00(,)P x y 的切点弦AB 的方程为003412x x y y +=.联立00341232x x y y y x +=⎧⎪⎨=⎪⎩得点E ⎛⎫,同理F,则()()()()22222200000048361213422OE OF x y y y -⋅=+==--- ,故选 B.8.解:构建直三棱柱ABE CDF -,设,G H 分别为,ABE CDF ∆∆的外心,连接GH ,取其中点O ,则O 为直三棱柱ABE CDF -的外接球的球心,也为四面体ABCD 的外接球的球心,因为异面直线AB 与CD 所成的角为60 ,所以60ABE ∠= .设三棱柱底面三角形ABE ∆的外接圆半径为r ,则512r =-=,2sin 6023AE r == ,再由余弦定理,222222cos 6012AE AB BE AB BE AB BE AB BE =+-⋅⋅⇒+-⋅= ,所以22122AB BE AB BE AB BE AB BE AB BE=+-⋅≥⋅-⋅=⋅所以1113sin 60233326A BCD ABE CDF V V AB BE BC AB BE --==⋅⋅⋅⋅⋅=⋅≤ ,故四面体ABCD 的体积的最大值为23.故选A.9.解:由于12212()()22p p p p p p a a S p a a pa ++==+≠,故选项A 错误.由于m p q n -=-,则[()][()]p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅=222[()][()]()()()()()m n m n m n a q n d a q n d a a q n d a a q n d q n d n m --⋅+--⋅=----=---22()0q n d --<,故选项B 错误.由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误.设0x q n m p =-=->,则2()()()0pq mn n x m x mn x n m x -=+--=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.故222211()()22p q m n p q m n m n m n S S p q a d m n a d S S +--+--+=++>++=+.221111(1)(1)(2)(1)(1)[][]2224p q p p q q pq p q pq p q S S pa d qa d pqa a d d --+---⋅=+⋅+=++22221111(2)(1)(1)(2)(1)(1)2424mn m n mn p q mn m n mn m n mna a d d mna a d d +---+---<++≤++m n S S =⋅.由此1111p q m n m n p q p q p q m n m n S S S S S S S S S S S S S S S S ++++=>>=+,故选项D 正确.故选D.注:本题也可用特殊数列代入,利用排除法求解.10.解:由于ln (21)10ln 21(1)(2)x e a x b x ex a x b +--++≤⇔+-≤+-+.此不等式对任意(0,)x ∈+∞恒成立,则需要保证10a +>.令1x e =,则11ln 21(1)2a b e e +-≤+--从而1(1)2a b e +≥+,从而211b a e+≤+.另一方面,当31,1a e b =-=时,ln (21)10x e a x b +--++≤即为ln 20x ex -+≤,设()ln 2(0)f x x ex x =-+>,则11'()0ex f x e x x -=-=≥得10x e <≤,故()f x 在1(0,]e 上单调递增,在1(,)e +∞上单调递减,从而1()()0f x f e ≤=,即31,1a e b =-=可使不等式恒成立,从而21b a ++可取1e .综合上述,当21b a ++取最大值1e 时,31a e =-.故选D.第Ⅱ卷(非选择题部分共110分)二、填空题:本大题共7小题,共36分,多空题每题6分,单空题每题4分。

浙江省稽阳联谊学校2020届高三下学期4月联考数学试题(含答案)(含答案)

浙江省稽阳联谊学校2020届高三下学期4月联考数学试题(含答案)(含答案)

2020年4月稽阳联考数学科试题卷一、选择题:本大题10小题,每小题4分,共40分1.已知全集{2,1,0,1,2}U =--,{2,0,1}A =-,{1,0}B =-,则()U C A B U = A .{2,1,1,2}-- B .{2} C .{1,2} D .{0}2. 已知i 为虚数单位,其中(12)z i i +=-,则该复数的共轭复数是A .2155i + B .2155i - C .2155i -+ D .2155i --3.某几何体三视图如图所示,则该几何体的体积等于A .323πB .16643π-C .6416π-D .163π4.若,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =-的最大值是A .0B .2C .4D .55.已知函数()f x ax b =+的图象如图所示,则函数()log ()a f x x b =-+的图象是A .B .6.设0,0a b >>,则“2a b +≥”是“222a b +≥”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 7.设 10a <<,随机变量X 的分布列为正视图则当a 在1(0,)3增大时,A .()D X 增大B .()D X 减小C .()D X 先增大后减小 D .()D X 先减小后增大8.已知椭圆:C 22221(0)x y a b a b +=>>,12,F F 为椭圆的左,右焦点,过2F 的直线交椭圆与,A B 两点,190AF B ∠=o,2223AF F B =u u u u r u u u u r ,则椭圆的离心率是ABCD9.如图:ABC ∆中,AB BC ⊥,60ACB ︒∠=,D 为AC 中点,ABD ∆沿BD 边翻折过程中,直线AB 与直线BC 所成的最大角,最小角分别记为11,αβ,直线AD 与直线BC所成的最大角,最小角分别记为22,αβ,则有A .1212,ααββ<≤B .1212,ααββ<>C .1212,ααββ≥≤D .1212,ααββ≥>10.已知数列{}n a满足:11n n a a +=+ ,1a a =,则一定存在a ,使数列中: A .存在*n N ∈,有120n n a a ++<B .存在*n N ∈,有12(1)(1)0n n a a ++--<C .存在*n N ∈,有1255()()044n n a a ++--<D .存在*n N ∈,有1233()()022n n a a ++--<二、填空题:本大题共7小题,多空题6分,单空题每题4分,共36分11.双曲线2213y x -=的焦距是 _________,渐近线方程是____________. 12.已知角α的终边过点(1,2)-,则 tan α=_____________,sin 2α=____________.13.5展开式中常数项是___________,最大的系数..是___________. 14.已知ABC ∆中,3,5AB BC ==,D 为线段AC 上一点,AB BD ⊥ ,34AD CD =,则AC = ____________,ABC ∆的面积是___________ .15.已知函数2()2(0)f x x x a a =++< ,若函数(())y f f x = 有三个零点,则 a =__________.A DCBADCBA16.某学校高一学生2人,高二学生2人,高三学生1人,参加,,A B C 三个志愿点的活动,每个活动点至少1人,最多2人参与,要求同年级学生不去同一志愿点,高三学生不去A 志愿点,则不同的安排方法有__________________种(用数字作答). 17.如图:已知矩形ABCD 中,1,2AD AB ==,E 为边AB 的中点,P 为边DC 上的动点(不包括端点),DP DC λ=u u u v u u u v(01λ<<),设线段AP 与DE 的交点为G ,则 AG AP ⋅u u u v u u u v的最小值是__________________.三、解答题:本大题共5小题,共74分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年11月稽阳联谊学校高三联考数学试题卷本科试题卷分选择题和非选择题两部分,全卷共4页,选择题部分1至3页,非选择题部分3至4页,满分150分,考试时间120分钟。

考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。

2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。

参考公式:如果事件A , B 互斥, 那么 棱柱的体积公式 P (A +B )=P (A )+P (B )V =Sh如果事件A , B 相互独立, 那么 其中S 表示棱柱的底面积,h 表示棱柱的高 P (A ·B )=P (A )·P (B )棱锥的体积公式如果事件A 在一次试验中发生的概率是p , 那么n V =13Sh 次独立重复试验中恰好发生k 次的概率其中S 表示棱锥的底面积,h 表示棱锥的高 P n (k )=C kn p k (1-p )n -k (k = 0,1,2,…, n) 棱台的体积公式球的表面积公式)2211(31S S S S h V ++=24R S π=其中S 1, S 2分别表示棱台的上下底面 球的体积公式:334R V π=球 (其中R 表示球的半径)面积,h 表示棱台的高第Ⅰ卷(选择题,共40分)一、选择题:本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合2{|14},{|60}M x x N x x x =-<<=--<,则M N = ( )A. {|14}x x -<<B. {|13}x x -<<C. {|23}x x -<<D. {|24}x x -<<2. 已知复数1iz i=-,其中i 为虚数单位,则||z = ( ) A.12B. 2C. D. 2 3. 若变量y x ,满足2020240x y y x y --≤⎧⎪-≤⎨⎪+-≥⎩,则26y x +-的最小值是 ( )A. 2-B. 45-C. 4-D. 12-4.已知函数sin ()2cos x xf x x=-的图象可能为 ( )A B C D5. 已知0,0a b >>,则“log 2log 20b a >>”是“|1||1|a b ->-”的 ( ) A .充要条件B C .充分不必要条件D 6. A.7,53 C. 3+537. 如图,已知点00(,)P x y 过点P 作椭圆222:143x y C +=直线AB 交1C 的两渐近线于点OE OF ⋅的值为A. 34C. 438. 四面体ABCD 中,,AB BC ⊥若四面体ABCD A. 23 B. 43 C. 3 D.39.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若,p m n q <<<且*,,,,p q m n p q m n N +=+∈,则下列判断正确的是 ( )A. 22p p S p a =⋅B. p q m n a a a a >C. 1111p q m n a a a a +<+D. 1111p q m nS S S S +>+ Oxy Ox y Oxy10. 已知e 为自然对数的底数,,a b 为实数,且不等式ln (21)10x e a x b +--++≤对任意的(0,)x ∈+∞恒成立.则当21b a ++取最大值时,a 的值为 ( ) A. 2e B. 21e - C. 3e D. 31e - 第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题,共36分,多空题每题6分,单空题每题4分。

11. 已知1tan 42πα⎛⎫+= ⎪⎝⎭,且322ππα<<,则tan α= ▲ ,sin2α= ▲ . 12. 若52345012345(2)(21)(21)(21)(21)(21)x a a x a x a x a x a x ,则012345a a a a a a +++++= ▲ ,2a = ▲ .13.已知动直线:2l y kx =-与圆22:(1)6C x y -+=交于,A B 两点.当1k =时,||AB = ▲ .当l 运动时,线段AB 的中点M 的轨迹方程为 ▲ .14. 在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,已知2sin bc A +222)0a b c +-=,则C ∠= ▲ ;若点D 是边AB 上靠近A 的三等分点,且1CD =,则ABC △面积的最大值为 ▲ . 15. 已知正实数,a b 满足121a b+=,则(1)(2)a b ++的最小值为 ▲ . 16. 袋中装有6个大小相同的球,其中3个白球、2个黑球、1个红球.现从中依次取球,每次取1球,且取后不放回,直到取出的球中有两种不同颜色的球时结束.用X 表示终止取球时已取球的次数,则随机变量X 的数学期望()E X = ▲ .17. 已知平面向量,,,a b c d 满足:||||2,8a b a b a c ==⋅=⋅=.若对满足条件的任意c ,||d c -的最小值恰为||d a -.设d xa yb =+,则2x y +的最大值为_____▲_______. 三、解答题:本大题共5小题,共74分。

解答应写出文字说明,证明过程或演算过程.18. (本题满分14分)已知函数2()2sin ()1,[,]442f x x x x πππ=+-∈(I)求()f x 的单调递增区间;(Ⅱ)若不等式|()|2f x m -<在,42x ππ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数m 的取值范围.19. (本题满分15分)如图,三棱台111ABC A B C -中,,30AB BC ACB ︒⊥∠=,侧面11ACC A 为等腰梯形,11112224AC AA AC C C ====,13A B =. (I)求证:1AC A B ⊥.(Ⅱ)求直线1B C 与平面11ACC A 所成角的正弦值.20. (本题满分15分)已知等差数列{}n a 满足:25a =,3a 是14a +和54a -的等比中项.数列{}n b 满足:1122(21)22n n n a b a b a bn ++++=-+·11122(21)22n n n a b a b a b n ++++=-+. (I)求数列{}n a 和{}n b 的通项公式.(Ⅱ)若n c =1252n c c c n +++<+.21. (本题满分15分)已知椭圆221:12x C y +=左焦点,点E 为2C 的焦点. (I)过点F 的直线与2C 相切于点P ,若||PF =2C 的方程.(Ⅱ)过点E 的直线l 交2C 于,P Q 两点,点M 4OQ OM =-(O 为坐标原点),且点M 1x =-(y <<上.记PQM ∆为1S ,EFP ∆的面积为2S ,求12SS 的取值范围.22. (本题满分15分)已知函数22()2()xf x eax x a R =+-∈.(I)若()f x 在[0,)+∞上为单调递增函数,求实数a 的最小值. (Ⅱ)若2()()(22)g x f x e x =++有两个极值点1212,()x x x x <.(i )求实数a 的取值范围;(ii )求证:2122||1ln ||2e a x x a +<+<.2020年11月稽阳联考数学参考答案及评分标准第19题图第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B2.B3.A4.A5.C6.A7.B8.A9.D 10.D各题详细参考解答1.解:由于{|14},{|23}M x x N x x =-<<=-<<,从而{|13}M N x x =-<<,选B.2.解:由于(1i)11222i i i z i +===-+-,则2||2z =.选B. 3.解:如图,不等式组2020240x y y x y --≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域为如图所示 的阴影部分,从而当4,2x y ==时,26y x +-有最小值2-,选A. 4. 解:由于sin ()2cos x xf x x=-为偶函数,且()f x 在0x =右侧取值正,故选A.5. 解:充分性:log 2log 201110|1||1|b a a b a b a b >>⇒>>⇒->->⇒->-,充分性成立.必要性:取12,2a b ==,则1|1||b 1|12a ->-⇒>成立,而条件不成立,故log 2log 20b a >>是|1||1|a b ->-的充分不必要条件,故选C.6.解:该几何体为一个正四棱柱截去两个全等的三棱锥而成,直观图如图,()12111132222473222S +⋅⋅=⨯+⋅⋅⋅⨯+⨯=+. 11152=11221323V V V ⋅=-⋅⋅-⋅⋅⋅=柱锥,故选 A.7. 解:椭圆2C 关于点00(,)P x y 的切点弦AB 的方程为003412x x y y +=.联立0034123x x y y y x +=⎧⎪⎨=⎪⎩得点000043,3232E x y x y ⎛⎫ ⎪ ⎪++⎝⎭,同理000043(,)3232F x y x y -- ,则()()()()2222220000004836121343232OE OF x y x y x y -⋅=+==---,故选B. D 1C 1B 1A 1D B8. 解:构建直三棱柱ABE CDF -,设,G H 分别为,ABE CDF ∆∆的外心,连接GH ,取其中点O ,则O 为直三棱柱ABE CDF -的外接球的球心,也为四面体ABCD 的外接球的球心,因为异面直线AB 与CD 所成的角为60,所以60ABE ∠=. 设三棱柱底面三角形ABE ∆的外接圆半径为r,则2r ==,2sin 6023AE r ==222222cos6012AE AB BE AB BE AB BE AB BE =+-⋅⋅⇒+-⋅=, 所以22122AB BE AB BE AB BE AB BE AB BE =+-⋅≥⋅-⋅=⋅所以111sin 60332A BCDABE CDF V V AB BE BC AB BE --==⋅⋅⋅⋅⋅=⋅≤故四面体ABCD 的体积的最大值为故选A. 9. 解:由于12212()()22p p p p p p a a S p a a pa ++==+≠,故选项A 错误.由于m p q n -=-,则[()][()]p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅=222[()][()]()()()()()m n m n m n a q n d a q n d a a q n d a a q n d q n d n m --⋅+--⋅=----=---22()0q n d --<,故选项B 错误.由于1111p q m n m n p q p q p q m n m na a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误. 设0x q n m p =-=->,则2()()()0pq mn n x m x mn x n m x -=+--=---<,从而pq mn <,由于222222p q m n p q pq m n mn +=+⇔++=++,故2222p q m n +>+.故222211()()22p q m n p q m n m n m nS S p q a d m n a d S S +--+--+=++>++=+.221111(1)(1)(2)(1)(1)[][]2224p q p p q q pq p q pq p q S S pa d qa d pqa a d d --+---⋅=+⋅+=++22221111(2)(1)(1)(2)(1)(1)2424mn m n mn p q mn m n mn m n mna a d d mna a d d+---+---<++≤++m n S S =⋅.由此1111p q m n m n p q p q p q m n m nS S S S S S S S S S S S S S S S ++++=>>=+,故选项D 正确. 故选D. 注:本题也可用特殊数列代入,利用排除法求解.AB10. 解:由于ln (21)10ln 21(1)(2)x e a x b x ex a x b +--++≤⇔+-≤+-+.此不等式对任意(0,)x ∈+∞恒成立,则需要保证10a +>.令1x e =,则11ln 21(1)2a b e e+-≤+-- 从而1(1)2a b e +≥+,从而211b a e+≤+. 另一方面,当31,1a e b =-=时,ln (21)10x e a x b +--++≤即为ln 20x ex -+≤,设()ln 2(0)f x x ex x =-+>,则11'()0ex f x e x x -=-=≥得10x e <≤,故()f x 在1(0,]e上单调递增,在1(,)e +∞上单调递减,从而1()()0f x f e≤=,即31,1a e b =-=可使不等式恒成立,从而21b a ++可取1e .综合上述,当21b a ++取最大值1e 时,31a e =-.故选D.第Ⅱ卷(非选择题部分 共110分)二、填空题:本大题共7小题,共36分,多空题每题6分,单空题每题4分。

相关文档
最新文档