长安大学609数学分析2012年考研专业课真题试卷

合集下载

2012年考研数学二真题及答案解析

2012年考研数学二真题及答案解析

2012年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线渐近线的条数为()221x xy x +=-(A )0(B )1(C )2(D )3【答案】:C【解析】:,所以为垂直的221lim 1x x xx →+=∞-1x =,所以为水平的,没有斜渐近线 故两条选22lim 11x x x x →∞+=-1y =C (2)设函数,其中为正整数,则2()(1)(2)()xxnx f x e e e n =--- n '(0)f =(A )1(1)(1)!n n ---(B )(1)(1)!nn --(C )1(1)!n n --(D )(1)!nn -【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+--- 所以'(0)f =1(1)!n n --(3)设a n >0(n =1,2,…),S n =a 1+a 2+…a n ,则数列(s n )有界是数列(a n )收敛的(A)充分必要条件.(B)充分非必要条件.(C )必要非充分条件.(D )即非充分地非必要条件.【答案】:(B)(4)设sin x d x (k=1,2,3),则有D2kx keI e =⎰(A )I 1< I 2 <I 3.(B) I 2< I 2< I 3.(C) I 1< I 3 <I 1,(D) I 1< I 2< I 3.【答案】:(D)【解析】::看为以为自变量的函数,则可知2sin kx keI e xdx =⎰k ,即可知关于在上为单调()2'sin 0,0,k k I e k k π=≥∈2sin kx k eI e xdx =⎰k ()0,π增函数,又由于,则,故选D()1,2,30,π∈123I I I <<(5)设函数f (x,y ) 可微,且对任意x ,y 都 有 >0,<0,f (x 1,y 1)<f(,)f x y x ∂∂(,)f x y y∂∂(x 2,y 2)成立的一个充分条件是(A) x 1> x 2, y 1< y 2.(B) x 1> x 2, y 1>y 1.(C) x 1< x 2, y 1< y 2.(D) x 1< x 2, y 1> y 2.【答案】:(D)【解析】:,表示函数关于变量是单调递增的,关于(,)0f x y x ∂>∂(,)0f x y y∂<∂(,)f x y x 变量是单调递减的。

2012年考研《数学》真题

2012年考研《数学》真题

2012年考研《数学》真题2012年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)曲线221x x y x +=-渐近线的条数为()(A )0 (B )1 (C )2 (D )3 (2)设函数2()(1)(2)()xxnx f x e e e n =---L ,其中n 为正整数,则'(0)f =(A )1(1)(1)!n n --- (B )(1)(1)!n n -- (C )1(1)!n n -- (D )(1)!n n -(3)如果(,)f x y 在()0,0处连续,那么下列命题正确的是( ) (A )若极限00(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(B )若极限2200(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微 (C )若(,)f x y 在(0,0)处可微,则极限00(,)limx y f x y x y →→+存在(D )若(,)f x y 在(0,0)处可微,则极限2200(,)limx y f x y x y→→+存在 (4)设2sin k x k I e xdx π=⎰ (k=1,2,3),则有D(A )123I I I << (B) 321I I I << (C) 231I I I << (D) 213I I I <<(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234,,,c c c c 为任意常数,则下列向量组线性相关的是( )(A )123,,ααα (B )124,,ααα (C )134,,ααα (D )234,,ααα(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且1112P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,()123,,P ααα=,()1223,,Q αααα=+则1Q AQ -=( )(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )112⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D )221⎛⎫⎪⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=() 1124()()()()5355A B C D(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为()11()1()()()122A B C D --二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (9)若函数)(x f 满足方程0)(2)()('''=-+x f x f x f 及xe xf x f 2)()('=+,则)(x f =________。

2012年考研数学试题详解及评分参考

2012年考研数学试题详解及评分参考

P{X < Y} =
(A)
1 5
(B)
1 3
(C)
2 3
(D)
4 5
【答】 应选 (A) .
【解】 由题设,知 X 与Y 的概率密度分别为
f
X
(
x)
=
ìe- x
í î
0,
,
x > 0, x£0
fY
(
y)
=
ì4e-4
í î
0,
y
,
又 X 与Y 相互独立,所以 X 与 Y 的联合密度函数为
y >0, y£0
æ1 0 0ö
(A)
ç ççè
0 0
2 0
0 1
÷ ÷÷ø
æ1 0 0ö
(B)
ç ççè
0 0
1 0
0 2
÷ ÷÷ø
æ2 0 0ö
(C)
ç ççè
0 0
1 0
0 2
÷ ÷÷ø
æ2 0 0ö
(D)
ç ççè
0 0
2 0
0 1
÷ ÷÷ø
【答】 应选 (B) .
【解法一】 显然 Q 是将 P 的第 2 列加到第 1 列得到的,所以有 Q = PE(1)+(2) ,因而
(A) a1,a2 ,a3
(B) a1,a2 ,a4
(C) a1,a3,a4
(D) a2 ,a3,a4
【答】 应选 (C) .
【解】 由 a1,a2 ,a3 = - c1 ,知 c1 ¹ 0 时,a1,a2 ,a3 线性无关,故排除(A);
同理,由 a1,a2 ,a4 = c1 ,知 c1 ¹ 0 时,a1,a2 ,a4 线性无关,故排除(B);

2012年考研数学真题(完整版)

2012年考研数学真题(完整版)

2012年全国硕士研究生入学统一考试数学一试题一、选择题:1 8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1) 曲线221x x y x +=-渐近线的条数 ( )(A) 0 (B) 1 (C) 2 (D) 3(2) 设函数2()(1)(2)()x x nx y x e e e n =--- ,其中n 为正整数,则(0)y '= ( )(A) 1(1)(1)!n n --- (B) (1)(1)!n n -- (C) 1(1)!n n -- (D) (1)!n n - (3) 如果函数(,)f x y 在(0,0)处连续,那么下列命题正确的是 ( )(A) 若极限0(,)limx y f x y x y →→+存在,则(,)f x y 在(0,0)处可微(B) 若极限2200(,)limx y f x y x y→→+存在,则(,)f x y 在(0,0)处可微(C) 若(,)f x y 在(0,0)处可微,则 极限00(,)limx y f x y x y →→+存在(D) 若(,)f x y 在(0,0)处可微,则 极限2200(,)lim x y f x y x y→→+存在(4)设2sin (1,2,3)k xK exdx k π==⎰I 则有 ( )(A)123I I I << (B) 321I I I << (C) 231I I I << (D)213I I I <<(5)设1100C α⎛⎫⎪= ⎪ ⎪⎝⎭,2201C α⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,3311C α⎛⎫ ⎪=- ⎪ ⎪⎝⎭ ,4411C α-⎛⎫ ⎪= ⎪ ⎪⎝⎭ ,其中1234,,,C C C C 为任意常数,则下列向量组线性相关的为( )(A)123,,ααα (B) 124,,ααα (C)134,,ααα (D)234,,ααα(6) 设A 为3阶矩阵,P 为3阶可逆矩阵,且1100010002p AP -⎛⎫⎪= ⎪⎪⎝⎭.若P=(123,,ααα),1223(,,)ααααα=+,则1QAQ -= ( )(A) 100020001⎛⎫ ⎪ ⎪ ⎪⎝⎭(B) 100010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(C) 200010002⎛⎫ ⎪ ⎪ ⎪⎝⎭(D)200020001⎛⎫⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}p X Y <=( )(A)15(B) 13(C)25(D)45(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为 ( )(A) 1 (B)12(C) 12-(D)1-二、填空题:9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)若函数()f x 满足方程'''()()2()0f x f x f x +-=及''()()2f x f x e +=,则()f x =(10)20x =⎰(11)(2,1,1)()|z grad xy +y=(12)设(){},,1,0,0,0x y z x y z x y z ∑=++=≥≥≥,则2y ds ∑=⎰⎰(13)设X 为三维单位向量,E 为三阶单位矩阵,则矩阵T E XX -的秩为 (14)设A ,B ,C 是随机变量,A 与C 互不相容,()()()11,,23p A B P C p A B C ===三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15) 证明21ln cos 1(11)12x xx x x x++≥+-<<-(16)求函数222(,)x y f x y xe +-=的极值(17)求幂级数22044321nn n n xn ∞=+++∑的收敛域及和函数(18) 已知曲线(),:(0),cos 2x f t L t y tπ=⎧≤<⎨=⎩其中函数()f t 具有连续导数,且'(0)0,()0(0).2f f t t π=><<若曲线L的切线与x 轴的交点到切点的距离恒为1,求函数()f t 的表达式,并求此曲线L 与x 轴与y 轴无边界的区域的面积。

2012考研数学一真题及详解

2012考研数学一真题及详解

2012年全国硕士研究生统一考试数学一试题及答案一、选择题:共8小题,每题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定的位置上。

1、曲线221x x y x +=-渐近线的条数( )(A )0; (B )1; (C )2; (D )3。

解:(C ):22211lim lim 1111x x x x x x x→∞→∞++==--,可得有一条水平渐近线1y =;222112lim 1lim 1x x x x x x →→+==∞--,可得有一条铅直渐近线1x =;22111(1)1lim lim lim 1(1)(1)12x x x x x x x x x x x x →-→-→-++===--+-,可得1x =-不是铅直渐近线,故答案为(C )。

2、设函数2()(1)(2)()x x nx y x e e e n =--- ,其中n 为正整数,则'(0)y =( ) (A )1(1)(1)!n n ---;(B )(1)(1)!n n --;(C )1(1)!n n --;(D )(1)!n n -。

解:(A ):(0)(11)(12)(1)0y n =---= ;则22000()(0)(1)(2)()(2)()'(0)lim lim lim0x x nx x nx x x x y x y e e e n x e e n y x x x→→→------===- 1(12)(1)(1)(1)!n n n -=--=-- 。

故答案为(A )。

3.如果函数(,)f x y 在(0,0)处连续,那么下列例题正确的是( )(A )若极限(,)(0,0)(,)lim ||||x y f x y x y →+存在,则(,)f x y 在(0,0)处可微;(B )若极限22(,)(0,0)(,)limx y f x y x y →+存在,则(,)f x y 在(0,0)处可微;(C )若(,)f x y 在(0,0)处可微,则极限(,)(0,0)(,)lim||||x y f x y x y →+存在;(D )若(,)f x y 在(0,0)处可微,则极限22(,)(0,0)(,)limx y f x y x y →+存在。

2012年全国硕士研究生入学考试数学一试题及解析-推荐下载

2012年全国硕士研究生入学考试数学一试题及解析-推荐下载

(D)若
(4)设 Ik
(A) I1 I2 I3
(5)设 1
f
(x,

则线性相关的向量组为
(A)1,2 ,3
y)
在 (0, 0)
存在,则 f (x, y) 在 (0, 0) 处可微
存在,则
处可微,则极限 lim x0 y0
k ex2 sin xdx(k 1, 2, 3) ,则有 ______
2012 年全国硕士研究生入学统一考试
数学一试题
一、选择题:1-8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项 符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(1)曲线
(A)0
y

x2 x x2 1
渐进线的条数 ________
(B)1
(2)设函数 f (x) (ex 1)(e2x 2)(enx n) ,其中 n 为正整数,则 f (0) ________
(16)(本题满分 10 分)
f (x, y) xe

1 x
x2 y2
2
的极值
(17)(本题满分 10 分)
求幂级数 4n2 4n 3 x2n 的收敛域及和函数
n0 2n 1
(18)(本题满分 10 分)
已知曲线
L
:
x f (t)

y

cos
t
(0 t
P 1
AP
2 0 0

0 0
1 0
2
(C)
5

0 2
(C) 1 2
P( AB)
1

2012年考研数学二真题及答案解析

2012年考研数学二真题及答案解析

数学(二)试题 第 5 页 (共 11 页)
(23)(本题满分 11 分)已知
1)求 a 的(k=1,2,3),则有()
0
(A)I1< I2 <I3.
(B) I3< I2< I1.
(C) I2< I3 <I1,
(D) I2< I1< I3.
(5)设函数 f (x,y) 可微,且对任意 x,y 都 有 f (x, y) x
f (x, y) >0, y <0,f(x1,y1)<f
(A) (1)n1(n 1)!
(B) (1)n (n 1)!
(C) (1)n1n!
(D) (1)n n!
(3)设 an>0(n=1,2,…),Sn=a1+a2+…an,则数列(sn)有界是数列(an)收敛的
(A)充分必要条件.
(B)充分非必要条件.
(C)必要非充分条件.
(D)既非充分也非必要条件.
已知函数 f (x) 1 x 1 ,记 a lim f (x)
sin x x,
x0
(1)求 a 的值
(2)若当 x 0 时, f (x) a 是 xk 的同阶无穷小,求 k
(16)(本题满分 10 分)
( ) -x2+y2
求函数 f x, y = xe 2 的极值。
(17)(本题满分 10 分)
(2)记(1)中的实根为
xn
,证明
lim
n
xn
存在,并求此极限。
(22)(本题满分 11 分)
1 a 0 0
1

A


0
1
a

长安大学2011-2012学年第一学期研究生《数值分析原理》试题(A)卷及答案

长安大学2011-2012学年第一学期研究生《数值分析原理》试题(A)卷及答案

解得: x1 x2
3 h ,——4 分 5
1 A1 A2 h3 。——4 分 3
2
五. (本题满分 12 分)给定方程组
x1 2 x2 2 x3 5 x1 x2 x3 1 2x 2x x 3 2 3 1
1) (本小题满分 6 分)用三角分解法解此方程组; 2) (本小题满分 6 分)写出解此方程组的雅可比迭代公式,说明收敛性;取初始 向量 x0 (0,0,0) ,当 xk 1 xk 10 时,求其解。
长安大学 2011-2012 学年第一学期研究生 《数值分析原理》试题(A)卷
说明:1.试题共 9 道大题、共 2 页。 2.考试时间两个小时,可带计算器。 3.所有答案都写在答题纸(试卷)上,否则无效。
一. (本题满分 8 分)给定方程 x x 2 0 , x [0,2] ,采用迭代公式
(0 , 0 ) 1/ 2 , (0 , 1 ) 1/ 3 , (0 , 2 ) 1/ 4 , (1 , 1 ) 1/ 4 , (1 , 2 ) 1/ 5 , (2 , 2 ) 1/ 6 , 1 1 1 (0 , f ) ln 2 , (1 , f ) 1 , (2 , f ) ln 2 ; 2 4 2 2
二. (本题满分 8 分)对于定积分 I

1 0
f ( x)dx ,当 M 2 1/8 及 M 4 1/ 32 ,用 11 点的
复化辛普森(Simpson)求积公式求 I 的截断误差为 RS [ f ] ,用 n 个节点的复化梯形 求 积 公 式 求 I 的 截 断 误 差 为 RT [ f ] , 要 使 RT [ f ] RS [ f ] , n 至 少 是 多 少 ? ( M 2 max f ( x) , M 4 max f 解: n1 10 , h1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档