(超全)计量经济学框架图
计量经济学第九章 时间序列结构模型课件

第九章结构型时间序列模型时间序列回归模型分类:1.不含外生变量的非结构型模型,包括单方程模型(如ARMA模型)和多方程模型(如向量自回归模型,V AR)2.传统的结构模型,包括含有外生变量的单方程回归模型(如确定性趋势或季节模型、静态模型、分布滞后模型、自回归分布滞后模型等)和联立方程模型3.协整和误差修正模型等现代时间序列模型第二、三类模型反统称为结构型时间序列模型。
本章将对最基本的几种结构型时间序列模型进行简要介绍。
第一节确定性趋势与季节模型确定性趋势与季节模型将经济变量看作是时间的某种函数,用于描述时间序列观测值的长期趋势特征和周期性变动特征。
其中的自变量是确定性的时间变量t或反映季节的虚拟变量。
由于自变量是非随机变量,自然是严格外生的,所以不涉及诸如非平稳性、高度持久等问题,一般可以如同横截面数据一样,直接使用经典线性模型的回归分析方法。
一、确定性趋势模型(一)种类按照因变量y与时间t的关系不同,常用的确定性趋势模型主要有以下三类:1.线性趋势模型01t t y t u ββ=++ (9.1)当时间序列的逐期增长量(即一阶一次差分1t t t y y y -∆=-)大体相同时,可以考虑拟合直线趋势方程。
2. 曲线趋势模型2012k t k t y t t t u ββββ=+++⋅⋅⋅++ (9.2)若逐期增长量的逐期增长量(二阶一次差分21t t t y y y -∆=∆-∆)大致相同,可拟合二次曲线2012t t y t t u βββ=+++。
类似地,如果事物发展趋势有两个拐点,可以拟合三次曲线230123t t y t t t u ββββ=++++。
其他更高次的曲线趋势比较少用。
3. 指数曲线模型01t u t t y e ββ= (9.3)或01ln()ln (ln )t t y t u ββ=++指数曲线的特点是各期的环比增长速度大体相同(即自然对数的一阶一次差分11/ln ln t t t t y y y y --∆≈-基本为常数),时间序列的逐期观测值大致按一定的百分比递增或衰减。
计量经济学课件PPT课件

非线性模型转换方法
多项式回归
通过引入自变量的高次项,将非线性关系转化为线性 关系进行处理。
变量变换
对自变量或因变量进行某种函数变换,以改善模型的 拟合效果。
非参数回归
不假定具体的函数形式,通过数据驱动的方式拟合非 线性关系。
实例分析:金融时间序列预测
数据准备
收集金融时间序列数据,如股票 价格、交易量等,并进行预处理。
模型选择依据
Hausman检验,LM检验等。
实例分析:经济增长收敛性问题研究
研究背景
探讨不同国家或地区间经济增长差异及其收 敛性。
模型构建
选择合适的面板数据模型,设定经济增长收 敛假设。
实证分析
收集相关数据,运用计量经济学软件进行回 归分析,检验收敛性假设是否成立。
结论与政策建议
根据实证结果得出结论,提出促进经济增长 收敛的政策建议。
机器学习算法与计量经济学模型结合
将机器学习算法与传统计量经济学模型相结合,形成更具解释性和预测能力的混合模型。
大数据背景下计量经济学挑战与机遇
01
大数据背景概述
数据量巨大、类型多样、处理速度快等 特点。
02
计量经济学面临的挑 战
数据质量、计算效率、模型可解释性等 问题。
03
计量经济学面临的机 遇
利用大数据技术挖掘更多信息,提高模 型预测精度和政策评估效果;同时推动 计量经济学理论和方法的发展创新。
Geary's C指数
与Moran's I指数类似,也是用于检验全局空间自相关。
LISA集聚图 用于检验局部空间自相关,可以直观展示空间集聚或异常 值区域。
空间滞后和空间误差模型选择
空间滞后模型(SLM)
计量经济学知识点、学习指导及框架图

EViews/Stata计量经济学入门:导论与第一、二章EViews/Stata操作知识点:介绍计量经济学的简史,为什么研究计量经济学,计量经济学的数据类型及因果关系;EViews与Stata操作入门。
学习指导:本部分的重点知识是:计量经济学的四种数据结构——横截面数据、时间序列数据、面板数据和混合数据;因果关系;对于四种数据结构的区别要清晰,本课程重点讲解横截面数据和面板数据的处理方法;而混合数据的处理方法与横截面数据相同,而对于考虑相关性的时间序列数据,可以在另开设一门课程来介绍。
因果关系是所有学科分析重要的内容。
但由于经济社会中各变量之间关系十分复杂,所以通常需要控制其他变量后再具体分析所关心自变量对于因变量的影响,而这正是计量经济学研究的重要的内容之一。
关于EViews与Stata的详细操作不是本课程的重点,可以不单独介绍,本课程将会在后续章节的应用例题中介绍与计量经济学密切相关的软件操作步骤。
第三章一元线性回归模型知识点:一元线性回归模型的假设、最小二乘估计及其估计量的性质、系数显著性检验和预测区间。
学习指导:本部分的重点知识是:模型的假设是确保模型可以估计和估计方法好坏的基础,所以要了解假设估计间的关系;最小二乘估计是计量经济学的最基本估计方法之一,所以要熟练掌握其求解过程和其估计量的统计性质;系数显著性检验是经济分析中的重要一环,要了解检验的步骤和意义;本章难点一是如何证明在本章假设下最小二乘估计量是最优的,对于要求较高的院校,可以介绍这里所使用的添项减项技巧,并指出证明的关键是使用线性无偏条件来证明交叉相乘项为0。
本章难点二是如何证明S2是方差的无偏估计量,这里证明的关键是注意到不同误差项之间的无关性对计算过程化简的重要性。
对于要求较低的院校也可以对证明做忽略处理,仅仅指出结论也是入门计量经济学的一种常见处理方法。
第四章多元线性回归模型知识点:多元线性回归模型的假设、最小二乘估计及其估计量的性质、决定系数与修正的决定系数、单系数与线性约束的检验、多重共线性的相关问题。
计量经济学第六章-PPT课件

若模型有三个未知数,将数据三等分,分别求出 每部分的和,代入方程,得到三个方程,解方程 组可获得三个参数的估计值 10
模型的参数估计(续1)
参数的非线性最小二乘估计(第五章)
非线性模型可利用NLS进行参数的精确估计
首先,用param命令对参数赋初值 其次,输入方程,对模型进行估计
11
考虑选择指数曲线模型
2000000
1500000
1000000
500000
0 72 74 76 78 80 Y 82 84 YF 86 88 90 92
9
模型的参数估计
参数的最小二乘估计
常用的各类趋势模型参数估计仍常用OLS 其中,自变量为时间t
参数的三和值法(第五章)
若选用有增长上限的曲线趋势模型,当增长 上限事先不能确定时,可采用三和值法 基本思想
1961-1981年我国搪瓷面盆销售量数据如下 根据其变化,试以Gompertz曲线作为预测模型
由于增长上限L事先无法得知,参数估计可用NLS 在精确估计前,选择三和值法获得参数的初值 模型取对数转换成修正指数曲线 t ˆ y log L b log a log t
计算各段和值 根据参数计算公式计算参数值
产品市场生命周期
进入期 成长期 成熟期 衰退期
20
产品生命周期分析(续1)
f(t)
饱和点
进 成长期 入 期
成熟期 后 期 前 期
衰退期
t
21
产品生命周期分析(续2)
产品市场生命周期的各个阶段与某些趋势 模型存在大致的对应关系
经典计量经济学模型PPT课件

2002 4950 11495 16445 19305 23870 25025 21450 21285
3500 2299 2321 2530 2629 2860 2871
15510
5
分析:
(1)由于不确定因素的影响,对同一收入水平X,不同家 庭的消费支出不完全相同;
扰项方差的估计
2021/3/18
19
单方程计量经济学模型分为两大类: 线性模型和非线性模型
•线性模型中,变量之间的关系呈线性关系 •非线性模型中,变量之间的关系呈非线性关系
一元线性回归模型:只有一个解释变量
Yi 0 1 X i i
i=1,2,…,n
Y为被解释变量,X为解释变量,0与1为待估 参数, 为随机干扰项
2)数据的欠缺;
3)节省原则。
2021/3/18
13
四、样本回归函数(SRF)
总体的信往往无法掌握,现实的情况只能是在 一次观测中得到总体的一个样本。
问题:能从一次抽样中获得总体的近似的信息吗? 如果可以,如何从抽样中获得总体的近似信息?
例2在例1的总体中有如下一个样本, 问:能否从该样本估计总体回归函数PRF?
即如果知道了家庭的月收入,能否预测该社区 家庭的平均月消费支出水平。
为达到此目的,将该100户家庭划分为组内收入差 不多的10组,以分析每一收入组的家庭消费支出。
2021/3/18
4
800
561
每
594
月
627
家
638
庭
消
费
支
出
Y
(元)
共计 2420
常用计量经济模型ppt课件

k 1k 0
24
自相关函数
0 1
k
k 0
1k
1k1
➢ 这说明自回归过程具有无限记忆力。
➢ 过程当前值与过去所有时期的值相关,且时期越早, 相关性越弱。
25
四、移动平均(Moving Averages)模型
q阶移动平均模型MA (q): yt t 1 t1 2 t2 q tq
Granger, C. W. .J. (1969) Investigating Causal Relations by Econometric Models and Cross-Spectral Methods.
Econometrica, 37, 424-438.
34
Granger Causality Test
ARMA (p , q): yt 1 yt1 p yt p t 1 t1 q tq
ARMA(1 , 1):
yt 1 yt1 t 1 t1
均值
1 1
29
ARMA (1,1)过程的自相关函数
方差 协方差
0
1
2 1
211
1 12
2
1
1
0
1
பைடு நூலகம்
2
2 1 1
若xt 和yt是随机游走,但变量zt =xt –λyt是平 稳的,则称xt 和yt是协整的,协整向量为(1 , –λ )。
38
[例] 考虑模型
y1t y2t u1t
y2t y2,t 1 u2t
其中u1t和u2t是不相关的白噪声。
yt
yt 1
0.5yt2 )
此时可大致认为 ~yt 已无季节和不规则波动,可看作
L C 的估计 9
计量经济学(共33张PPT)

假定3>2,其几何意义:
问题:
虚拟变量为何只选“0”, ‘1“,选择0,1,2 等 可以吗
同一种属性,两个变量能够表示几种状态? 思考,如果在模型中引入季节效应?月份效应?
(3)多个虚拟变量的引入——多种因素
例:研究学历(本科及以上,本科以下),性别(男、女)对员工工资的 影响。
在例1基础上,再引入代表学历的虚拟变量D2:
离散选择模型(离散被解释变量)
D (2)多个虚拟变量的设定和引入 0 女职工本科以上学历的平均薪金:
本科以下
当回归模型有截距项时,只能引入 m-1 个虚拟变量
注意:加法方式引入虚拟变量,考察了截距的不同。
交互作用的引入方法:在模型中引入相关变量的乘积。
反映性别的虚拟变量可取为: 女职工本科以下学历的平均薪金:
几何意义:
•两个函数有相同的斜率,说明男女职工平均薪金对工龄的变 化率是一样的。
•如果2>0,表明两个函数截距不相同,且男职工平均薪金比 女职工高,两者平均薪金水平相差2。 •如果2<0,表明两个函数截距不相同,且男职工平均薪金比女 职工低,两者平均薪金水平相差2。 •如果2=0,表明两个函数截距相同,即男职工,女职工的平
均薪金没有显著差异。
可以通过传统的回归检验,对2的统计显著性进行 检验,以判断企业男女职工的平均薪金水平是否有 显著差异。
2
0
(2)多个虚拟变量的设定和引入
——一种因素多种状态(水平):
例:研究收入和教育水平(分为高,中,低三类)对个人保健支出的影响。
教育水平考虑三个层次:
低学历:高中以下,
中等学历:高中,及大中专 高学历:大学及其以上。
2、基本概念
定量因素——可直接测度,数值性的因素 定性因素——属性因素,表征某种属性存在
[经验分享]计量经济学思维导图及...
![[经验分享]计量经济学思维导图及...](https://img.taocdn.com/s3/m/3e9d6e31bfd5b9f3f90f76c66137ee06eff94ee9.png)
[经验分享]计量经济学思维导图及...
文/日新少年
来源:经管之家论坛,感谢作者授权转载
在经管之家论坛上,作者整理出来的[经验分享] 计量经济学思维导图及经典时间序列分析方法介绍(ARMA、ARIMA、ARCH、GARCH族)一文,深受广大朋友们的喜爱。
中心小编经过联系授权,今日与大家一起学习。
参照的书籍比较杂、包括一部分笔记,这里就不一一陈述了。
另外[学科前沿] 《金融时间序列分析》分章思维导图与简评一文,给作者了很多启发。
最终做成这份思维导图,现分享给大家:
可以放大查看原图
经典时间序列分析方法
经典时间序列分析方法操作步骤简介
AR、MA、ARMA的模型及阶数判定:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面
模
二元选择模型
数
型
Logit 模型
据
定性被解释变量
排序模型
多元选择模型
无序模型
系
统
似不相关模型
方
程
模
联立方程模型
型
泊松模型 负二项分布模型
平稳序列 ARMA 模型
单变量序列
非平稳序列
ARIMA 模型 SARMA 模型
单方程模型
平稳序列 建模方法同截面数据
多变量序列 单位根检验
时
协整(同阶单整)
间
Wald 检验、LM 检验和 LR 检验
幂阶梯变换、Cox 变换 模拟,如 Bootstrap
增大 n+OLS ML GMM 非参数方法 数据变换
逐步回归 岭回归 主成分回归 GMM
估计;WLS GLS GMM White 检验等 非正态
内生性
估计:IV 严重多重共线性
异方差
雅克比检验 Hausman 检验
VIF 检验等
同方差
无自相关 正态分布 外生性
无多重共线性
空间相关(空间计量学)
经典假设 线性模型
PE 检验
非线性模型
估计:OLS 检验:t、F 检验 线性化 非线性最小二乘法
经典回归模型
连续性模型
受限因变量模型
截断模型 删失(归并)模型 Tobit
定量被解释变量
期限模型
单
离散性模型
计数模型
方
截
程
Probit 模型
随机效应模型
面
时间效应模型
板
数
据
PVAR
类似时间序列数据的方法
面板单位根
面板数据的计量经济分析 白仲林,南开大学出版社。2008
面板协整
第一章
第二章
第三章
第四章
第五章
非平稳序列
序
误差修正模型
列
数
注:对上述单方程模型的扰动项均需做 ARCH 效应检验
据
格兰杰因果关系
系统方程模型
VAR
简化式 VAR 结构式 VAR
脉冲响应分析 方差分解分析
状态空间模型
混合模型
个体效应模型
F 检验
LM 检验
固定效应模型
常系数模型 F 检验 变系数模型
类似截面数据的方法
Hausman 检验