第九章习题详解

合集下载

概率论与数理统计(第9章)习题详解

概率论与数理统计(第9章)习题详解

习题九1 灯泡厂用4种不同的材料制成灯丝,检验灯线材料这一因素对灯泡寿命的影响.若灯泡寿命服从正态分布,不同材料的灯丝制成的灯泡寿命的方差相同,试根据表中试验结果记录,在显著性水平0.05下检验灯泡【解】14,26;====∑ri i r n n2442..11===-∑∑T iji j T S x n =69895900-69700188.46=195711.54, 242...11==-∑A i i iT S T n n =69744549.2-69700188.46=44360.7, =-E T A S S S =151350.8, 0.05/(1)44360.7/3 2.15/()151350.8/22(3,22) 3.05.-===-=>A E S r F S n r F F ,故灯丝材料对灯泡寿命无显著影响.. 【解】13,40,====∑ri i r n n232..11in T iji j T S x n ===-∑∑=199462-185776.9=13685.1, 232...11==-∑A i i iT S T n n =186112.25-185776.9=335.35, =-E T A S S S =13349.65, 0.05/(1)167.70.465/()360.8(2,37) 3.23.-===-=>A E S r F S n r F F故各班平均分数无显著差异.取显著性水平α=0.05,试分析操作工之间,机器之间以及两者交互作用有无显著差异? 【解】由已知r =4,s =3,t =3........,,,ij i j T T T T 的计算如表9-3-1.表9-3-122 (111)22 (12)2.....122. (11)1106510920.25144.75,11092310920.25 2.75,110947.4210920.2527.17,173.50=====⨯===-=-==-=-==-=-=⎛⎫-=--= ⎪⎝⎭∑∑∑∑∑∑∑rstT ijki j k r A i i s B j j r s ij A B A B i j T S x rst T S T st rst T S T rt rst T T S S S t rst ,41.33.⨯=---=E T A B A B S S S S S表9-3-2得方差分析表0.050.050.05(3,24) 3.01,(2,24) 3.40,(6,24) 2.51.===F F F接受假设01H ,拒绝假设0203,H H .即机器之间无显著差异,操作之间以及两者的交互作用有显著差异.4. 为了解3种不同配比的饲料对仔猪生长影响的差异,对3种不同品种的猪各选3头进行试验,分别测得其3个月间体重增加量如下表所示,取显著性水平α=0.05,试分析不同饲料与不同品种对猪的生长有无显著影【解】由已知r =s =3,经计算x =52, 1.x =50.66, 2.x =533.x =52.34, .1x =52, .2x =57, .3x =47,2112.12.1()162;()8.73,()150,3.27.rsT ij i j r A i i rB j j E T A B S x x S s x x S r x x S S S S =====-==-==-==--=∑∑∑∑表9-4-1得方差分析表由于0.050.05(2,4) 6.94,(2,4).A B F F F F =>< 因而接受假设01H ,拒绝假设02H .即不同饲料对猪体重增长无显著影响,猪的品种对猪体重增长有显著影响.5.研究氯乙醇胶在各种硫化系统下的性能(油体膨胀绝对值越小越好)需要考察补强剂(A )、防老剂(B )、硫化系统(C )3个因素(各取3个水平),根据专业理论经验,交互作用全忽略,根据选用L 9(34)表作9次试验及试验结果见下表:(2) 给定α=0.05,作方差分析与(1)比较.【解】(1) 对试验结果进行极差计算,得表9-5-1.由于要求油体膨胀越小越好,所以从表9-5-1的极差R j 的大小顺序排出因素的主次顺序为:主→次B ,A ,C 最优工艺条件为:223A B C .(2) 利用表9-5-1的结果及公式2211==-∑r j ij i T S T r P,得表9-5-2.表9-5-2表9-5-2中第4列为空列,因此40.256==e S S ,其中2=e f ,所以eeS f =0.128方差分析表如表9-5-3.由于0.05(2,2)19.00=F ,故因素C 作用较显著,A 次之,B 较次,但由于要求油体膨胀越小越好,所以主次顺序为:BAC ,这与前面极差分析的结果是一致的. 6. 某农科站进行早稻品种试验(产量越高越好),需考察品种(A ),施氮肥量(B ),氮、磷、钾肥比例(C ),插植规格(D )4个因素,根据专业理论和经验,交互作用全忽略,早稻试验方案及结果分析见下表:(2) 给定α=0.05,作方差分析,与(1)比较.【解】被考察因素有4个:A ,B ,C ,D 每个因素有两个水平,所以选用正交表L 8(27),进行极差计算可得表9-6-1.从表9-6-1的极差R j 的大小顺序排出因素的主次为:,,,→主次B C A D 最优方案为:1222A B C D(2) 利用表9-6-1的结果及公式2211n j ij i T s T r P==-∑得表9-6-2.表9-6-2中第1,3,7列为空列,因此s e =s 1+s 3+s 7=18.330,f e =3,所以ee sf =6.110.而在上表中其他列中j e j es s f f <.故将所有次均并入误差,可得ΔΔ18.895,7.===e T e s s f整理得方差分析表为表9-6-3.表9-6-3由于0.05(1.7) 5.59=F ,故4因素的影响均不显著,但依顺序为:,,,→主次B C A D 与(1)中极差分析结果一致.。

《西方经济学》(下册)教材习题答案解析详解

《西方经济学》(下册)教材习题答案解析详解

《西方经济学》下册教材课后习题答案详解第九章宏观经济的基本指标及其衡量1.何为GDP?如何理解GDP?答案要点:GDP是指一定时期内在一国(或地区)境内生产的所有最终产品和服务的市场价值总和。

对于GDP的理解,以下几点要注意:(1)GDP是一个市场价值的概念.为了解决经济中不同产品和服务的实物量一般不能加总的问题,人们转而研究它们的货币价值,这就意味着,GDP一般是用某种货币单位来表示的。

(2)GDP衡量的是最终产品和服务的价值,中间产品和服务价值不计入GDP。

最终产品和服务是指直接出售给最终消费者的那些产品和服务,而中间产品和服务是指由一家企业生产来被另一家企业当作投入品的那些服务和产品。

(3)GDP是一国(或地区)范围内生产的最终产品和服务的市场价值。

也就是说,只有那些在指定的国家和地区生产出来的产品和服务才被计算到该国或该地区的GDP中.(4)GDP衡量的是一定时间内的产品和服务的价值,这意味着GDP属于流量,而不是存量。

2.说明核算GDP的支出法。

答案要点:支出法核算GDP的基本依据是:对于整个经济体来说,收入必定等于支出。

具体说来,该方法将一国经济从对产品和服务需求的角度划分为了四个部门,即家庭部门、企业部门、政府部门和国际部门.对家庭部门而言,其对最终产品和服务的支出称为消费支出,用字母C表示;对企业部门而言,其支出称为投资支出,用字母I表示;对政府部门而言,将各级政府购买产品和服务的支出定义为政府购买,用字母G表示;对于国际部门,引入净出口NX来衡量其支出,净出口被定义为出口额与进口额的差额.将上述四部门支出项目加总,用Y表示GDP,则支出法核算GDP的国民收入核算恒等式为:Y=C+I+G+NX。

3.说明GDP这一指标的缺陷。

答案要点:(1)GDP并不能反映经济中的收入分配状况。

GDP高低或人均GDP高低并不能说明一个经济体中的收入分配状况是否理想或良好。

(2)由于GDP只涉及与市场活动有关的那些产品和服务的价值,因此它忽略了家庭劳动和地下经济因素。

微积分(曹定华)(修订版)课后题答案第九章习题详解

微积分(曹定华)(修订版)课后题答案第九章习题详解

第9章习题9-11. 判定下列级数的收敛性:(1) 115n n a ∞=⋅∑(a >0); (2)∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4)∑∞=-+12)1(2n nn; (5) ∑∞=+11ln n n n; (6)∑∞=-12)1(n n;(7) ∑∞=+11n nn ; (8)0(1)21n n nn ∞=-⋅+∑. 解:(1)该级数为等比级数,公比为1a ,且0a >,故当1||1a <,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散.(2)Q n S =+++L1=lim n n S →∞=∞∴1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11n n ∞=∑发散,故原级数113n n ∞=+∑发散. (4)Q 1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2m nn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛.(5)Q lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞=-∞,所以级数1ln 1n nn ∞=+∑发散.(6)Q 2210,2n n S S +==-∴lim n n S →∞不存在,从而级数1(1)2n n ∞=-∑发散.(7)Q 1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n ∞=+∑发散. (8)Q (1)(1)1, lim 21212n n n n n n U n n →∞--==++∴ lim 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散.2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2) ※∑∞=++1)2)(1(1n n n n ; (3) ∑∞=⋅12sin n n n π; (4)πcos2n n ∞=∑. 解:Q (1)1111, 23n n n n ∞∞==∑∑都收敛,且其和分别为1和12,则11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32. (2)Q11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭∴121112111211121122322342345212n S n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-++-++-+++-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭L11112212n n ⎛⎫=-+ ⎪++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin2n n n ∞=⋅∑发散. (4)πcos 2n n U =,而4lim limcos2π1k k k U k →∞→∞==,42lim limcos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数πcos2n n ∞=∑发散. 3※. 设1nn U∞=∑ (U n >0)加括号后收敛,证明1nn U∞=∑亦收敛.证:设1(0)nn n UU ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >=L ,故存在0n ,使11n n k t k t S U A s ∞===<<∑∑又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim nn S →∞存在,即原级数1nn U∞=∑亦收敛.习题9-21. 判定下列正项级数的收敛性:(1) ∑∞=++1n n n )2)(1(1; (2)∑∞=+1n n n 1; (3) ∑∞=++1n n n n )2(2; (4)∑∞=+1n n n )5(12;(5) 111nn a∞=+∑ (a >0); (6) ∑∞=+1n nba 1(a , b >0);(7)()∑∞=--+1n a n a n 22 (a >0); (8)∑∞=-+1n nn 1214; (9) ∑∞=⋅1n nn n 23; (10) ※∑∞=1n nn n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753ΛΛ; (12)∑∞=1n n n3; (13) ※∑∞=1n n n 22)!(2; (14)∑∞=⎪⎭⎫ ⎝⎛+1n nn n 12; (15)∑∞=1πn nn3sin2; (16) ∑∞=1πn n n n 2cos 32.解:(1)因为211(1)(2)n n n <++而211n n∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim lim10n n n U →∞→∞==≠,故原级数发散. (3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散. (4)321n<=,而1n ∞=是收敛的p -级数3(1)2p =>,由比较判别法知,级数1n ∞=收敛.(5)因为111lim lim lim(1)111n n n n n n n n a a a aa→∞→∞→∞+==-++ 11112001a a a >⎧⎪⎪==⎨⎪<<⎪⎩而当1a >时,11n n a ∞=∑收敛,故111nn a∞=+∑收敛; 当1a =时,11n n a∞=∑=11n ∞=∑发散,故111nn a ∞=+∑发散; 当01a <<时1lim101n n a →∞=≠+,故1lim1nn a →∞+发散; 综上所述,当01a <≤时,级数1lim 1n n a →∞+发散,当1a >时,1lim 1nn a →∞+收敛. (6)因为1lim lim lim(1)1n n n nn n n nb a a b a b a b b →∞→∞→∞+==-++1111101b b a b >⎧⎪⎪==⎨+⎪<<⎪⎩ 而当1b >时, 11n n b ∞=∑收敛,故11nn a b ∞=+∑收敛; 当1b =时,1111n n n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11nn a b ∞=+∑也发散; 当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b ∞=+∑发散; 综上所述知,当01b <≤时,级数11n n a b ∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛. (7)因为n n n→∞=0n a ==>而11n n ∞=∑发散,故级数10)n a ∞=>∑发散.(8)因为434431121lim lim 1212n n n n n n n n →∞→∞++-==-而311n n ∞=∑收敛,故级数21121n n n ∞=+-∑收敛.(9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132nnn n ∞=⋅∑发散. (10)因为11(1)!1lim lim lim(1)1(1)!n n n n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!nn n n ∞=∑发散.(11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+L L L L232lim1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13nn n∞=∑收敛. (13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n nU n U ++→∞→∞+==<由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim 1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫⎪+⎝⎭∑收敛.(15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n n n ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n nn ∞=∑收敛. (16)因为2πcos 322n n n n n ≤而与(12)题类似地可证级数12n n n ∞=∑收敛,由比较判别法知级数1πcos 32nn n n ∞=∑收敛.2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n nn x ; (2)nn x n ∑∞=⎪⎭⎫ ⎝⎛123. 解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散;当01x <<时,原级数收敛; 而当1x =时,原级数变为调11n n ∞=∑,它是发散的. 综上所述,当01x <<时,级数1nn x n ∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即2x >时,原级数发散;当012x<<即02x <<时,原级收敛. 而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2nn x n ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2)11(1)2(1)2n n nn ∞-=-+-⋅∑; (3) ∑∞=12sin n n nx; (4) 111π(1)sin πn n n n∞+=-∑; (5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6)∑∞=+-1)1(n n x n ; (7) ∑∞=⋅1!)2sin(n n n x .解:(1)这是一个交错级数121n U n =-, 1lim lim 021n n n U n →∞→∞==-, 1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21nn n ∞=--∑. 又1111(1)2121n n n n n ∞∞==-=--∑∑,由1121lim 12n n n→∞-=,及11n n ∞=∑发散,知级数1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛. (2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故 11111(1)21111(1)22(1)22(1)2n n n n n n n n n ------+--=+≤+-⋅-⋅-⋅1113222n n n-=+=而112n n ∞=∑收敛,故132n n ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n n n ∞-=-+-⋅∑绝对收敛. (3)因为22sin 1,nx n n ≤而级数211n n ∞=∑收敛,由比较判别法知21sin n nxn ∞=∑收敛,因此,级数21sin n nxn ∞=∑绝对收敛. (4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n ∞+=-∑收敛,从而级数11π(1)sin πn n n+-绝对收敛. (5)因为212121111111210210210n n n n n n ----≤+=+,而级数112nn ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛. (6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收敛的,但因11n x n ∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛.(7)因为sin(2)1!!n x n n ⋅≤ 由比值判别法知11!n n ∞=∑收敛(Q 1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑,绝对收敛.2. 讨论级数∑∞=--111)1(n p n n的收敛性(p >0). 解:当1p >时,由于11111(1)n p p n n n n ∞∞-==-=∑∑收敛,故级数111(1)n p n n ∞-=-∑绝对收敛. 当01p <≤时,由于111,(1)n n p p u u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n p n n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p p n n n n∞∞-==-=∑∑发散,故此时,级数111(1)n pn n ∞-=-∑条件收敛. 综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3※. 设级数∑∞=12n na及∑∞=12n nb都收敛,证明级数∑∞=1n nn ba 及()∑∞=+12n n nb a也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n n n n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b∞=∑也收敛,从而级数1n nn a b∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n n n n a b ∞∞==∑∑,以及1n n n a b ∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n aa b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n nn x (0!=1); (2)∑∞=0!n nn x n n ; (3) ∑∞=⋅022n n nnx ; (4)∑∞=++-01212)1(n n nn x .(5) ∑∞=⋅+02)2(n n nn x ; (6)∑∞=-0)1(2n n nx n. 解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!nn x n ∞=∑的收敛区间为(,)-∞+∞. (2)因为-111lim lim lim 1e 11n nn n n n na n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p ==. 当x =e 时,级数01!!e n n n n n n n n x n n ∞∞===∑∑,此时11(1)n n n u e u n+=+,因为1(1)nn +是单调递增数列,且1(1)nn+<e 所以1n nu u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数0!nnn n x n∞=∑的收敛区间为(-e,e).(3)因为2111limlim ()212n n n n a n p a n +→∞→∞===+,所以收敛半径为r =2. 当2x =时,级数221012n n n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);当x =-2时,级数22011(1)2n nn n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim23n n n nu n x x u n +→∞→∞+=⋅=+. 当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而210(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛.综上所述,级数21(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数. 因为11limlim 2(1)2n n n n a n p a n +→∞→∞===+. 所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为1(1)nn n∞=-∑是收敛的交错级数, 当x =0时,级数变为调和级数11n n∞=∑,它是发散的. 综上所述,原级数的收敛区间为[-4,0).(6)此级数(x -1)的幂级数12limlim 21n n n n a np a n +→∞→∞===+ 故收敛半径12r =. 于是当1|1|2x -<即1322x <<时,原级数绝对收敛.当1|1|2x ->即12x <或32x >时,原级数发散.当32x =时,原级数变为01n n ∞=∑是调和级数,发散.当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数.综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭.2. 求下列幂级数的和函数:(1) ∑∞=-1)1(n nnn x ; (2)∑∞=-1122n n nx;(3) n n x n n ∑∞=+1)1(1; (4) ∑∞=+0)12(n nxn .解:(1)可求得所给幂级数的收敛半径r =1.设1()(1)nnn x S x n ∞==-∑,则1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑ ∴001()()d d ln(1) (||1)1x x S x S x x x x x x-'===-+<+⎰⎰又当x =1时,原级数收敛,且()S x 在x =1处连续.∴1(1)ln(1) (11)nnn x x x n ∞=-=-+-<≤∑ (2)所给级数的收敛半经r =1,设211()2n n S x nx∞-==∑,当||1x <时,有2121011()d 2d 2d xx xn n n n S x x nxx nx x ∞∞--====∑∑⎰⎰⎰22211nn x xx ∞===-∑ 于是22222()1(1)x xs x x x '⎛⎫== ⎪--⎝⎭ 又当1x =±时,原级数发散.故2122122 (||1)(1)n n xnx x x ∞-==<-∑ (3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑ 令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑01()d ()(0)d 1xxg x x g x g x x''''=-=-⎰⎰(0)0,()ln(1)g g x x ''==--()d ()(0)ln(1)d ,(0)0xxg x x g x g x x g '=-=--=⎰⎰所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰;所以1()11ln(1),||1,S x x x x ⎛⎫=+--<⎪⎝⎭且0x ≠. 当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)nn n n ∞=-+∑,它们都收敛.且显然有(0)0S =.故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设1()n n S x nx∞-==∑,则1()d .1xn n s x x x x∞===-∑⎰于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑. 所以111(21)2nn n n n n n xx nxx ∞∞∞-===+=+∑∑∑221112(1)1(1)xx x x x +=⋅+=--- (||1)x <3. 求下列级数的和:(1) ∑∞=125n n n ; (2)∑∞=-12)12(1n nn ;(3) ∑∞=--112212n n n ; (4)1(1)2nn n n ∞=+∑. 解:(1)考察幂级数21nn n x∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2nn u n x =,2lim ||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21n n n x ∞=∑发散,故幂级数21nn n x∞=∑的收敛区间为(-1,1).设21() (||1)nn S x n xx ∞==<∑,则211()n n S x x n x ∞-==∑令2111()n n S x n x∞-==∑,则11011()d xnn n n S x x nx x nx ∞∞-====∑∑⎰.再令121()n n S x nx∞-==∑,则201()d 1xn n x S x x x x∞===-∑⎰. 故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰. 1231() (||1)(1)(1)x xS x x x x '⎛⎫+==< ⎪--⎝⎭于是 213()() (||1)(1)x x S x xS x x x +==<- 取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑. (2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设 2211111() (||1)2121nn n n S x x x x x n n ∞∞-====<--∑∑令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑. 1200d 11()d ln 1-21xxx x S x x x x+'==-⎰⎰即 1111()(0)ln (,(0)0)21xS x S s x+-==-. 于是 111()ln ,(||<1)21xS x x x+=-,从而11()()ln (||1)21x xS x xS x x x+==<-取x =则11(21)21n n S n ∞===-∑=(3)考察幂级数211(21)n n n x∞-=-∑,可求得其级数半经为r =1,因为212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑令2111()2n n S x nx∞-==∑,则221201()d 1xnn x S x x xx∞===-∑⎰. 所以212222() (||1)1(1)x xS x x x x '⎛⎫==< ⎪--⎝⎭,于是212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑3222222 (||1)(1)1(1)x x x x x x x x +=-=<--- 取12x =,得 3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭-⎪⎝⎭∑.(4)考察幂级数1(1)nn n n x∞=+∑,可求得其收敛半径r =1.设1()(1) (||1)nn S x n n xx ∞==+<∑则12111()d xn n n n S x x nxxnx∞∞+-====∑∑⎰.又设111()n n S x nx∞-==∑则101()d 1xn n x S x x x x∞===-∑⎰. 从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭, 2212()d ()(1)xx S x x x S x x ==-⎰2232() ||1(1)(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭ 取12x =,则 31121(1)2822112n n n n S ∞=⨯+⎛⎫=== ⎪⎝⎭⎛⎫- ⎪⎝⎭∑ 习题9-51. 将下列函数展开成x 的幂级数: (1) 2cos2x ; (2) 2sin x ; (3) 2x x -e ; (4) 211x -; (5)πcos()4x -. 解:(1)2201cos 11cos (1)2222(2)!nn n x x x n ∞=+==+-∑ 211(1)(-)2(2)!nnn x x n ∞==+-∞<<+∞∑ (2)2101sin (1) ()2(21)!2n n n x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑(3)22210011e()(1) ()!!x nn n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑(4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦0002011(1)221[(1)]2 ||1n n nn n n n nn n n x x x x x x ∞∞==∞=∞==+-=+-=<∑∑∑∑(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭2210(cos sin )2(1) ()2(2)!(21)!n n n n x x x xx n n +∞==+⎡⎤=-+-∞<<+∞⎢⎥+⎣⎦∑ 2. 将下列函数在指定点处展开成幂级数,并求其收敛区间:(1)x -31,在x 0=1; (2) cos x,在x 0=3π; (3) 3412++x x ,在x 0=1; (4) 21x, 在x 0=3.解:(1)因为11113212x x =⋅---,而 0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑.收敛区间为:(-1,3). (2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦22100()()133(1)(1)2(2)!2(21)!n n n n n n x x n n ππ+∞∞==--=-+-+∑∑221011(1)()[)2(2)!3(21)!3nn n n x x n n ππ∞+=⎡⎤=--+-⎢⎥+⎣⎦∑ ()x -∞<<+∞ 收敛区间为(,)-∞+∞.(3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 001111(1)(1)4284n nn n n n x x ∞∞==--⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭∑∑223011(1)(1)22n n n n n x ∞++=⎛⎫=--- ⎪⎝⎭∑由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n nn x x x ∞=-=⋅=-⋅-+∑ 1(3)(1)3nnn n x ∞+=-=-∑ 而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑ 111(1)(3)3n n n n n x ∞-+=-=-⋅-∑1111(1)(3)3n n n n n x +∞-+=-=-∑ 2(1)(1)(3)3n n n n n x ∞+=-+=-∑ 由313x -<得06x <<. 故收敛区间为(0,6).。

微积分课后题答案第九章习题详解

微积分课后题答案第九章习题详解

第9章习题9-11. 判定下列级数的收敛性:(1) 115n n a ∞=⋅∑(a >0); (2) ∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4) ∑∞=-+12)1(2n nn ; (5) ∑∞=+11ln n n n ; (6) ∑∞=-12)1(n n;(7) ∑∞=+11n nn ; (8) 0(1)21n n n n ∞=-⋅+∑.解:(1)该级数为等比级数,公比为1a ,且0a >,故当1||1a<,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散. (2)Q n S =+++L1=lim n n S →∞=∞∴1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11n n ∞=∑发散,故原级数113n n ∞=+∑发散. (4)Q 1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2m nn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛. (5)Q lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞=-∞,所以级数1ln1n nn ∞=+∑发散. (6)Q 2210,2n n S S +==-∴ lim n n S →∞不存在,从而级数1(1)2nn ∞=-∑发散.(7)Q 1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n ∞=+∑发散. (8)Q (1)(1)1, lim 21212n n n n n n U n n →∞--==++∴ lim 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散.2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2) ※∑∞=++1)2)(1(1n n n n ;(3) ∑∞=⋅12sin n n n π; (4) 0πcos 2n n ∞=∑.解:Q (1)1111, 23n n n n ∞∞==∑∑都收敛,且其和分别为1和12,则11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32. (2)Q11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭∴121112111211121122322342345212n S n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-++-++-+++-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭L 11112212n n ⎛⎫=-+ ⎪++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin2n n n ∞=⋅∑发散. (4)πcos 2n n U =,而4lim limcos2π1k k k U k →∞→∞==,42lim limcos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数πcos2n n ∞=∑发散. 3※. 设1nn U∞=∑ (U n >0)加括号后收敛,证明1nn U∞=∑亦收敛.证:设1(0)nn n UU ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >=L ,故存在0n ,使11n n k t k t S U A s ∞===<<∑∑又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim nn S →∞存在,即原级数1nn U∞=∑亦收敛.习题9-21. 判定下列正项级数的收敛性:(1) ∑∞=++1n n n )2)(1(1; (2) ∑∞=+1n n n1;(3) ∑∞=++1n n n n )2(2; (4) ∑∞=+1n n n )5(12;(5) 111nn a ∞=+∑ (a >0); (6) ∑∞=+1n n ba 1(a , b >0); (7)()∑∞=--+1n a n a n22(a >0); (8) ∑∞=-+1n n n 1214; (9) ∑∞=⋅1n nn n 23; (10) ※∑∞=1n n n n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753ΛΛ; (12) ∑∞=1n n n3;(13) ※∑∞=1n n n 22)!(2; (14) ∑∞=⎪⎭⎫⎝⎛+1n nn n 12;(15)∑∞=1πn nn3sin2; (16) ∑∞=1πn n n n 2cos 32.解:(1)因为211(1)(2)n n n <++而211n n ∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim lim10n n n U →∞→∞==≠,故原级数发散. (3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散. (4)321n<=,而1n ∞=是收敛的p -级数3(1)2p =>,由比较判别法知,级数1n ∞=收敛.(5)因为111lim lim lim(1)111n n n nn n n na a a a a →∞→∞→∞+==-++11112001a a a >⎧⎪⎪==⎨⎪<<⎪⎩而当1a >时,11n n a ∞=∑收敛,故111nn a ∞=+∑收敛; 当1a =时,11n n a ∞=∑= 11n ∞=∑发散,故111nn a∞=+∑发散; 当01a <<时1lim101n n a →∞=≠+,故1lim1nn a →∞+发散; 综上所述,当01a <≤时,级数1lim 1n n a →∞+发散,当1a >时,1lim 1nn a →∞+收敛. (6)因为1lim lim lim(1)1n n n n n n n n b a a b a b a b b→∞→∞→∞+==-++ 1111101b b a b >⎧⎪⎪==⎨+⎪<<⎪⎩ 而当1b >时, 11n n b ∞=∑收敛,故11nn a b ∞=+∑收敛; 当1b =时,1111n n n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11nn a b ∞=+∑也发散; 当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b ∞=+∑发散; 综上所述知,当01b <≤时,级数11n n a b ∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛. (7)因为n n n→∞=0n a ==>而11n n ∞=∑发散,故级数10)n a ∞=>∑发散. (8)因为434431121lim lim 1212n n n n n n n n →∞→∞++-==-而311n n ∞=∑收敛,故级数21121n n n ∞=+-∑收敛.(9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132nnn n ∞=⋅∑发散. (10)因为11(1)!1lim lim lim(1)1(1)!n n n n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!nn n n ∞=∑发散.(11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+L L L L232lim1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13n n n∞=∑收敛. (13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n n U n U ++→∞→∞+==<由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim 1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫ ⎪+⎝⎭∑收敛.(15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n n n ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n n n ∞=∑收敛. (16)因为2πcos 322n nn n n ≤而与(12)题类似地可证级数12n n n ∞=∑收敛,由比较判别法知级数1πcos 32nn n n ∞=∑收敛.2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n n n x ; (2) nn x n ∑∞=⎪⎭⎫⎝⎛123.解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散; 当01x <<时,原级数收敛; 而当1x =时,原级数变为调11n n ∞=∑,它是发散的. 综上所述,当01x <<时,级数1nn x n ∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即2x >时,原级数发散;当012x<<即02x <<时,原级收敛. 而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2nn x n ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2) 11(1)2(1)2n n nn ∞-=-+-⋅∑; (3) ∑∞=12sin n n nx ; (4) 111π(1)sin πn n n n ∞+=-∑; (5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6) ∑∞=+-1)1(n n x n ;(7) ∑∞=⋅1!)2sin(n n n x .解:(1)这是一个交错级数121n U n =-, 1lim lim 021n n n U n →∞→∞==-, 1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21nn n ∞=--∑. 又1111(1)2121n n n n n ∞∞==-=--∑∑,由1121lim 12n n n→∞-=,及11n n ∞=∑发散,知级数1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛.(2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故11111(1)21111(1)22(1)22(1)2n n n n n n n n n ------+--=+≤+-⋅-⋅-⋅ 1113222n n n-=+=而112n n ∞=∑收敛,故132n n ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n nn ∞-=-+-⋅∑绝对收敛. (3)因为22sin 1,nx n n ≤而级数211n n∞=∑收敛,由比较判别法知21sin n nxn ∞=∑收敛,因此,级数21sin n nxn ∞=∑绝对收敛. (4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n ∞+=-∑收敛,从而级数11π(1)sin πn n n+-绝对收敛. (5)因为212121111111210210210n n n n n n ----≤+=+,而级数112nn ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛. (6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收敛的,但因11n x n ∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛.(7)因为sin(2)1!!n x n n ⋅≤由比值判别法知11!n n ∞=∑收敛(Q 1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑,绝对收敛.2. 讨论级数∑∞=--111)1(n pn n 的收敛性(p >0). 解:当1p >时,由于11111(1)n p p n n n n ∞∞-==-=∑∑收敛,故级数111(1)n p n n ∞-=-∑绝对收敛. 当01p <≤时,由于111,(1)n n p pu u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n p n n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p p n n n n ∞∞-==-=∑∑发散,故此时,级数111(1)n p n n∞-=-∑条件收敛. 综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3※. 设级数∑∞=12n na及∑∞=12n nb都收敛,证明级数∑∞=1n nn ba 及()∑∞=+12n n nb a也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n n n n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b∞=∑也收敛,从而级数1n nn a b∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n n n n a b ∞∞==∑∑,以及1n n n a b ∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n aa b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n n n x (0!=1); (2) ∑∞=0!n nn x nn ;(3) ∑∞=⋅022n n n n x ; (4) ∑∞=++-01212)1(n n n n x .(5) ∑∞=⋅+02)2(n n n n x ; (6) ∑∞=-0)1(2n n nx n. 解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!nn x n ∞=∑的收敛区间为(,)-∞+∞. (2)因为-111lim lim lim 1e 11n nn n n n n a n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p==. 当x =e 时,级数01!!e n n n n n n n n x n n ∞∞===∑∑,此时11(1)n n n u e u n+=+,因为1(1)nn +是单调递增数列,且1(1)nn+<e 所以1n nu u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数0!nnn n x n∞=∑的收敛区间为(-e,e).(3)因为2111limlim ()212n n n n a n p a n +→∞→∞===+,所以收敛半径为r =2. 当2x =时,级数221012n n n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);当x =-2时,级数22011(1)2n nn n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim 23n n n nu n x x u n +→∞→∞+=⋅=+.当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而210(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛.综上所述,级数21(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数. 因为11limlim 2(1)2n n n n a n p a n +→∞→∞===+. 所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为1(1)nn n ∞=-∑是收敛的交错级数, 当x =0时,级数变为调和级数11n n ∞=∑,它是发散的.综上所述,原级数的收敛区间为[-4,0).(6)此级数(x -1)的幂级数12limlim 21n n n n a np a n +→∞→∞===+ 故收敛半径12r =. 于是当1|1|2x -<即1322x <<时,原级数绝对收敛.当1|1|2x ->即12x <或32x >时,原级数发散.当32x =时,原级数变为01n n ∞=∑是调和级数,发散.当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数.综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭. 2. 求下列幂级数的和函数:(1) ∑∞=-1)1(n n nn x ; (2) ∑∞=-1122n n nx ;(3) nn x n n ∑∞=+1)1(1; (4) ∑∞=+0)12(n n x n . 解:(1)可求得所给幂级数的收敛半径r =1.设1()(1)n nn x S x n ∞==-∑,则1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑ ∴001()()d d ln(1) (||1)1x x S x S x x x x x x-'===-+<+⎰⎰又当x =1时,原级数收敛,且()S x 在x =1处连续.∴1(1)ln(1) (11)nnn x x x n ∞=-=-+-<≤∑ (2)所给级数的收敛半经r =1,设211()2n n S x nx∞-==∑,当||1x <时,有2121011()d 2d 2d xx xn n n n S x x nxx nx x ∞∞--====∑∑⎰⎰⎰22211nn x xx∞===-∑ 于是22222()1(1)x xs x x x '⎛⎫== ⎪--⎝⎭ 又当1x =±时,原级数发散. 故2122122 (||1)(1)n n xnx x x ∞-==<-∑(3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑ 令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑01()d ()(0)d 1xxg x x g x g x x''''=-=-⎰⎰(0)0,()ln(1)g g x x ''==--()d ()(0)ln(1)d ,(0)0xxg x x g x g x x g '=-=--=⎰⎰所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰;所以1()11ln(1),||1,S x x x x ⎛⎫=+--<⎪⎝⎭且0x ≠. 当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)nn n n ∞=-+∑,它们都收敛.且显然有(0)0S =.故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设1()n n S x nx∞-==∑,则1()d .1xn n s x x x x∞===-∑⎰于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑. 所以111(21)2nn n n n n n xx nxx ∞∞∞-===+=+∑∑∑221112(1)1(1)xx x x x +=⋅+=--- (||1)x <3. 求下列级数的和:(1) ∑∞=125n n n ; (2) ∑∞=-12)12(1n nn ; (3) ∑∞=--112212n n n ; (4) 1(1)2nn n n ∞=+∑. 解:(1)考察幂级数21nn n x∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2nn u n x =,2lim ||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21n n n x ∞=∑发散,故幂级数21nn n x∞=∑的收敛区间为(-1,1).设21() (||1)nn S x n xx ∞==<∑,则211()n n S x x n x ∞-==∑令2111()n n S x n x∞-==∑,则11011()d xnn n n S x x nx x nx ∞∞-====∑∑⎰.再令121()n n S x nx∞-==∑,则201()d 1xn n xS x x x x∞===-∑⎰. 故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰. 1231() (||1)(1)(1)x xS x x x x '⎛⎫+==< ⎪--⎝⎭于是 213()() (||1)(1)x x S x xS x x x +==<- 取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑. (2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设 2211111() (||1)2121nn n n S x x x x x n n ∞∞-====<--∑∑令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑. 1200d 11()d ln1-21xxx xS x x x x+'==-⎰⎰即 1111()(0)ln (,(0)0)21xS x S s x+-==-. 于是 111()ln ,(||<1)21xS x x x+=-,从而11()()ln (||1)21x xS x xS x x x+==<-取x =则11(21)21n n S n ∞===-∑=(3)考察幂级数211(21)n n n x∞-=-∑,可求得其级数半经为r =1,因为212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑令2111()2n n S x nx∞-==∑,则22121()d 1xnn x S x x xx ∞===-∑⎰.所以212222() (||1)1(1)x xS x x x x '⎛⎫==< ⎪--⎝⎭,于是212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑3222222 (||1)(1)1(1)x x x x x x x x +=-=<--- 取12x =,得 3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭-⎪⎝⎭∑.(4)考察幂级数1(1)nn n n x∞=+∑,可求得其收敛半径r =1.设1()(1) (||1)nn S x n n xx ∞==+<∑则12111()d xn n n n S x x nxxnx∞∞+-====∑∑⎰.又设111()n n S x nx∞-==∑则101()d 1xn n x S x x x x∞===-∑⎰. 从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭, 2212()d ()(1)xx S x x x S x x ==-⎰2232() ||1(1)(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭ 取12x =,则 31121(1)2822112nn n n S ∞=⨯+⎛⎫=== ⎪⎝⎭⎛⎫- ⎪⎝⎭∑习题9-51. 将下列函数展开成x 的幂级数: (1) 2cos2x ; (2) 2sin x ; (3) 2x x -e ; (4) 211x -; (5)πcos()4x -. 解:(1)2201cos 11cos (1)2222(2)!nn n x x x n ∞=+==+-∑ 211(1)(-)2(2)!nnn x x n ∞==+-∞<<+∞∑ (2)2101sin (1) ()2(21)!2n n n x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑(3)22210011e()(1) ()!!x nn n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑(4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦0002011(1)221[(1)]2 ||1n n nn n n n nn n n x x x x x x ∞∞==∞=∞==+-=+-=<∑∑∑∑(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭2210(cos sin )2(1) ()2(2)!(21)!n n n n x x x xx n n +∞==+⎡⎤=-+-∞<<+∞⎢⎥+⎣⎦∑ 2. 将下列函数在指定点处展开成幂级数,并求其收敛区间:(1)x -31,在x 0=1; (2) cos x,在x 0=3π; (3) 3412++x x ,在x 0=1; (4) 21x, 在x 0=3.解:(1)因为11113212x x =⋅---,而0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑.收敛区间为:(-1,3). (2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦22100()()133(1)(1)2(2)!(21)!n n n n n n x x n n ππ+∞∞==--=-+-+∑221011(1)())2(2)!33nn n n x x n ππ∞+=⎡⎤=--+-⎢⎥⎣⎦∑ ()x -∞<<+∞ 收敛区间为(,)-∞+∞. (3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 001111(1)(1)4284n nn n n n x x ∞∞==--⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭∑∑223011(1)(1)22n n n n n x ∞++=⎛⎫=--- ⎪⎝⎭∑由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n nn x x x ∞=-=⋅=-⋅-+∑ 1(3)(1)3nnn n x ∞+=-=-∑ 而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑111(1)(3)3n n n n n x ∞-+=-=-⋅-∑1111(1)(3)3n n n n n x +∞-+=-=-∑ 2(1)(1)(3)3n nn n n x ∞+=-+=-∑ 由313x -<得06x <<. 故收敛区间为(0,6).。

西方经济学下册教材习题答案详解

西方经济学下册教材习题答案详解

西方经济学》下册教材课后习题答案详解第九章宏观经济的基本指标及其衡量1.何为GDP如何理解GDP答案要点:GDP是指一定时期内在一国(或地区)境内生产的所有最终产品和服务的市场价值总和。

对于GDP 的理解,以下几点要(1)GDP是一个市场价值的概念。

为了解决经济中不同产品和服务的实物量一般不能加总的问题,人们转而研究它们的货币价值,这就意味着,GDP —般是用某种货币单位来表示的。

(2)GDP 衡量的是最终产品和服务的价值,中间产品和服务价值不计入GDP最终产品和服务是指直接出售给最终消费者的那些产品和服务,而中间产品和服务是指由一家企业生产来被另一家企业当作投入品的那些服务和产品。

(3)GDP是一国(或地区)范围内生产的最终产品和服务的市场价值。

也就是说,只有那些在指定的国家和地区生产出来的产品和服务才被计算到该国或该地区的GDP中。

⑷GDP衡量的是一定时间内的产品和服务的价值,这意味着GDP属于流量,而不是存量。

2•说明核算GDP的支出法。

答案要点:支出法核算GDP的基本依据是:对于整个经济体来说,收入必定等于支出。

具体说来,该方法将一国经济从对产品和服务需求的角度划分为了四个部门,即家庭部门、企业部门、政府部门和国际部门。

对家庭部门而言,其对最终产品和服务的支出称为消费支出,用字母C 表示;对企业部门而言,其支出称为投资支出,用字母I 表示;对政府部门而言,将各级政府购买产品和服务的支出定义为政府购买,用字母G表示;对于国际部门,引入净出口NX来衡量其支出,净出口被定义为出口额与进口额的差额。

将上述四部门支出项目加总,用丫表示GDP,贝卩支出法核算GDP的国民收入核算恒等式为:丫二C+I+G+NX3.说明GDP这一指标的缺陷。

答案要点:(1) GDP并不能反映经济中的收入分配状况。

GDP高低或人均GDP 高低并不能说明一个经济体中的收入分配状况是否理想或良好。

(2)由于GDP只涉及与市场活动有关的那些产品和服务的价值,因此它忽略了家庭劳动和地下经济因素。

邓允主编《电工电子技术及应用(第二版)》第九章习题详解

邓允主编《电工电子技术及应用(第二版)》第九章习题详解

图题 9-3 (a)
(b)用瞬时极性法判断如图所示,它是负反馈。反馈取样是输出电压,在 输入端以电压的形式进行比较,因而是电压串联负反馈。
图题 9-3(b) 9-4 在图题 9-2(c)所示电路中,设放大器工作在深度负反馈状态,试计算 放大器的放大倍数 AF。
【解】电路如图。此电路为电压并联负反馈。 由于是深度负反馈,所以可以通过求反馈系数的方法求放大倍数。
6 能使放大电路的输出电流稳定、输入电阻减小的负反馈是 ○
A.电压串联负反馈; C.电压并联负反馈;
B.电流串联负反馈; D.电流并联负反馈
7 为了稳定放大电路的静态工作点,应该引入的反馈 ○ A. 是交流负反馈;B. 是直流负反馈;C. 是交直流负反馈;D.不需要 8 ○ 共集电极放大电路(射极输出器)是典型的 B. 电压串联负反馈电路; D. 电流并联负反馈电路
A. 电压并联负反馈电路; B. 电流串联负反馈电路; 【解】○ 1 B;
2 C; ○ 3 C; ○ 4 B; ○ 5 A; ○ 6 D; ○ 7 B; ○ 8 B ○

F
If


Uo Rf


Io
Uo R f // RL
RL R f RL
RL RL R f

AF
1

F
9-5 理想运算放大器的电路如图题 9-5 所示。R1=10KΩ,闭环电压放大倍数 Au= -100,试求 RF 的值。 【解】 ii
ui u if o R1 RF Au uo R F 100 ui R1
由题可知

uo (
RF RF )ui R1 R2
R 10 RF 5( K) 2 , R1 F 2 2 R1 R 10 RF 2( K) 5 , R2 F 5 5 R2

理论力学习题解答第九章讲解

理论力学习题解答第九章讲解

9-1在图示系统中,均质杆OA、AB与均质轮的质量均为m , OA杆的长度为h , AB杆的长度为|2,轮的半径为R,轮沿水平面作纯滚动。

在图示瞬时,OA杆的角速度为, 求整个系统的动量。

5ml< ■,方向水平向左2题9- 1图题9-2图9-2如图所示,均质圆盘半径为R,质量为m,不计质量的细杆长丨,绕轴0转动,角速度为「,求下列三种情况下圆盘对固定轴的动量矩:(a)圆盘固结于杆;(b)圆盘绕A轴转动,相对于杆 0A的角速度为-;(c)圆盘绕A轴转动,相对于杆 0A的角速度为• •。

R 22 2 2 2(a)L O=m(+1 购;(b)L O = ml ⑷;(c)L O = m( R +1 冷29-3水平圆盘可绕铅直轴z转动,如图所示,其对z轴的转动惯量为J z。

一质量为m的质点,在圆盘上作匀速圆周运动,质点的速度为V。

,圆的半径为r,圆心到盘中心的距离为l 。

开始运动时,质点在位置M。

,圆盘角速度为零。

求圆盘角速度「与角「间的关系,轴承摩擦不计。

解以圜扳利欣点M为系统,因为系统所受外力£包括車力和约束力〕对轴三的矩均力誓.战爲统对榊二胡乳地讦和.在任意时刻点M的速度包含相对速度®和沖:51速度%° 其申斗=OM -旧设质点M在城位置为起始位置*该瞬时系统对轴二的创吊伸5二叫Q")⑴在任盘时刘:L si= J& + (wr^ ) = Jto + M. (mr0) +Af, (wt 叫)由图可得L.2 = Jcy + wrv D[/ cos^? + r] + m(l~ + r: + Hr cos^?)(p ⑵抿据动崑矩守怛定律J = i:2(3) 由式<lk (2)> (3)爲m/v0(l - cose?)w = ------- 尸- 3— ----------』+用{厂+厂+ 2/?cos^)9-4如图所示,质量为 m的滑块A,可以在水平光滑槽中运动,具有刚性系数为 k的弹簧一端与滑块相连接,另一端固定。

统计学简明教程(第2版)习题答案9.3第九章习题详解

统计学简明教程(第2版)习题答案9.3第九章习题详解

9.3第九章习题详解一、选择题1.可用来判断两个变量之间相关方向的指标有:(A 、C 、D )A.单相关系数;B.复相关系数;C.回归系数;D.偏相关系数; 2.修正自由度的决定系数2R ( A 、B 、D )。

A. 2R ; B. 有时小于0 ;C.的取值在0,1之间;D. 比2R 更适合作为衡量回归方程拟合程度的指标二、判断分析题1.偏相关系数与单相关系数的符号总是一致的。

答:错。

计算单相关系数时,只需要掌握两个变量的观测数据,并不考虑其他变量对这两个变量可能产生的影响。

而在计算偏相关系数时,需要掌握多个变量的数据,一方面考虑多个变量相互之间可能产生的影响,一方面又采用一定的方法控制其他变量,专门考察两个特定变量的净相关关系。

由于变量之间存在错综复杂的关系,因此偏相关系数与单相关系数在数值上可能相差很大,有时甚至符号都可能相反。

2.偏相关系数与相应的偏回归系数的符号一致。

答:对。

由偏相关系数的定义可得出此结论。

3.复相关系数的取值不小于0。

答:对。

复相关系数反映一个变量Y 与其他多个变量之间线性相关程度的指标,并不反映相关的方向。

4.相关指数适合用来分析变量之间是否存在某种非线性关系。

答:对。

相关指数是对非线性回归模型进行拟合时所得到的决定系数。

因此,可作为判断变量之间是否显著存在某种类型的非线性相关关系的尺度。

5.所有的非线性函数都可以变换为线性函数。

答:错。

一些复杂的非线性函数并不能够变幻成语气完全等价的线性函数。

三、证明题1.试证明复相关系数的平方等价于多元线性回归方程的决定系数。

证:根据复相关系数的定义有:R=∑∑∑----22)ˆ()()ˆ)((Y Y Y Y Y Y Y Y ttt t(1)上式两边同时平方有:=2R []∑∑∑----222)ˆ()()ˆ)((Y Y Y Y Y Y Y Y t t t t (2) 因此只要证明∑--)ˆ)((Y Y Y Y tt =∑-2)ˆ(Y Y t ,则(2)式即多元回归方程的决定系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题9选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。

[答案:A](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。

[答案:C]填空题(1)在静电场中,电势梯度不变的区域,电场强度必定为。

[答案:零](2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。

[答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。

[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。

[答案:1:5]电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题图示(1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题图 题图两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.长l =的直导线AB 上均匀地分布着线密度λ= C/m 的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d = 处Q 点的场强.解: 如题图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a x E E l l P P -==⎰⎰-ελ题图]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题图所示由于对称性⎰=l QxE 0d ,即Q E ϖ只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x=以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如图在圆上取ϕRd dl =题图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E . 解: 如图示,正方形一条边上电荷4q在P点产生物强P E ϖd 方向如图,大小为 ()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP E ϖd 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿(1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅ϖϖ立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题图所示. 题 图均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C/m 3求距球心5cm ,8cm ,12cm各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E sϖϖ,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4r r r E ερ内-=()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外.半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0dε∑⎰=⋅qS E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰ϖϖ对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题图两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强. 解: 如题图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E ϖϖ)(21210σσε-=1σ面外, n E ϖϖ)(21210σσε+-= 2σ面外, n E ϖϖ)(21210σσε+=n ϖ:垂直于两平面由1σ面指为2σ面.半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题图(a). (1) ρ+球在O 点产生电场010=E ϖ,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=ϖ ∴ O 点电场'd33030OO r E ερ=ϖ; (2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ϖ ρ-球在O '产生电场002='E ϖ∴ O ' 点电场 003ερ='E ϖ'OO题图(a) 题图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ (如题8-13(b)图)则 03ερrE PO ϖϖ=,3ερr E O P '-='ϖϖ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+=' ∴腔内场强是均匀的.一电偶极子由q =×10-6C 的两个异号点电荷组成,两电荷距离d=,把这电偶极子放在×105N/C 的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅两点电荷1q =×10-8C ,2q =×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εεϖϖ)11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题图如题图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(RqR q -R q 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=如题图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O一电子绕一带均匀电荷的长直导线以2×104m/s 的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =×10-31kg ,电子电量e =×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅空气可以承受的场强的最大值为E =30 kV/cm ,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V证明:对于两个无限大的平行平面带电导体板(题图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同. 证: 如题图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距,A 与C 相距 mm .B ,C 都接地,如题图所示.如果使A 板带正电×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R Rqr r q r E U εεϖϖ题图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题图所示,设金属球感应电荷为q ',则球接地时电势0=O U题图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r qq F ==ε在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sϖϖd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内;介质外)(2R r <场强303π4,π4r r Q E r Qr D εϖϖϖ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ϖϖ外 介质内)(21R r R <<电势2020π4)11(π4R Q R rqr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Qr r-+=εεε如题图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D ϖϖ得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r r E E εεεεσσ==102012题图 题图rd r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==题图如题 图所示,1C =μ,2C =μ,3C =μ .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.半径为1R = 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =和3R =,当内球带电荷Q =×10-8C 时,求: (1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r rQ E εϖϖ=3R r >时 302π4rrQ E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E εϖϖ=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F。

相关文档
最新文档