工程信号处理实验报告

工程信号处理实验报告
工程信号处理实验报告

( 2011-2012 学年

第二学期)

重庆理工大学研究生课程论文

课程论文题目: 《工程信号处理实验报告》

课程名称 工程信号处理实验 课程类别 □学位课 非学位课

任课教师 谢明 所在学院 汽车学院 学科专业 机械设计及理念

姓名 李文中 学

50110802313 提交日期

2012年4月12日

工程信号处理实验报告

姓名:李文中学号:50110802313

实验报告一

实验名称:数据信号采集及采样参数选定

1实验目的

1.1了解信号采集系统的组成,初步掌握信号采集系统的使用。

1.2加深对采样定理的理解,掌握采样参数的选择方法

1.3了解信号采集在工程信号处理中的实际应用,及注意事项。

2 实验原理

2.1 模数转换及其控制

对模拟信号进行采集,就是将模拟信号转换为数字信号,即模/数(A/D)转换,然后送入计算机或专用设备进行处理。模数转换包括三个步骤:(1)采样,(2)量化,(3)编码。采样,是对已知的模拟信号按一定的间隔抽出一个样本数据。若间隔为一定时间 T,则称这种采样为等时间间隔采样。除特别注明外,一般都采用等时间间隔采样;量化,是一种用有限字长的数字量逼近模拟量的过程。编码,是将已经量化的数字量变为二进制数码,因为数字处理器只能接受有限长的二进制数。模拟信号经过这三步转换后,变成了时间上离散、幅值上量化的数字信号。A/D转换器是完成这三个步骤的主要器件。

在信号采集系统中,A/D 转换器与计算机联合使用完成模数转换。用计算机的时钟或用软件产生等间隔采样脉冲控制 A/D 转换器采样。A/D 转换器通过内部电路进行量化与编码,输出有限长的二进制代码。信号采集系统中,通常由以 A/D转换器为核心的接口电路及控制软件,进行信号采集控制。

*注这部分是由本实验所用的信号采集器自动完成的,以上也是实验器材-信号采集器的部分工作原理。以后实验中就不再赘述。

2.2 信号采集的参数选择

(1)采样频率( f s)

采样频率f s=1T,其中T是等间隔采样间隔时间。工程测试中,习惯用f s来表示采样时间间隔。并取 1、2、5数列的数作为采样频率,如:100 Hz、200 Hz、500 Hz、1K Hz、2KHz 、20K Hz等。一个信号采集系统,采样频率一般在 0Hz至几十 kHz的范围内,其最高频率受到系统内 A/D转换器的限制。

采样频率f s的选择,要根据信号特点、分析的要求、所用的设备等诸方面的条件来定。若对信号作时域分析,则采样频率越高,信号的复原性越好。一般情况可采至f s=10f m,其中f m为信号中最高频率。值得注意的是,如果信号处理设备中的数据容量是有一定限制的,采样频率高,所采得的信号记录长度就短,会影响信号的完整性。所以在选取f s时要与采样长度相互兼顾。

对信号作频域分析时,为了避免混叠,采样频率f s要满足采样定理,即

f s>2f m(1)

在实际分析中,一般取f s=(5~10)f m。同样值得注意的是,有些信号处理设备作频域分析时采样点数为固定值,由公式

?f=f s

(2)N

其中,?f为频普分析分辨率,N为采样点数。

可知提高f s就会使频率分辨率变差(?f越大分辨率越低)。若只对信号中某些频率成分感兴趣,可以采用抗混滤波器来降低采样频率。在进行动态信号测试中测量仪器必须具有抗混滤波功能。实际仪器设计中,对于选择性好的滤波器,常取

f s=2.56f c (3)

f c是低通滤波器的截止频率。即采样频率可依滤波器截止频率的 2~3 倍来考虑。

(2)采样点数

进行时域分析时,采样点数尽可能多一些,采样点数越多信号越容易复原。进行频域分析时,为了快速傅里叶变换(FFT)计算的方便,采样点数一般取 2 的幂数,如 512、1024、2048、4096 等。一般取 1024 点。

(3) 信号的记录长度

先确定频普分析分辨率?f,再确定采样点数N。由公式(2)可推出采样频率f s.被分析信号的每一段样本的长度T,可由

T=N?1f s (4)

计算得出。

(4) 触发方式选择

触发信号是启动 A/D开始采样的信号。触发方式选择即选择不同形式的触发信号。触发方式可以分为以下几种,下面做一些简要介绍。

手动触发:它是用手动方式发出采样命令后即开始对信号采样。一般是发出采样命令后开始采样,这种方式适用于采集平稳信号。

信号电平触发:它是利用被采集信号本身电平的变化来触发。触发电平的大小可以设置。当信号电压低于触发电平时采样系统不采样,当信号达到触发电平便采样。这对采集脉冲信号有利。

预触发:信号电平触发只能采集到触发以后的信号,对于脉冲信号采集不到信号前沿。预触发能在触发电平到来之前开始触发,至于“前”到什么时候,可以事先设置。

外触发:用采集系统以外的信号,直接启动 A/D转换芯片。

本实验所用的触发方式为手动触发。

3 实验器材

3.1信号发生器两台(本实验只用一台,另一台为后续实验备用)

3.2信号采集器一台

3.3信号采集与波形显示软件一套

3.4计算机一台

3.5数据线若干

4 实验步骤

4.1按图1-1连接所需信号采集仪器

4.2实验操作步骤

4.2.1 用数据采集线将信号发生器与信号采集器所用端口连接,本实验所用为2号端口。再用数据线将信号采集器与装有信号采集与波形显示软件的计算机连接。接通电源,开启各实验仪器检查连接正确性,正确则可进行后续实验。如有错误,检查并调试连接,直至正确。

4.2.2打开信号采集软件,在软件中设置信号采集通道与信号采集器所用通道相同。设置相应的采样频率,手动触发采集,按“开始”按钮,开始信号采集,从显示屏上可看出采集到的信号的波形。按“暂停”按钮,可停止采集。调节信号发生频率旋钮可以得到不同频率的信号;选择波形按钮可以得到不同的波形。

本次实验是用同一频率矩形波显示,用不同集频率(200Hz~20KHz)来表述采样频率对信号采集的影响。

5 实验数据处理及结果分析

采样频率、波形及信号发生器频率如下表所示:

采集信号在软件中显示信号频率与振幅如下一系列图形所示:f s=2KHz时

f s=4KHz时

f s=5KHz时

f s=10KHz时

f s=20KHz时

结果分析

首先要声明一点,实验过程中少取了一个采集频率f s=1KHz时振幅频率图。本想用simulink做出来的,无奈能力及时间有限。从总体上讲对本次实验要说明的问题-数据信号采集及采样参数选定,没有太大的影响。

(1)在工程中,所要采集信号的频率是未知的。对采样频率f s的初次选择应遵循:从大到小的顺序进行选择,即首先将采样频率f s设定在较高数值,然后在遵循采样定理f s>2f m的前提下,逐步降低f s。

这样操作可以避免信号频率出现“虚假”现象,即波峰示值有可能是已经折叠回来之后的值。如实验数据图一样,采样频率如果少于2KHz就会出现波峰的逆转,而我们在操作时也不知道采样的波峰示值已经发生折返,因此我们在设定初次采样频率时应遵循以上采样原则,设定采样参数。

(2)采样频率中有间隔性的小振幅且小振幅的频率有很低的,如采样频率2KHz图;也有很高的,如采样频率20KHz图左侧部分。造成这种现象原因可能是:矩形波并不是完美

的矩形波。影响因素如,信号发生器及信号采集器本身就有一定的误差加上交流电源的影响。改进的办法可以加上一个高通滤波器和一个低通滤波器,设置恰当的阀值就可以去除掉振幅峰值左右两侧的干扰振幅。

另外,最后使用笔记本电脑代替台式机。因为笔记本电脑的电源是直流,影响较小。还可以适当隔开各种设备,添加接地线等措施避免彼此的影响。

实验报告二

实验名称:波形叠加

1 实验步骤

1.1按下图连接设备

1.2实验操作步骤

1.2.1 用数据采集线将信号发生器与信号采集器所用端口连接,本实验所用为2号和4号两端口。再用数据线将信号采集器与装有信号采集与波形显示软件的计算机连接。接通电源,开启各实验仪器检查连接正确性,正确则可进行后续实验。如有错误,检查并调试连接,直至正确。

1.2.2打开信号采集软件,在软件中设置信号采集通道与信号采集器所用通道相同。设置两种不同的信号频率及相应的采样频率,手动触发采集,按“开始”按钮,开始信号采

集,从显示屏上可看出采集到信号的波形叠加。按“暂停”按钮,可停止采集。调节信号发生频率旋钮可以得到不同频率的信号;选择波形按钮可以得到不同的波形。

2 实验结果及其分析

结果图形1是低频正弦波与高频矩形波叠加

结果图形2是低频矩形波与高频矩形波叠加

结果图形3是相同频率矩形波叠加

结果的分析如下

图形1和图形2是相似的,不同之处在于低频载波不同。图形1是正弦波作为载波,而图形2是矩形波作为载波。两者的实质相同,均为波形叠加。由于图形1的载波是正弦波,矩形波在叠加过程中和呈现的趋势是正弦曲线。

图形2与图形3相比较,相同之处都是矩形波的叠加,不同之处在于图形2两矩形波频率不同,而图形3中参与叠加的矩形波频率是相同的,两者互为载波,产生的叠加效果波形振幅上下两侧相接触,彼此互入。

波形的叠加效果可以产生多种美丽的信号图案,以下几幅叠加效果图产生的原理与上面相同,以供欣赏。

实验报告三

实验名称:用数学方法与实验法共同验证:时域相乘相当于频域卷积

1 实验步骤

1.1按下图连接设备

1.2实验操作步骤

1.2.1 用数据采集线将信号发生器与信号采集器所用端口连接,本实验所用为2号和4号两端口。再用数据线将信号采集器与装有信号采集与波形显示软件的计算机连接。接通电源,开启各实验仪器检查连接正确性,正确则可进行后续实验。如有错误,检查并调试连接,直至正确。

1.2.2打开信号采集软件,在软件中设置信号采集通道与信号采集器所用通道相同。设置两种不同的信号频率及相应的采样频率,手动触发采集,按“开始”按钮,开始信号采集,从显示屏上可看出采集到信号的波形叠加。按“暂停”按钮,可停止采集。调节信号发生频率旋钮分别为936Hz,1013Hz;选择正弦波波形按钮。

2 实验结果及其分析

实验所用数据如下表

频域卷积

时域相乘

结果分析如下

由于信号采集系统误差,结果中显示频率为1015Hz。这个误差是实验精度控制范围内的。

从工程信号处理的数学原理出发,解释为什么上面的两种结果是等效的。

首先引入一些原理性的内容。时域相乘相当于频域卷积为了获得两个信号在时域相乘的结果,我们可以先分析这两个信号的频谱F(ω)和G(ω),再对这两个信号的频谱做卷

积,得到乘积信号的频谱H ω =F(ω)?G(ω),将各频谱分量乘以对应的exp ?(j ωt)再相加就可以得到时域的乘积信号。

注意:当我们说频域的时候,我们说的只是频谱,也就是exp ?(j ωt)前的系数,不包括exp ?(j ωt)本身。

在此,为了表述方便我不妨设两正弦波函数分别为f t =A 1sin ?(ω1+φ1)和g t =A 2sin ?(ω2+φ2)。

f(t),g(t)在工程中常表示成傅里叶积分形式:

f t =

1 f τ e ?jn ωτd τ∞

?∞ e jn ωt d ω∞

?∞ (3.1) g t =

12π g τ e ?jn ωτd τ∞

?∞

e jn ωt d ω∞

?∞ (3.2) 应用傅里叶变换得F(ω)和G(ω)

F ω =

f t e ?jn ωt dt +∞

?∞ (3.3)

G ω =

g t e ?jn ωt dt +∞

?∞

(3.3)

对于时域相乘的图形可用h t 表示

h t =f t g t (3.4) 对h t 作傅里叶变换得

H ω =

h t e ?jn ωt dt +∞

?∞

(3.5)

注意:当我们说频域的时候,我们说的只是频谱,也就是exp ?(j ωt)前的系数,不包括exp ?(j ωt)本身。 由幅值谱公式

A f =|X f | (3.6) H ω = F ω ?G ω (3.7) H ω 即为频域图形的函数表达式,而频域图形的表达式为F(ω)?G(ω),由此可得证实验题目。

语音信号处理实验报告

语音信号处理实验 班级: 学号: 姓名:

实验一 基于MATLAB 的语音信号时域特征分析(2学时) 1) 短时能量 (1)加矩形窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2) ,legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 024 N=3200.5 1 1.5 2 2.5 3x 10 4 05 N=6400.5 1 1.5 2 2.5 3x 10 4 0510 N=12800.5 1 1.5 2 2.5 3x 10 4 01020 N=2560 0.5 1 1.5 2 2.5 3x 10 4 02040 N=512 (2)加汉明窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32;

for i=2:6 h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if (i==2), legend('N=32'); elseif (i==3), legend('N=64'); elseif (i==4) ,legend('N=128'); elseif (i==5) ,legend('N=256'); elseif (i==6) ,legend('N=512'); end end 00.51 1.52 2.5 3 x 10 4 -1 100.5 1 1.5 2 2.5 3x 10 4 012 N=3200.5 1 1.5 2 2.5 3x 10 4 024 N=6400.5 1 1.5 2 2.5 3x 10 4 024 N=12800.5 1 1.5 2 2.5 3x 10 4 0510 N=2560 0.5 1 1.5 2 2.5 3x 10 4 01020 N=512 2) 短时平均过零率 a=wavread('mike.wav'); a=a(:,1); n=length(a); N=320; subplot(3,1,1),plot(a); h=linspace(1,1,N); En=conv(h,a.*a); %求卷积得其短时能量函数En subplot(3,1,2),plot(En); for i=1:n-1 if a(i)>=0 b(i)= 1;

数字信号处理实验报告

一、实验名称:基本信号的产生 二、实验目的:I 利用MATLAB 产生连续信号并作图 II 利用MATLAB 产生离散序列并作图 III 利用MATLAB 进行噪声处理 三、 实验内容: I 利用MATLAB 产生下列连续信号并作图 ①X(t)=-2u(t-1),-1=0); plot(t,x); 图形如右: ② X(t)=-(e^-0.1t)*sin(2/3*t),0

-1.5-1 -0.5 0.5 1 1.5 2 II 利用MATLAB 产生下列离散序列并作图 ① X(t)=1,-5<=t<=5 else 0,-15<=t<=15 MATLAB 程序如下: k= -15: 15; x=[zeros(1,10),ones(1,11),zeros(1,10)]; stem(k,x) 图形如下: ② X(t)=0.9^k*(cos(0.25*pi*k)+sin(0.25*pi*p),-20

《数字信号处理》实验报告

数字信号处理》 实验报告 年级:2011 级班级:信通 4 班姓名:朱明贵学号: 111100443 老师:李娟 福州大学 2013 年11 月

实验一快速傅里叶变换(FFT)及其应用 一、实验目的 1. 在理论学习的基础上,通过本实验,加深对FFT的理解,熟悉MATLAB^的有关函数。 2. 熟悉应用FFT对典型信号进行频谱分析的方法。 3. 了解应用FFT进行信号频谱分析过程中可能出现的问题,以便在实际中正确应用FFT。 4. 熟悉应用FFT实现两个序列的线性卷积和相关的方法。 二、实验类型 演示型 三、实验仪器 装有MATLA爵言的计算机 四、实验原理 在各种信号序列中,有限长序列信号处理占有很重要地位,对有限长序列,我们可以 使用离散Fouier变换(DFT)。这一变换不但可以很好的反映序列的频谱特性,而且易于用快速算法在计算机上实现,当序列x(n)的长度为N时,它的DFT定义为: JV-1 $生 反变换为: 如-器冃吋 科— 有限长序列的DFT是其Z变换在单位圆上的等距采样,或者说是序列Fourier变换的等 距采样,因此可以用于序列的谱分析。 FFT并不是与DFT不同的另一种变换,而是为了减少DFT运算次数的一种快速算法。它 是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。常用的FFT 是以2为基数的,其长度A - o它的效率高,程序简单,使用非常方便,当要变换的 序列长度不等于2的整数次方时,为了使用以2为基数的FFT,可以用末位补零的方法,使其长度延长至2的整数次方。 (一)在运用DFT进行频谱分析的过程中可能的产生三种误差 1 .混叠 序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist定理时,就会 发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。避免混叠现象的 唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须

数字信号处理-实验报告

学生实验报告 (理工类) 课程名称:数字信号处理专业班级:通信(4)班学生学号:学生姓名: 所属院部:网络与通信工程学院指导教师: 20 16 ——20 17 学年第一学期 金陵科技学院教务处制

实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求 实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:MATLAB语言工作环境和基本操作实验学时: 同组学生姓名:实验地点:工科楼A205 实验日期:实验成绩: 批改教师:批改时间: 一、实验目的和要求 目的: 1.初步了解MATLAB开发环境和常用菜单的使用方法; 2.熟悉MATLAB常用窗口,包括命令窗口、历史窗口、当前工作窗口、工作空间浏览器窗口、数组编辑器窗口和M文件编辑/调试窗口等; 3.了解MATLAB的命令格式; 4.熟悉MATLAB的帮助系统。 要求: 1. 简述实验原理及目的。 2. 记录调试运行情况及所遇问题的解决方法。 3. 简要回答思考题。 二、实验仪器和设备 微型计算机、Matlab6.5以上版本的编程环境。 三、实验过程 命令窗口(Command Window): (1) 用于执行MATLAB命令,正常情况下提示符为“>>”,表示MATLAB进入工作状态。 (2) 在提示符后输入运算指令和函数调用等命令(不带“;”),MATLAB将迅速显示出结果并 再次进入准备工作状态。 (3) 若命令后带有“;”,MATLAB执行命令后不显示结果。 (4) 在准备工作状态下,如果按上下键,MATLAB会按顺序依次显示以前输入的命令,若要执 行它,则直接回车即可。 工作空间(Workspace): (1) 显示计算机内存中现有变量的名称、类型、结构及其占用子节数等。 (2) 如果直接双击某变量,则弹出Array Editor窗口供用户查看及修改变量内容。 (3) 该窗口上有工具条支持用户将某变量存储到文件中或者从文件中载入某变量。 命令历史记录(Command History): (1) 保存并显示用户在命令窗口中输入过的命令,以及每次启动MATLAB的时间等信息 (2) 若双击某条命令记录,则MATLAB会再次执行该命令。 当前路径窗口(Current Directory):

信号处理实验报告、

第一题 如何用计算机模拟一个随机事件,并估计随机事件发生的概率以计算圆周率π。 解: (一)蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看以这两个实数为横纵坐标的点是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和外切正方形面积之比为π:4),当随机点取得越多时,其结果越接近于圆周率。 代码: N=100000000; x=rand(N,1); y=rand(N,1); count=0; for i=1:N if (x(i)^2+y(i)^2<=1) count=count+1; end end PI=vpa(4*count/N,10) PI = 3.1420384

蒙特卡洛法实验结果与试验次数相关,试验次数增加,结果更接近理论值 (二)18世纪,法国数学家布丰和勒可莱尔提出的“投针问题”,记载于布丰1777年出版的著作中:“在平面上画有一组间距为d的平行线,将一根长度为l (l

数字信号处理期末综合实验报告

数字信号处理综合实验报告 实验题目:基于Matlab的语音信号去噪及仿真 专业名称: 学号: 姓名: 日期: 报告内容: 一、实验原理 1、去噪的原理 1.1 采样定理 在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式: 理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)为什么把采样频率设为8kHz?在数字通信中,根据采样定理, 最小采样频率为语音信号最高频率的

2倍 频带为F的连续信号f(t)可用一系列离散的采样值f(t1),f(t1±Δt),f(t1±2Δt),...来表示,只要这些采样点的时间间隔Δt≤1/2F,便可根据各采样值完全恢复原来的信号f(t)。这是时域采样定理的一种表述方式。 时域采样定理的另一种表述方式是:当时间信号函数f(t)的最高频率分量为fM时,f(t)的值可由一系列采样间隔小于或等于1/2fM的采样值来确定,即采样点的重复频率f≥2fM。图为模拟信号和采样样本的示意图。 时域采样定理是采样误差理论、随机变量采样理论和多变量采样理论的基础。对于时间上受限制的连续信号f(t)(即当│t│>T时,f(t)=0,这里T=T2-T1是信号的持续时间),若其频谱为F(ω),则可在频域上用一系列离散的采样值 (1-1) 采样值来表示,只要这些采样点的频率间隔 (1-2) 。 1.2 采样频率 采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数是采样周期或者叫作采样时间,它是采样之间的时间间隔。通俗的讲采样频率是指计算

视频信号处理实验报告

中南大学 实验报告(实验一) 实验名称 JM代码编译与编解码参数配置 课程名称视频信号处理 姓名:杨慧成绩:__________________ 班级:电子信息工程1301班学号: 0903130117 日期: 2016.6.10 地点:综合实验楼 备注:

1.实验目的 1)掌握常用的编解码器参数及其用法,实现测试序列的编解码 2)初步了解H.264视频编解码的基本原理、熟开发工具的使用 3)学会使用相关的开发工具修改、调试参考软件,掌握使用相应软件实现视频编解码的经验与技巧,锻炼提高分析问题和解决问题的能力 4)调试、编译好相应的实验程序,正确配置测试参数,能预计可能出现的结果2.实验环境(软件、硬件及条件) Windows 7 3.实验方法 1)JM工作目录与文件设置 ①下载并解压JM源代码。 ②在源代码根目录下的bin文件夹中新建backup文件夹,将bin文件夹中所有文件移入该文件夹做备份。 ③在源代码根目录下新建encodtest文件夹,作为编码使用。将编码过程所需要的文件,例如:编码配置文件(encoder_baseline.cfg)、待编码视频序列文件(foreman_part_qcif.yuv,对应为编码配置文件中InputFile参数的值)复制到该文件夹中。 ④在源代码根目录下新建decodtest文件夹,作为解码使用。将解码过程所需要的文件,例如:解码配置文件(decoder.cfg)复制到该文件夹中。 ⑤检查实验用机安装的MS Visual C++版本,根据表3,本实验打开jm_vc10.sln 解决方案。

2)配置、编译、测试编码项目——lencod ①选中lencod项目,打开主菜单“项目——属性”,将所有配置(Debug、Release)和所有平台(Win32、x64)“常规”选项中的“输出目录”设置为 “.\bin\$(Configuration)_$(Platform)\”;将“调试”选项中“工作目录”设置为“.\encodtest”,在“命令参数”中设置要使用的解码配置文件,例如:“-d encoder_baseline.cfg”,然后确定修改。 ②选中lencod工程,选择鼠标右键菜单“设为启动项目”。 ③打开主菜单“生成--批生成”,勾选所有的lencod项目,点击生成后,将会在主目录bin文件夹的Debug_Win32/x64文件夹及Release_Win32/x64文件夹下生成Win32/x64平台的调试版(运行速度慢)和发行版(运行速度快)编码器程序lencod.exe。打开主菜单“生成--配置管理器”,将活动解决方案配置和平台分别设置为Release何Win32,执行调试完成编码。此时会在源代码根目录下的encodtest文件夹中生成几个新文件,其中test.264(对应编码配置文件中OutputFile参数的值)即为压缩码流文件。 3)配置、编译、测试解码项目--ldecod ①选中ldecod项目,打开主菜单“项目——属性”,将所有配置(Debug、Release)和所有平台(Win32、x64)“常规”选项中的“输出目录”设置为 “.\bin\$(Configuration)_$(Platform)\”;将“调试”选项中“工作目录”设置为“.\decodtest”,在“命令参数”中设置要使用的解码配置文件,例如:“ decoder.cfg”,然后确定修改。 ②将编码生成的压缩码流文件test.24复制到decodtest文件夹中。 ③选中lencod工程,选择鼠标右键菜单“设为启动项目”。 ④打开主菜单“生成--批生成”,勾选所有的ldecod项目,点击生成后,将会在主目录bin文件夹的Debug_Win32/x64文件夹及Release_Win32/x64文件夹下生成Win32/x64平台的调试版(运行速度慢)和发行版(运行速度快)编码器程序ldecod.exe。打开主菜单“生成--配置管理器”,将活动解决方案配置和平台分别设置为Release何Win32,执行调试完成编码。此时会在源代码根目录下的decodtest文件夹中生成几个新文件,其中test_dec.yuv(对应解码配置文

哈尔滨工程大学 语音信号处理实验报告

实 验 报 告 实验课程名称: 语音信号处理实验 姓名: 班级: 20120811 学号: 指导教师 张磊 实验教室 21B#293 实验时间 2015年4月12日 实验成绩 实验序号 实验名称 实验过程 实验结果 实验成绩 实验一 语音信号的端点检测 实验二 语音信号的特征提取 实验三 语音信号的基频提取

实验一 语音信号的端点检测 一、实验目的 1、掌握短时能量的求解方法 2、掌握短时平均过零率的求解方法 3、掌握利用短时平均过零率和短时能量等特征,对输入的语音信号进行端点检测。 二、实验设备 HP 计算机、Matlab 软件 三、实验原理 1、短时能量 语音信号的短时能量分析给出了反应这些幅度变化的一个合适的描述方法。对于信号)}({n x ,短时能量的定义如下: ∑ ∑∞ -∞ =∞ -∞ =*=-= -= m m n n h n x m n h m x m n w m x E )()()()()]()([222 2、短时平均过零率 短时平均过零率是指每帧内信号通过零值的次数。对于连续语音信号,可以 考察其时域波形通过时间轴的情况。对于离散信号,实质上就是信号采样点符号变化的次数。过零率在一定程度上可以反映出频率的信息。短时平均过零率的公式为: ∑∑-+=∞ -∞=--= ---=1)] 1(sgn[)](sgn[2 1 ) ()]1(sgn[)](sgn[21N n n m w w m n m x m x m n w m x m x Z 其中,sgn[.]是符号函数,即 ? ? ?<-≥=0)(10)(1 )](sgn[n x n x n x

语音信号处理实验报告

通信与信息工程学院 信息处理综合实验报告 班级:电子信息工程1502班 指导教师: 设计时间:2018/10/22-2018/11/23 评语: 通信与信息工程学院 二〇一八年 实验题目:语音信号分析与处理 一、实验内容 1. 设计内容 利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。 2.设计任务与要求 1. 基本部分

(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。 (4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。 2. 提高部分 (5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。 (7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。 二、实验原理 1.设计原理分析 本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。 首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。 对该段合成的语音信号,分别用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman窗几种函数在MATLAB中设计滤波器对其进行滤波处理,滤波后用命令可以绘制出其频谱图,回放语音信号。对原始语音信号、合成的语音信号和经过滤波器处理的语音信号进行频谱的比较分析。 2.语音信号的时域频域分析 在Matlab软件平台下可以利用函数audioread对语音信号进行采样,得到了声音数据变量y,同时把y的采样频率Fs=44100Hz放进了MATALB的工作空间。

数字信号处理实验报告

语音信号的数字滤波 一、实验目的: 1、掌握使用FFT进行信号谱分析的方法 2、设计数字滤波器对指定的语音信号进行滤波处理 二、实验内容 设计数字滤波器滤除语音信号中的干扰(4 学时) 1、使用Matlab的fft函数对语音信号进行频谱分析,找出干扰信号的频谱; 2、设计数字滤波器滤除语音信号中的干扰分量,并进行播放对比。 三、实验原理 通过观察原语音信号的频谱,幅值特别大的地方即为噪声频谱分量,根据对称性,发现有四个频率的正弦波干扰,将它们分别滤掉即可。采用梳状滤波器,经过计算可知,梳状滤波器h[n]={1,A,1}的频响|H(w)|=|A+2cos(w)|,由需要滤掉的频率分量的频响w,即可得到A,进而得到滤波器的系统函数h[n]。而由于是在离散频域内进行滤波,所以令w=(2k*pi/N)即可。 对原信号和四次滤波后的信号分别进行FFT变换,可以得到它们的幅度相应。最后,将四次滤波后的声音信号输出。 四、matlab代码 clc;clear;close all; [audio_data,fs]=wavread('SunshineSquare.wav'); %读取未处理声音 sound(audio_data,fs); N = length(audio_data); K = 0:2/N:2*(N-1)/N; %K为频率采样点

%sound(audio_data,fs); %进行一次FFT变换 FFT_audio_data=fft(audio_data); mag_FFT_audio_data = abs(FFT_audio_data); %画图 figure(1) %原信号时域 subplot(2,1,1);plot(audio_data);grid; title('未滤波时原信号时域');xlabel('以1/fs为单位的时间');ylabel('采样值'); %FFT幅度相位 subplot(2,1,2);plot(K,mag_FFT_audio_data);grid; title('原信号幅度');xlabel('以pi为单位的频率');ylabel('幅度'); %构造h[n]={1,A,1}的梳状滤波器,计算A=2cosW,妻子W为要滤掉的频率%由原信号频谱可知要分四次滤波,滤掉频响中幅度大的频率分量 %第一次滤波 a = [1,0,0,0];%y[n]的系数 [temp,k]=max(FFT_audio_data); A1=-2*cos(2*pi*k/N); h1=[1,A1,1]; audio_data_h1 = filter(h1,a,audio_data); FFT_audio_data_h1=fft(audio_data_h1);

信号检测论有无法实验报告剖析

------------------------------------------------------------------------------- 实验报告信息栏 系别心理系年级 13级2班姓名魏晓芹同组成员杨思琪、张彤、韩永超 实验日期 2016年4月学号 120105510215 教师评定 ------------------------------------------------------------------------------- 信号检测论有无法实验报告 摘要本次实验采用信号检测论中的有无法,测定被试在不同先定概率下对呈现信号和刺激的击中率与虚报率,计算其辨别力d′和判定标准β,并绘制出ROC 曲线;检验信号呈现的先定概率发生变化时,被试的击中率、虚报率、辨别力d′和判定标准β是否会受到影响。结果显示:(1)被试在先定概率为0.2、0.5、0.8的条件下,击中率分别为0.8、0.92、0.8625,虚报率分别为0.5125、0.56、0.75,辨别力d′分别为0.592、1.254、0.406,判定标准β分别为0.70、0.38、0.71。 关键词信号检测论;有无法;先定概率;辨别力d′;判定标准β 1引言 传统心理物理学对阈限的理解是有限的,不能将个体客观的感受性和主观的动机、反应偏好等加以区分,从而使研究者渐渐陷入到了由阈限概念本身所引发的僵局之中。而在1954年,坦纳和斯韦茨等人首次应用的信号检测论,正好解决了这个问题。 信号检测论的研究对象是信息传播系统中信号的接收问题。在心理学中,它是借助于数学的形式描述“接收者”在某一观察时间内将掺有噪音的信号从噪音中辨别出来。 信号检测论应用于心理学中的基本原理是:将人的感官、中枢分析综合过程看作是一个信息处理系统,应用信号检测论中的一些概念、原理对它进行分析。信号检测论在心理学中具体应用时,常把刺激变量当作信号,把对刺激变量起干扰作用的因素当作噪音,这样就可以把人接收外界刺激时的分辨问题等效于一个在噪音中检测信号的问题,从而便可以应用信号检测论来处理心理学中的实验结果。 信号检测论的理论基础是统计决策。信号检测论本身就是一个以统计判定为根据的理论。它的基本原理是:根据某一观察到的事件,从两个可选择的方面选

工程信号处理实验报告

( 2011-2012 学年 第二学期) 重庆理工大学研究生课程论文 课程论文题目: 《工程信号处理实验报告》 课程名称 工程信号处理实验 课程类别 □学位课 非学位课 任课教师 谢明 所在学院 汽车学院 学科专业 机械设计及理念 姓名 李文中 学 号 50110802313 提交日期 2012年4月12日

工程信号处理实验报告 姓名:李文中学号:50110802313 实验报告一 实验名称:数据信号采集及采样参数选定 1实验目的 1.1了解信号采集系统的组成,初步掌握信号采集系统的使用。 1.2加深对采样定理的理解,掌握采样参数的选择方法 1.3了解信号采集在工程信号处理中的实际应用,及注意事项。 2 实验原理 2.1 模数转换及其控制 对模拟信号进行采集,就是将模拟信号转换为数字信号,即模/数(A/D)转换,然后送入计算机或专用设备进行处理。模数转换包括三个步骤:(1)采样,(2)量化,(3)编码。采样,是对已知的模拟信号按一定的间隔抽出一个样本数据。若间隔为一定时间 T,则称这种采样为等时间间隔采样。除特别注明外,一般都采用等时间间隔采样;量化,是一种用有限字长的数字量逼近模拟量的过程。编码,是将已经量化的数字量变为二进制数码,因为数字处理器只能接受有限长的二进制数。模拟信号经过这三步转换后,变成了时间上离散、幅值上量化的数字信号。A/D转换器是完成这三个步骤的主要器件。 在信号采集系统中,A/D 转换器与计算机联合使用完成模数转换。用计算机的时钟或用软件产生等间隔采样脉冲控制 A/D 转换器采样。A/D 转换器通过内部电路进行量化与编码,输出有限长的二进制代码。信号采集系统中,通常由以 A/D转换器为核心的接口电路及控制软件,进行信号采集控制。 *注这部分是由本实验所用的信号采集器自动完成的,以上也是实验器材-信号采集器的部分工作原理。以后实验中就不再赘述。 2.2 信号采集的参数选择

《语音信号处理》实验报告材料

实用 中南大学 信息科学与工程学院 语音信号处理 实验报告 指导老师:覃爱娜 学生班级:信息0704 学生名称:阮光武 学生学好:0903070430 提交日期:2010年6月18日

实验一 语音波形文件的分析和读取 一、实验的任务、性质与目的 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验: (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 二、实验原理和步骤: WAV文件格式简介 WAV文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV文件的头四个字节就是“RIFF”。WAV文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV文件标识段和声音数据格式说明段两部分。常见的WAV声音文件有两种,分别对应于单声道(11.025KHz采样率、8Bit的采样值)和双声道(44.1KHz采样率、16Bit的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16位的整数(int),高八位和低八位分别代表左右两个声道。WAV文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV文件中,道0代表左声道,声道1代表右声道;在多声道WAV文件中,样本是交替出现的。WAV文件的格式见表1。

信号处理实验报告

数字信号处理 第四次实验报告 一、 实验目的 1.了解离散系统的零极点与系统因果性能和稳定性的关系 2.观察离散系统零极点对系统冲激响应的影响 3.熟悉MATLAB 中进行离散系统零极点分析的常用子函数 4.加深对离散系统的频率响应特性基本概念的理解 5.了解离散系统的零极点与频响特性之间的关系 6.熟悉MATLAB 中进行离散系统分析频响特性的常用子函数,掌握离散系统幅频响应和相频响应的求解方法。 二、实验过程 9.2已知离散时间系统函数分别为 ) 7.05.0)(7.05.0(3 .0)(1j z j z z z H ++-+-= )1)(1(3 .0)() 8.06.0)(8.06.0(3 .0)(32j z j z z z H j z j z z z H ++-+-= ++-+-= 求这些系统的零极点分布图以及系统的冲击响应,并判断系统因果稳定性。 %---------第一式-----------------------------------------------------------------------------% z1=[0.3,0]';p1=[-0.5+0.7j,-0.5-0.7j]';k=1; %z1零点向量矩阵,p1极点向量矩阵,k 系统增益系数---------------------------% [bl,al]=zp2tf(z1,p1,k); %将零极点增益函数转换为系统传递函数 subplot(3,2,1),zplane(bl,al); %zplane 显示离散系统的零极点分布图 ylabel('极点在单位圆内'); subplot(3,2,2),impz(bl,al,20); %impz 绘制系统的冲激响应图 %---------第二式-----------------------------------------------------------------------------% z2=[0,3,0]';p2=[-0.6+0.8j,-0.6-0.8j]'; %z2零点向量矩阵,p2极点向量矩阵---------------------------------------------------% [b2,a2]=zp2tf(z2,p2,k); %将零极点增益函数转换为系统传递函数 subplot(3,2,3),zplane(b2,a2); %zplane 显示离散系统的零极点分布图 ylabel('极点在单位圆上'); subplot(3,2,4),impz(b2,a2,20); %impz 绘制系统的冲激响应图 %---------第三式-----------------------------------------------------------------------------%

语音信号处理实验报告实验二

通信工程学院12级1班 罗恒 2012101032 实验二 基于MATLAB 的语音信号频域特征分析 一、 实验要求 要求根据已有语音信号,自己设计程序,给出其倒谱、语谱图的分析结果,并根据频域分析方法检测所分析语音信号的基音周期或共振峰。 二、 实验目的 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。 由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。输出频谱是声道系统频率响应与激励源频谱的乘积。声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。 三、 实验设备 1.PC 机; 2.MATLAB 软件环境; 四、 实验内容 1.上机前用Matlab 语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5.依次给出其倒谱、语谱图的分析结果。 6. 根据频域分析方法检测所分析语音信号的基音周期或共振峰。 五、 实验原理及方法 1、短时傅立叶变换 由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为: 其中w(n -m)是实窗口函数序列,n 表示某一语音信号帧。令n -m=k',则得到 ()()()jw jwm n m X e x m w n m e ∞-=-∞= -∑

数字信号处理综合设计实验报告

数字信号处理实验八 调制解调系统的实现 一、实验目的: (1)深刻理解滤波器的设计指标及根据指标进行数字滤波器设计的过程(2)了解滤波器在通信系统中的应用 二、实验步骤: 1.通过SYSTEMVIEW软件设计与仿真工具,设计一个FIR数字带通滤波器,预先给定截止频率和在截止频率上的幅度值,通过软件设计完后,确认滤波器的阶数和系统函数,画出该滤波器的频率响应曲线,进行技术指标的验证。 建立一个两载波幅度调制与解调的通信系统,将该滤波器作为两个载波分别解调的关键部件,验证其带通的频率特性的有效性。系统框图如下: 规划整个系统,确定系统的采样频率、观测时间、细化并设计整个系统,仿真调整并不断改进达到正确调制、正确滤波、正确解调的目的。(参考文件

zhan3.svu) (1)检查滤波器的波特图,看是否达到预定要求; (2)检查幅度调制的波形以及相加后的信号的波形与频谱是否正常; (3)检查解调后的的基带信号是否正常,分析波形变形的原因和解决措施;(4)实验中必须体现带通滤波器的物理意义和在实际中的应用价值。 2.熟悉matlab中的仿真系统; 3.将1.中设计的SYSTEMVIEW(如zhan3.svu)系统移植到matlab中的仿真环境中,使其达到相同的效果; 4.或者不用仿真环境,编写程序实现该系统,并验证调制解调前后的信号是否一致。 实验总共提供三个单元的时间(6节课)给学生,由学生自行学习和自行设计与移植 三、系统设计 本系统是基于matlab的simulink仿真软件设计的基带信号调制与解调的系统,利用matlab自带的数字信号仿真模块构成其原理框图并通过设置载波、带通滤波器以及低通滤波器等把基带信号经过载波调制后再经乘法器、带通滤波器和低通滤波器等电路系统能解调出基带信号。 1、实验原理框图

数字信号处理实验报告

实验一:信号的表示 1.实现单位采样序列、单位阶跃序列、矩形序列程序及绘图1.1代码部分 subplot(3,1,1); n1=-5:10; y1=[zeros(1,5),1,zeros(1,10)]; stem(n1,y1) axis([-5,10,0,2]); title(' 单位采样序列 ') subplot(3,1,2); n2=-5:10; y2=[zeros(1,5),ones(1,5),zeros(1 ,6)]; stem(n2,y2) axis([-5,10,0,2]) title(' 矩形序列 ') subplot(3,1,3); n3=-5:10; y3=[zeros(1,5),ones(1,11)]; stem(n3,y3,'r') axis([-5,10,0,2]) title(' 单位阶跃序列 ') 1.2仿真结果 2.实现三角波、方波、锯齿波、sinc函数及绘图2.1代码部分 %三角波 subplot(4,1,1); x=0:0.001:0.05; y1=sawtooth(2*pi*50*x,0.5);

plot(x,y1) %锯齿波 subplot(4,1,2); x=0:0.001:0.05; y2=sawtooth(2*pi*50*x); plot(x,y2) %方波 subplot(4,1,3); x=0:0.001:0.05; y3=square(2*pi*50*x,50); plot(x,y3) %sinc函数 subplot(4,1,4); t=-5:0.1:5; y=sinc(t); plot(t,y); xlabel('时间t');ylabel('幅值A'); title('Sa函数') 2.2仿真结果 实验二:FFT频谱分析及应用 1.用FFT函数分析某信号的频率成分和功率谱密度并绘图1.1代码部分 t=0:0.001:0.8; x=sin(2*pi*50*t)+cos(2*pi*120*t) ; y=x+1.5*randn(1,length(t)); subplot(3,1,1); plot(t,x); subplot(3,1,2); plot(t,y); Y=fft(y,512); P=Y.*conj(Y)/512;

数字信号处理实验报告(同名22433)

《数字信号处理》 实验报告 课程名称:《数字信号处理》 学院:信息科学与工程学院 专业班级:通信1502班 学生姓名:侯子强 学号:0905140322 指导教师:李宏 2017年5月28日

实验一 离散时间信号和系统响应 一. 实验目的 1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解 2. 掌握时域离散系统的时域特性 3. 利用卷积方法观察分析系统的时域特性 4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析 二、实验原理 1. 采样是连续信号数字化处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: ?()()()a a x t x t p t = 式中()p t 为周期冲激脉冲,$()a x t 为()a x t 的理想采样。 ()a x t 的傅里叶变换为μ ()a X j Ω: 上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。也即采样信 号的频谱μ()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成 的。因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号 计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即 ()() n P t t nT δ∞ =-∞ = -∑μ1()()*() 21 ()n a a a s X j X j P j X j jn T π∞ =-∞ Ω=ΩΩ= Ω-Ω∑μ()()|j a T X j X e ωω=ΩΩ=

数字语音信号处理实验报告

语音信号处理实验报告 专业班级电子信息1203 学生姓名钟英爽 指导教师覃爱娜 完成日期2015年4月28日 电子信息工程系 信息科学与工程学院

实验一语音波形文件的分析和读取 一、实验学时:2 学时 二、实验的任务、性质与目的: 本实验是选修《语音信号处理》课的电子信息类专业学生的基础实验。通过实验 (1)掌握语音信号的基本特性理论:随机性,时变特性,短时平稳性,相关性等; (2)掌握语音信号的录入方式和*.WAV音波文件的存储结构; (3)使学生初步掌握语音信号处理的一般实验方法。 三、实验原理和步骤: WAV 文件格式简介 WAV 文件是多媒体中使用了声波文件的格式之一,它是以RIFF格式为标准。每个WAV 文件的头四个字节就是“RIFF”。WAV 文件由文件头和数据体两大部分组成,其中文件头又分为RIFF/WAV 文件标识段和声音数据格式说明段两部分。常见的WAV 声音文件有两种,分别对应于单声道(11.025KHz 采样率、8Bit 的采样值)和双声道(44.1KHz 采样率、16Bit 的采样值)。采样率是指声音信号在“模拟→数字”转换过程中,单位时间内采样的次数;采样值是指每一次采样周期内声音模拟信号的积分值。对于单声道声音文件,采样数据为8 位的短整数(short int 00H-FFH);而对于双声道立体声声音文件,每次采样数据为一个16 位的整数(int),高八位和低八位分别代表左右两个声道。WAV 文件数据块包含以脉冲编码调制(PCM)格式表示的样本。在单声道WAV 文件中,道0 代表左声道,声道1 代表右声道;在多声道WAV 文件中,样本是交替出现的。WAV 文件的格式 表1 wav文件格式说明表

相关文档
最新文档