有机高分子材料概述
7有机高分子材料

①硬质聚氯乙烯(UPVC)管
②聚乙烯(PE)管 ③聚丙烯(PP)管和无规共聚聚丙烯( PPR )管 ④聚丁烯(PB)管
塑料管与镀锌铁管优缺点比较
请观察使用两年后的塑料管和镀锌铁管的照片,对其优缺 点予以比较。
塑料管
镀锌铁管
3)塑料贴面装饰板 面层为三聚氰胺甲醛树脂渍过的印有各种色彩、
n
表观密度较小,有耐低温(-70℃)和耐化学腐蚀,电绝缘性, 耐磨性、耐水性均较好。 缺点:机械强度不高;易燃,熔融滴落,常加阻燃剂。 聚乙烯塑料主要用于化工耐腐蚀管道,用于配制多种涂料, 也可作防水、防潮材料。
聚丙烯(PP)
刚性大, 密度小0.90g/cm3~0.91g/cm3。
耐热性好, 使用温度为100℃~110℃。优良的电绝缘性能和耐 蚀性能,在常温下能耐酸、碱,导线外皮 制作零部件,如法兰、齿轮、风扇叶轮、把手及壳体等,还 可制作化工管道、容器。
线性非晶态聚合物的物 理形态与温度的关系
粘流态:链节可以自由地旋转,整个分子链也能自由移动,从而 成为能流动的粘液,比液态低分子化合物的粘度要大得多,又称 为塑性态。例如胶粘剂或涂料。
玻璃化温度 由高弹态向玻璃态转变的温度,用Tg 表示。
粘流化温度 由高弹态向粘流态转变的温度,用Tf 表示。
塑料与纤维: 要求Tg 高, Tf 低(较耐热,加工成型温度不高) 橡胶:要求Tg 低, Tf 高(耐寒又耐热) 一些非晶态高聚物的Tg和Tf值: 聚氯乙烯 Tg =81 ℃ 聚苯乙烯 Tg =100 ℃ 聚丁二烯(顺丁橡胶) Tg =-108 ℃ 天然橡胶 Tg =-73 ℃ Tf =175℃ Tf =135℃ Tf =122℃
一些聚合物的名称、商品名称、符号及单体
有机高分孑材料定义

有机高分孑材料定义有机高分子材料是指由碳、氢、氧、氮等元素构成的高分子化合物,具有较高的分子量和一定的结晶性或无定形性。
这类材料具有良好的可塑性、耐热性、耐腐蚀性和机械强度,广泛应用于各个领域。
一、有机高分子材料的分类有机高分子材料根据其结构和用途可以分为以下几类:1.聚合物:由单体通过聚合反应而形成的大分子化合物,如聚乙烯、聚丙烯等。
2.共聚物:由两种或两种以上单体通过共聚反应而形成的大分子化合物,如苯乙烯-丁二烯共聚物。
3.交联聚合物:在聚合过程中引入交联剂使得链之间相互交联而形成三维网络结构的高分子化合物,如环氧树脂等。
4.复合材料:将不同种类或不同形态的材料组装在一起形成新材料,如玻璃纤维增强塑料。
5.功能性高分子:在普通高分子基础上引入某些特殊结构或功能单元而形成的高分子化合物,如聚酰亚胺。
二、有机高分子材料的性质有机高分子材料具有以下几种基本性质:1.可塑性:有机高分子材料易于加工成各种形状,如薄膜、管道、板材等。
2.耐热性:有机高分子材料的熔点较高,耐热温度可达数百摄氏度。
3.耐腐蚀性:大多数有机高分子材料具有良好的耐酸碱、耐溶剂等化学稳定性。
4.机械强度:由于其长链结构和三维网络结构,有机高分子材料具有较好的强度和硬度。
5.导电性:一些功能性高分子具有良好的导电性能。
三、有机高分子材料的应用由于其优良的物理化学性质和广泛适用范围,有机高分子材料在各个领域都得到了广泛应用:1.包装领域:聚乙烯、聚丙烯等塑料袋和容器广泛应用于食品、化妆品、药品等包装行业。
2.建筑领域:聚氯乙烯、聚苯乙烯等塑料材料广泛应用于隔音、保温、防水等方面。
3.汽车工业:聚酰亚胺等高性能塑料材料广泛应用于汽车零部件制造。
4.电子领域:聚酰胺、聚碳酸酯等高性能塑料材料广泛应用于电子器件制造。
5.医疗领域:聚乳酸等生物降解塑料材料广泛应用于医疗器械和医用耗材制造。
四、有机高分子材料的发展趋势有机高分子材料的发展趋势主要体现在以下几个方面:1.功能性高分子的开发和应用,如导电高分子、光学高分子等。
有机高分子材料的定义

有机高分子材料的定义引言有机高分子材料是一种由碳、氢和其他不同元素组成的大分子化合物,具有丰富的结构和性质。
它们在各个领域中广泛应用,例如塑料制品、纺织品、药物、涂料和电子器件等。
本文将深入探讨有机高分子材料的定义、性质、合成方法和应用领域等方面。
有机高分子材料的性质有机高分子材料具有许多独特的性质,包括以下几个方面:高分子化合物有机高分子材料是由重复单元组成的高分子化合物。
重复单元通过共价键连接在一起,形成大分子链。
这种特殊的结构使有机高分子材料表现出良好的柔韧性和可塑性。
多样化的结构有机高分子材料的结构可以高度多样化,包括线性、支化、交联、共聚物和共价夹层等。
这些不同的结构赋予材料不同的物理、化学和机械性质,从而满足不同领域的需求。
可调控的性质通过控制合成方法、聚合度和分子结构等因素,可以调节有机高分子材料的性质。
例如,改变侧链的结构可以改变材料的亲水性或疏水性,从而调节其表面性质。
这种可调控性使有机高分子材料在不同应用中具有广泛的应用前景。
有机高分子材料的合成方法有机高分子材料的合成方法繁多,常见的包括以下几种:聚合反应聚合反应是最常用的有机高分子材料合成方法之一。
它通过将单体分子经过聚合反应连接成长链分子。
常见的聚合反应有自由基聚合、阴离子聚合、阳离子聚合和环氧树脂聚合等。
共聚物合成共聚物的合成是将不同单体分子一起聚合成一条链或交替聚合成间断分子链。
共聚物的合成方法丰富多样,例如自由基共聚、阴离子-自由基共聚和自由基-快速反应速率比较接近的两种单体共聚等。
接枝共聚合成接枝共聚合成是在一条长链上引入少量具有不同结构的分子根。
这种方法可以在一条链上引入其他特定功能的分子,从而赋予有机高分子材料特殊的性能。
有机高分子材料的应用领域由于有机高分子材料具有丰富的性质和可调控性,它们在各个领域中都有广泛应用:塑料制品有机高分子材料是制造塑料制品的主要原料。
根据不同的应用需求,选择不同的有机高分子材料可以制备出具有不同物理和机械性能的塑料制品,如聚乙烯、聚丙烯、聚苯乙烯等。
高一有机高分子材料知识点

高一有机高分子材料知识点有机高分子材料是高一化学课程中的重要内容之一。
本文将从定义、分类、性质和应用等方面介绍有机高分子材料的知识点。
一、定义有机高分子材料是由碳、氢和其他元素(如氮、氧、硫等)组成的大分子化合物。
其分子量通常很大,可以达到数万甚至几百万。
二、分类有机高分子材料可以按照形状、结构和合成方法等不同的角度进行分类。
1. 形状分类有机高分子材料根据形状可以分为线性高分子、支化高分子和网络高分子。
线性高分子是由线性排列的单体重复单元组成;支化高分子在线性结构的基础上引入支链,增加了分子间的交联点;网络高分子是由三维交联结构构成,具有更高的机械强度。
2. 结构分类有机高分子材料可以根据其结构特点分为聚合物、共聚物和聚合物共混物等。
聚合物是由同种单体组成的,例如聚乙烯、聚丙烯等;共聚物由两种或多种不同的单体共同聚合而成,例如丙烯酸-丙烯腈共聚物;聚合物共混物是由两种或多种不同聚合物混合而成,例如聚苯乙烯与聚苯乙烯均聚物的共混物。
3. 合成方法分类有机高分子材料的合成方法多种多样,常见的有聚合反应、缩聚反应和交联反应等。
聚合反应是指通过将单体分子进行化学反应,使其相互连接形成高分子链。
缩聚反应是将两个或以上的小分子通过化学反应互相连接。
交联反应是指通过化学反应或物理交联手段,使高分子链之间产生交联,增加材料的稳定性和机械强度。
三、性质有机高分子材料的性质取决于其分子结构和合成方法等因素。
1. 物理性质有机高分子材料通常是非晶态或有序部分结晶态的。
其物理性质包括密度、硬度、弹性、熔点、玻璃化转变温度等。
不同的有机高分子材料具有不同的物理性质,如聚乙烯具有良好的韧性和柔软性,而聚苯乙烯则具有较高的硬度和脆性。
2. 化学性质有机高分子材料的化学性质表现为与其他物质的反应。
例如,聚氯乙烯在高温下可与溴发生取代反应,聚丙烯可以与氧气发生氧化反应,聚酯可以与醇类发生酯交换反应等。
四、应用有机高分子材料在生活和工业中有广泛的应用。
有机高分子材料概括

有机高分子材料概括有机高分子材料是一类由碳元素为主体组成的高分子化合物。
由于其分子结构能够灵活调控和设计,有机高分子材料具有多样的性能和应用领域。
本文将逐步回答有机高分子材料的定义、特点、分类以及其在不同领域的应用。
第一部分:有机高分子材料的定义有机高分子材料是由碳元素为主体并含有多个重复单元的高分子化合物。
由于碳元素形成强健的碳-碳键和碳-氢键,有机高分子材料具有高度的稳定性和化学活性。
与无机材料相比,有机高分子材料更容易制备和加工,也有更广泛的应用领域。
第二部分:有机高分子材料的特点1. 高分子结构:有机高分子材料由大分子链构成,有较高的分子量和长的分子链。
这使得有机高分子材料具有较高的韧性和拉伸性。
2. 可塑性和可调性:由于有机高分子材料的大分子链可以进行适当的修饰和调整,其性能可根据需求进行设计和改变。
3. 化学活性:有机高分子材料具有丰富的官能团,可以与其他化合物发生反应。
这使得有机高分子材料可以通过化学修饰或功能化来扩展其应用领域。
4. 丰富的材料性能:由于有机高分子材料可以通过调整分子结构和聚合方法来制备,其性能可以在一定范围内进行调控。
有机高分子材料可以具有优异的力学性能、导电性能、光学性能、热学性能等。
第三部分:有机高分子材料的分类根据聚合物化学结构和性质的不同,有机高分子材料可以分为以下几类:1. 聚烯烃类:如聚乙烯、聚丙烯等。
2. 聚酯类:如聚酯纤维、PET等。
3. 聚酰胺类:如尼龙、聚氨酯等。
4. 聚醚类:如聚乙二醇、聚酰亚胺等。
5. 聚氨酯类:如聚氨基甲酸酯、聚脲醛等。
6. 聚酚类:如环氧树脂、苯酚醛树脂等。
7. 聚合物共混物:由不同种类聚合物组成的复合材料,如聚丙烯/聚苯乙烯共混物。
第四部分:有机高分子材料的应用领域1. 塑料制品:有机高分子材料可用于制造各种工业塑料制品,如瓶盖、塑料袋、塑料容器等。
2. 纤维材料:有机高分子材料可用于制造纤维材料,如纺织品、合成纤维等。
有机材料 高分子材料-概述说明以及解释

有机材料高分子材料-概述说明以及解释1.引言1.1 概述概述:有机材料和高分子材料作为重要的材料类别,在各个领域都有着广泛的应用。
有机材料是指由含碳的化合物组成的材料,具有丰富的化学性质和多样的结构形式。
而高分子材料则是由大量重复单体组成的聚合物,具有高分子量和可塑性等特点。
本文将对有机材料和高分子材料的特性、制备方法以及在各领域的应用进行系统地介绍和探讨。
通过深入研究这两种材料,我们可以更好地理解它们的优势和局限性,为未来材料设计和应用提供更多的思路和可能性。
1.2 文章结构文章结构部分主要介绍了整篇文章的框架和内容安排。
本文主要分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的三个小节。
在概述部分,将简要介绍有机材料和高分子材料的概念,引出本文的研究重点。
文章结构部分即本部分,解释了整篇文章的目录结构,为读者提供了整体了解。
正文部分包括有机材料、高分子材料和特性与应用三个小节。
在有机材料和高分子材料部分,将详细介绍它们的定义、特点、制备方法等内容。
特性与应用部分则会探讨它们在不同领域的应用和未来发展趋势。
结论部分包括总结、展望和结论三个小节。
在总结部分,将对本文涉及的内容进行概括总结;展望部分将展望有机材料和高分子材料未来发展的方向和趋势;结论部分则是对本文研究内容的结论和观点阐述。
通过上述结构,读者可以清晰地了解本文的内容安排和重点部分,有助于更好地理解和阅读全文。
1.3 目的文章目的是探讨有机材料和高分子材料在科学研究和工业应用中的重要性和价值。
通过对这两类材料的特性和应用进行深入分析,我们旨在帮助读者了解其在材料科学领域中的广泛应用和未来发展方向,从而促进这些材料的进一步研究和应用。
同时,我们也希望通过这篇文章的撰写,加深对有机材料和高分子材料在可持续发展和环境保护方面的潜在作用的认识,为未来的材料设计和应用提供一定的参考和启发。
2.正文2.1 有机材料有机材料是由含有碳原子骨架的化合物构成的材料,通常以碳、氢、氧、氮等元素为主要成分。
有机高分子材料的定义

有机高分子材料的定义有机高分子材料是一种由碳、氢、氧、氮等元素组成的大分子化合物,具有高分子量、高强度、高韧性、高耐热性、高耐腐蚀性等特点。
它们广泛应用于塑料、橡胶、纤维、涂料、胶粘剂、医药、食品、化妆品等领域,成为现代工业和生活中不可或缺的材料。
有机高分子材料的制备方法多种多样,常见的有聚合法、缩合法、加成反应法、交联反应法等。
其中,聚合法是最常用的制备方法之一,它是通过将单体分子中的双键或三键断裂,使其发生聚合反应,形成高分子化合物。
聚合法可以分为自由基聚合、阴离子聚合、阳离子聚合、离子交换聚合等多种类型,每种类型都有其适用的单体和反应条件。
有机高分子材料的种类繁多,常见的有聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚酰胺、聚酯、聚碳酸酯、聚醚等。
这些材料具有不同的物理化学性质和用途,例如聚乙烯具有良好的耐热性和耐腐蚀性,广泛应用于包装、建筑、电子等领域;聚酰胺具有优异的机械性能和耐热性,常用于制造高强度纤维和工程塑料;聚碳酸酯具有良好的透明度和耐冲击性,广泛应用于制造眼镜、瓶子、餐具等。
有机高分子材料的性能与结构密切相关,其结构可以通过改变单体的种类、反应条件、聚合方式等来调控。
例如,通过引入不同的官能团或改变聚合条件,可以制备出具有不同性质的共聚物、交联物、接枝物等。
此外,还可以通过添加填料、增塑剂、稳定剂等来改善材料的性能,例如添加玻璃纤维可以提高材料的强度和刚度,添加增塑剂可以提高材料的柔韧性和韧性,添加稳定剂可以提高材料的耐候性和耐热性。
有机高分子材料的应用范围非常广泛,其中塑料是最为常见的应用领域之一。
塑料具有轻质、易加工、成型性好、耐腐蚀、绝缘性能好等优点,广泛应用于包装、建筑、电子、汽车、医疗等领域。
例如,聚乙烯袋、聚苯乙烯泡沫、聚氯乙烯管道、聚酰胺纤维等都是塑料制品的代表。
除了塑料,有机高分子材料还广泛应用于橡胶、纤维、涂料、胶粘剂、医药、食品、化妆品等领域。
例如,橡胶是一种具有高弹性、耐磨性、耐腐蚀性等特点的有机高分子材料,广泛应用于轮胎、密封件、管道等领域;纤维是一种具有高强度、高模量、高耐热性等特点的有机高分子材料,广泛应用于纺织、航空、航天等领域;涂料是一种具有良好的防腐、防水、防火、美观等特点的有机高分子材料,广泛应用于建筑、汽车、船舶等领域。
第五章 有机高分子材料(共100张PPT)

数学模型,故测定的统计平均值互不相等,常见的相对分子质量
有数均相对分子质量、重均相对分子质量、黏均相对分子质量
等。
第二节 高分子的合成、结构与性能
1. 高分子的合成原理及方法
2. 高分子的结构和性能
一、 高分子的合成原理及方法
1. 高分子的合成原理
高功能化
对高分子功能的研究正在深度和广度上获得进展,从离子交
换开展到电子交换,又开展到各种高分子别离膜和高分子吸附
剂。从电绝缘体扩展到半导体、导体,甚至超导体。由电性能扩
展到光、磁、声、热、力等性能。从化学、物理性能扩展到了生
物性能。
复合化
高分子材料是结构复合材料的最主要的基体之一,以玻璃纤
➢ 60年代,是聚烯烃、合成橡胶、工程塑料、溶液聚合、配位聚合、 离子聚合的开展时期,形成了高分子全面繁荣的局面。
➢ 70年代,开展了液晶高分子。
➢ 70年代以后,主要提高产量、改进性能、开展功能等方面。
四、高分子材料的战略地位和开展趋势
1.高分子材料在国民经济和科学技术中的战略地位
材料是工业生产开展的根底,新材料的出现往往会给新技术带来划时代的 突破。高分子材料是材料领域中的后起之秀,它的出现带来了材料领 域的重大变革,从而形成了金属材料、无机材料、高分子材料和复合 材料多角共存的格局。
生。
智能化
智能材料使材料本身带有生物所具有的高级功能,例如具有 预知预告性、自我诊断、自我修复、自我增殖、认识识别能力、 刺激反响性、环境应答性等种种特性,对环境条件的变化能作出
符合要求的应答。
五、高分子材料的根本概念
1. 高分子的链结构
2. 高分子的聚合度及其计算
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陈彪 2011327120112 材料科学与工程 11(1)班 摘要:有机高分子材料包括木材、棉花、皮革等天然高分子材料和朔料、合 成纤维及合成橡胶等有机聚合物合成材料。它们质地轻、原料丰富、性能良好、 用途广泛,因而发展速度很快。塑料、橡胶和合成纤维是有机高分子材料的典型 的代表,此外,还有涂料和粘合剂等。 关键词:有机高分子材料;发展趋势 高分子材料是由可称为单体的原料小分子通过聚合反应而合成的。绝大部分 原料单体为有机化合物。在有机高分子化合物中,除碳原子外,其他主要元素为 氢、氧、氮等。在碳原子与碳原子之间、碳原子与其他元素的原子之间能够形成 稳定的共价键组成高分子化合物。 人们使用高分子材料的历史很早,由于它们质地轻、原料丰富、性能良好、 用途广泛,因而发展速度很快,自 20 世纪 20 年代以来,就已经发展了人工合成 的各种高分子材料。 高分子材料有各种不同的分类方法。例如,按来源可以分为天然高分子材料 和合成高分子材料。按大分子主连接结构可分为碳链高分子材料、杂链高分子材 料及元素有机高分子材料等。最常用的是根据高分子材料的性能和用途进行分 类。 根据性能和用途,高分子材料可分为橡胶、塑料、纤维、粘合剂、涂料、功 能高分子材料以及复合材料等不同的类别。 下面以介绍这几大类高分子材料为主。 1 橡胶 橡胶是有机高分子弹性化合物。在很宽的温度范围内具有优异的弹性,所以又
称为高弹体。按其来源可分为天然橡胶和合成橡胶两大类。天然橡胶是从自然界含胶植物制 取的一种高弹物质。合成橡胶是用人工合成的方法制得的高分子弹性材料。
橡胶具有独特的高弹性,还具有良好的疲劳强度、点绝缘性、耐化学腐蚀以及耐磨性等 使它成为国民经济中不可缺少和难以代替的重要材料。
2 塑料 塑料是以聚合物为主要成分,在一定条件下可塑成一定形状并且在常温下保 持其形状不变的材料,习惯上包括塑料的半成品,如压塑粉等。 作为塑料基础组分的聚合物,不仅决定塑料的类型而且决定塑料的主要性 能。一般而言,塑料用聚合物的内聚能介于纤维与橡胶之间,使用温度范围在其脆化温
纤维可分为两大类:一类是天然纤维,如棉花、羊毛、蚕丝和麻等,另一类是化学 纤维,即用天然或合成高分子化合物经化学加工而制得的纤维。
4 粘合剂 粘合剂又称为胶粘剂,是一种能把各种材料紧密地结合在一起的物质。分为 天然的、合成的、有机的和无机的。粘合剂都是具有良好站街能力的物质,但是 具有代表性的是以聚合物为集体组成,多组分体系的高分子粘合剂。高分子粘合 剂是以高分子化合物为主体制成的胶粘材料,分为天然和合成胶粘剂两种,应用 较多是合成胶粘剂。 5 涂料 涂料是指涂抹在物体表面形成的具有保护和装饰作用的膜层材料,也是多组 分体系。体系中主要成分是成膜物质,是聚合物或是能够形成聚合物的物质,它 决定了涂料的基本性能。涂料用聚合物与塑料、纤维和橡胶等用聚合物的主要差 别是平均分子量较低。根据不同的聚合物品种和使用要求需添加不同的辅助成分 组分,如颜料、溶剂、催化剂等。根据成膜物质不同,分为油脂涂料、天然树脂 涂料和合成树脂涂料。 最早是使用植物油和天然树脂熬炼而成的,其作用与中国的大漆相近,因而 称为“油漆”。随着石油化工和合成聚合物工业的发展,当前植物油和天然树脂 已逐渐被合成聚合物改性和取代,涂料所包括的范围已远远超过“油漆”原来的 侠义范围。 6 功能高分子材料 功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具 有物质、能量和信息的转换、传递和储存等特殊功能。 已使用的功能高分子材料有高分子信息转换材料、高分子透明材料、高分子 模拟酶、生物降解高分子材料、高分子形状记忆材料和医用及药用高分子材料等。 7 复合材料 复合材料是指由两种或更多种物理性能、化学性能、力学性能和加工性能不 同的物质,经人工组合而成的多相固体材料。复合材料的基本组分可划分为基本 相(基本材料)和增强相(增强材料)两种。 自然界中许多物质度可以看成是复合材料,木材、竹子便是纤维素(抗拉强 度高)和木质素(起黏结纤维素作用)组成的复合材料。人们很早以前就利用复 合原理制造复合材料,用泥土与麦秸复合制成的土坯就是最原始的建筑用复合材 料,用水、沙、石、泥组合而成的混凝土是土木、建筑工程不可或缺的复合材料。 20 世纪 70 年代以来,高分子材料主要在提高产量、改进性能、发展功能等 方面发展。对于大品种,主要寻找高活性引发剂,配以大型高效设备,简化工艺 流程,向自动化、大型化、提高生产能力和劳动生产率方向发展。 近几年来,高分子改性、高性能和功能高分子材料成为高分子发展的主流方 向。通过共聚、共混、复合等途径,来扩大品种,提高性能。除了大品种外,工 程塑料和特种性能的高分子,如高强度、耐高温、耐辐射、导电、能量吸收、发 光、高频绝缘、半导体、光敏树脂以及生物医用高分子等精细高分子将是新的发 展方向。
参考文献: 1 许并社主编. 材料科学概论. 北京:北京工业大学出版社,2012 2 杨秀英主编. 高分子材料鉴别与应用. 哈尔滨. 哈尔滨工程大学出版 社,2008 3 张留成,瞿雄伟,丁会利. 高分子材料基础. 北京:化学工业出版社,2002
度和玻璃化温度之间。应当注意,同一种聚合物,由于制备方法、条件及加工方法的不同, 常常既可作塑料用,也可做纤维用。
塑料是一类重要的高分子材料,具有质地轻、电绝缘、耐化学腐蚀、容易加 工成型等特点,其性能可调范围宽,具有广泛的应用领域。
3 纤维
纤维是指长度比直径大很多倍形变能力小、模量高,一般为结晶聚合物。