高中物理速度选择器和回旋加速器试题经典及解析

合集下载

高中物理速度选择器和回旋加速器习题知识点及练习题含答案

高中物理速度选择器和回旋加速器习题知识点及练习题含答案

高中物理速度选择器和回旋加速器习题知识点及练习题含答案一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。

其中一些粒子能沿图中虚线做直线运动到达上方竖直圆上的a 点,圆内存在磁感应强度大小为B 2、方向水平向里的匀强磁场。

其中S 、a 、圆心O 点在同一竖直线上。

不计粒子的重力和粒子之间的作用力。

求: (1)能到达a 点的粒子速度v 的大小;(2)若e 、f 两粒子带不同种电荷,它们的比荷之比为1︰3,都能到达a 点,则对应A 、B 两金属板间的加速电压U 1︰U 2的绝对值大小为多大;(3)在满足(2)中的条件下,若e 粒子的比荷为k ,e 、f 两粒子在磁场圆中射出的两位置恰好在圆形磁场的同一条直径上,则两粒子在磁场圆中运动的时间差△t 为多少?【答案】(1)1E v B =;(2)12:3:1U U =;(3)1229t t t kB π∆=-= 【解析】 【详解】解:(1)能达到a 点的粒子速度设为v ,说明在C 、D 板间做匀速直线运动,有:1qvB qE = 解得:1Ev B =(2)由题意得e 、f 两粒子经A 、B 板间的电压加速后,速度都应该为v ,根据动能定理得:21qU mv 2=它们的比荷之比:e fe fq q :1:3m m = 得出:12U :U 3:1=(3)设磁场圆的半径为R ,e 、f 粒子进入磁场圆做圆周运动对e 粒子:21211v q vB m r =对f 粒子:22222v q vB m r =解得:12r 3r 1=e、f 两粒子在磁场圆中射出的两位置恰好在同一条直径上,说明两粒子的偏转角之和为180, e 、f 两粒子的轨迹图如图所示,由几何关系有:1R tan θr = 2R tan θr =θα90+=联立解得:θ30=,α60=e 、f 两粒子进入磁场圆做匀速圆周运动的周期满足:112πr T v = 222πr T v=e fe fq q :1:3m m = 在磁场中运动的时间:112θt T 360= 222αt T 360=12t t >两粒子在磁场中运动的时间差为:122πΔt t t 9kB =-=2.如图所示为质谱仪的原理图,A 为粒子加速器,电压为1U ,B 为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B ,左右两板间距离为d ,C 为偏转分离器,内部匀强磁场的磁感应强度为2B ,今有一质量为m ,电量为q 且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B ,再进入分离器C 中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析: (1)粒子带何种电荷;(2)粒子经加速器A 加速后所获得的速度v ; (3)速度选择器的电压2U ;(4)粒子在C 区域中做匀速圆周运动的半径R 。

高考物理速度选择器和回旋加速器题20套(带答案)

高考物理速度选择器和回旋加速器题20套(带答案)

高考物理速度选择器和回旋加速器题20套(带答案)一、速度选择器和回旋加速器1.图中左边有一对水平放置的平行金属板,两板相距为d ,电压为U 0,两板之间有垂直于纸面向里的匀强磁场,磁感应强度大小为B 0.图中右边有一半径为R 的圆形匀强磁场区域,磁感应强度大小为B 1,方向垂直于纸面朝外.一束离子垂直磁场沿如图路径穿出,并沿直径MN 方向射入磁场区域,最后从圆形区域边界上的P 点射出,已知图中θ=60o ,不计重力,求(1)离子到达M 点时速度的大小; (2)离子的电性及比荷q m. 【答案】(1)00U dB (2)00133U dB B R【解析】(1)离子在平行金属板之间做匀速直线运动,由平衡条件得:qvB 0=qE 0 已知电场强度:00U E d= 联立解得:0U v dB =(2)根据左手定则,离子束带负电离子在圆形磁场区域做匀速圆周运动,轨迹如图所示:由牛顿第二定律得:21mv qvB r= 由几何关系得:3r R =0133Uqm dB B R=点睛:在复合场中做匀速直线运动,这是速度选择器的原理,由平衡条件就能得到进入复合场的速度.在圆形磁场区域内根据偏转角求出离子做匀速圆周运动的半径,从而求出离子的比荷,要注意的是离开磁场时是背向磁场区域圆心的.2.如图所示,一束质量为m、电荷量为q的粒子,恰好沿直线从两带电平行板正中间通过,沿圆心方向进入右侧圆形匀强磁场区域,粒子经过圆形磁场区域后,其运动方向与入射方向的夹角为θ(弧度).已知粒子的初速度为v0,两平行板间与右侧圆形区域内的磁场的磁感应强度大小均为B,方向均垂直纸面向内,两平行板间距为d,不计空气阻力及粒子重力的影响,求:(1)两平行板间的电势差U;(2)粒子在圆形磁场区域中运动的时间t;(3)圆形磁场区域的半径R.【答案】(1)U=Bv0d;(2)mqBθ;(3)R=0tan2mvqBθ【解析】【分析】(1)由粒子在平行板间做直线运动可知洛伦兹力和电场力平衡,可得两平行板间的电势差.(2)在圆形磁场区域中,洛伦兹力提供向心力,找到转过的角度和周期的关系可得粒子在圆形磁场区域中运动的时间.(3))由几何关系求半径R.【详解】(1)由粒子在平行板间做直线运动可知,Bv0q=qE,平行板间的电场强度E=Ud,解得两平行板间的电势差:U=Bv0d(2)在圆形磁场区域中,由洛伦兹力提供向心力可知:Bv0q=m2vr同时有T=2rvπ粒子在圆形磁场区域中运动的时间t=2θπT解得t=m Bq θ(3)由几何关系可知:r tan2θ=R解得圆形磁场区域的半径R=0tan2mvqBθ3.如图所示为质谱仪的原理图,A为粒子加速器,电压为1U,B为速度选择器,其内部匀强磁场与电场正交,磁感应强度为1B,左右两板间距离为d,C为偏转分离器,内部匀强磁场的磁感应强度为2B,今有一质量为m,电量为q且初速为0的带电粒子经加速器A 加速后,沿图示路径通过速度选择器B,再进入分离器C中的匀强磁场做匀速圆周运动,不计带电粒子的重力,试分析:(1)粒子带何种电荷;(2)粒子经加速器A加速后所获得的速度v;(3)速度选择器的电压2U;(4)粒子在C区域中做匀速圆周运动的半径R。

高中物理速度选择器和回旋加速器易错题知识点及练习题及答案解析

高中物理速度选择器和回旋加速器易错题知识点及练习题及答案解析

高中物理速度选择器和回旋加速器易错题知识点及练习题及答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,虚线O 1O 2是速度选择器的中线,其间匀强磁场的磁感应强度为B 1,匀强电场的场强为E (电场线没有画出)。

照相底片与虚线O 1O 2垂直,其右侧偏转磁场的磁感应强度为B 2。

现有一个离子沿着虚线O 1O 2向右做匀速运动,穿过照相底片的小孔后在偏转磁场中做半径为R 的匀速圆周运动,最后垂直打在照相底片上(不计离子所受重力)。

(1)求该离子沿虚线运动的速度大小v ; (2)求该离子的比荷q m; (3)如果带电量都为q 的两种同位素离子,沿着虚线O 1O 2射入速度选择器,它们在照相底片的落点间距大小为d ,求这两种同位素离子的质量差△m 。

【答案】(1)1E v B =;(2)12q E m RB B =;(3)122B B qd m E∆=【解析】 【分析】 【详解】(1)离子沿虚线做匀速直线运动,合力为0Eq =B 1qv解得1Ev B =(2)在偏转磁场中做半径为R 的匀速圆周运动,所以22mv B qv R= 解得12q E m RB B = (3)设质量较小的离子质量为m 1,半径R 1;质量较大的离子质量为m 2,半径为R 2 根据题意R 2=R 1+2d 它们带电量相同,进入底片时速度都为v ,得2121m v B qv R =2222m v B qv R =联立得22121()B qm m m R R v∆=-=- 化简得122B B qdm E∆=2.如图所示的直角坐标系xOy ,在其第二象限内有垂直纸面向里的匀强磁场和沿y 轴负方向的匀强电场。

虚线OA 位于第一象限,与y 轴正半轴的夹角θ=60°,在此角范围内有垂直纸面向外的匀强磁场;OA 与y 轴负半轴所夹空间里存在与OA 平行的匀强电场,电场强度大小E =10N/C 。

一比荷q =1×106C/kg 的带电粒子从第二象限内M 点以速度v =2.0×103m/s 沿x 轴正方向射出,M 点到x 轴距离d =1.0m ,粒子在第二象限内做直线运动;粒子进入第一象限后从直线OA 上的P 点(P 点图中未画出)离开磁场,且OP =d 。

速度选择器和回旋加速器压轴题试卷含答案解析

速度选择器和回旋加速器压轴题试卷含答案解析

速度选择器和回旋加速器压轴题试卷含答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图,正方形ABCD 区域内存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,已知该区域的边长为L 。

一个带电粒子(不计重力)从AD 中点以速度v 水平飞入,恰能匀速通过该场区;若仅撤去该区域内的磁场,使该粒子以同样的速度v 从AD 中点飞入场区,最后恰能从C 点飞出;若仅撤去该区域内的电场,该带电粒子仍从AD 中点以相同的速度v 进入场区,求: (1)该粒子最后飞出场区的位置;(2)仅存电场与仅存磁场的两种情况下,带电粒子飞出场区时速度偏向角之比是多少?【答案】(1)AB 连线上距离A 点32L 处,(2)34。

【解析】 【详解】(1)电场、磁场共存时,粒子匀速通过可得:qvB qE =仅有电场时,粒子水平方向匀速运动:L vt =竖直方向匀加速直线运动:2122L qE t m= 联立方程得:2qELv m=仅有磁场时:2mv qvB R= 根据几何关系可得:R L =设粒子从M点飞出磁场,由几何关系:AM=2 22L R⎛⎫-⎪⎝⎭=3L所以粒子离开的位置在AB连线上距离A点3L处;(2)仅有电场时,设飞出时速度偏角为α,末速度反向延长线过水平位移中点:2tan12LLα==解得:45α︒=仅有磁场时,设飞出时速度偏角为β:tan3AMOAβ==解得:60β︒=所以偏转角之比:34αβ=。

2.如图所示,相距为d的平行金属板M、N间存在匀强电场和垂直纸面向里、磁感应强度为B0的匀强磁场;在xOy直角坐标平面内,第一象限有沿y轴负方向场强为E的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B的匀强磁场.一质量为m、电荷量为q 的正离子(不计重力)以初速度v0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y轴进入第一象限,经过x轴上的A点射出电场进入磁场.已知离子过A点时的速度方向与x轴成45°角.求:(1)金属板M 、N 间的电压U ;(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .【答案】(1)00B v d ;(2) t =0mv qE;(3) 2002mv mv qE qB + 【解析】 【分析】 【详解】离子的运动轨迹如下图所示(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0cos 45v v= 故离子运动到A 点时的速度:02v v =根据牛顿第二定律:qE ma =设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0tan 45y v v =联立以上各式解得,离子在电场E 中运动到A 点所需时间:0mv t qE=(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:2v qvB m R=解得:02mv mv R qB qB== 由几何知识可得022cos 452mv AC R R qB===在电场中,x方向上离子做匀速直线运动,则2mv OAv tqE==因此离子第一次离开第四象限磁场区域的位置C与坐标原点的距离为:2002mv mvOC OA ACqE qB=+=+【点睛】本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.3.如图中左边有一对平行金属板,两板相距为d,电压为U,两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面朝里。

高考物理速度选择器和回旋加速器易错题知识点及练习题含答案解析

高考物理速度选择器和回旋加速器易错题知识点及练习题含答案解析

高考物理速度选择器和回旋加速器易错题知识点及练习题含答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,在直角坐标系xOy 平面内有一个电场强度大小为E 、方向沿-y 方向的匀强电场,同时在以坐标原点O 为圆心、半径为R 的圆形区域内,有垂直于xOy 平面的匀强磁场,该圆周与x 轴的交点分别为P 点和Q 点,M 点和N 点也是圆周上的两点,OM 和ON 的连线与+x 方向的夹角均为θ=60°。

现让一个α粒子从P 点沿+x 方向以初速度v 0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。

(1)求匀强磁场的磁感应强度的大小和方向;(2)若只是把匀强电场撤去,α粒子仍从P 点以同样的速度射入,从M 点离开圆形区域,求α粒子的比荷q m; (3)若把匀强磁场撤去,α粒子的比荷qm不变,α粒子仍从P 点沿+x 方向射入,从N 点离开圆形区域,求α粒子在P 点的速度大小。

【答案】(1)0E v ,方向垂直纸面向里(2)03BR (3)32v 0 【解析】 【详解】(1)由题可知电场力与洛伦兹力平衡,即qE =Bqv 0解得B =Ev 由左手定则可知磁感应强度的方向垂直纸面向里。

(2)粒子在磁场中的运动轨迹如图所示,设带电粒子在磁场中的轨迹半径为r ,根据洛伦兹力充当向心力得Bqv 0=m 20v r由几何关系可知r=3R,联立得q m =03BR(3)粒子从P到N做类平抛运动,根据几何关系可得x=32R=vty=3R=12×qEmt2又qE=Bqv0联立解得v=323Bqv Rm=3v02.如图所示的平面直角坐标系,x轴水平,y轴竖直,第一象限内有磁感应强度大小为B,方向垂直坐标平面向外的匀强磁场;第二象限内有一对平行于x轴放置的金属板,板间有正交的匀强电场和匀强磁场,电场方向沿y轴负方向,场强大小未知,磁场垂直坐标平面向里,磁感应强度大小也为B;第四象限内有匀强电场,电场方向与x轴正方向成45°角斜向右上方,场强大小与平行金属板间的场强大小相同.现有一质量为m,电荷量为q的粒子以某一初速度进入平行金属板,并始终沿x轴正方向运动,粒子进入第一象限后,从x轴上的D点与x轴正方向成45°角进入第四象限,M点为粒子第二次通过x轴的位置.已知OD距离为L,不计粒子重力.求:(1)粒子运动的初速度大小和匀强电场的场强大小.(2)DM间的距离.(结果用m、q、v0、L和B表示)【答案】(1)22B qLE=(2)22222m vDMB q L=【解析】【详解】(1)、粒子在板间受电场力和洛伦兹力做匀速直线运动,设粒子初速度为v0,由平衡条件有:qv 0B=qE…①粒子在第一象限内做匀速圆周运动,圆心为O 1,半径为R ,轨迹如图,由几何关系知R =245LL cos =︒…② 由牛顿第二定律和圆周运动的向心力公式有:qv 0B =m 20 v R…③由②③式解得:v 0=2BqLm…④ 由①④式解得:E =22 B qLm…⑤ (2)、由题意可知,粒子从D 进入第四象限后做类平抛运动,轨迹如图,设粒子从D 到M 的运动时间为t ,将运动分解在沿场强方向和垂直于场强的方向上,则粒子沿DG 方向做匀速直线运动的位移为:DG =v 0t …⑥粒子沿DF 方向做匀加速直线运动的位移为:22122Eqt DF at m==…⑦ 由几何关系可知: DG DF =, 2DM DG =…⑧由⑤⑥⑦⑧式可解得220222 m v DM q B L=. 【点睛】此类型的题首先要对物体的运动进行分段,然后对物体在各段中进行正确的受力分析和运动的分析,进行列式求解; 洛伦兹力对电荷不做功,只是改变运动电荷的运动方向,不改变运动电荷的速度大小.带电粒子做匀速圆周运动的圆心、半径及运动时间的确定:①、圆心的确定:因为洛伦兹力提供向心力,所以洛伦兹力总是垂直于速度的方向,画出带电粒子运动轨迹中任意两点(一般是射入磁场和射出磁场的两点)洛伦兹力的方向,其延长线的交点即为圆心.②、半径的确定:半径一般都是在确定圆心的基础上用平面几何的知识求解,常常用到解三角形,尤其是直角三角形.③、运动时间的确定:利用圆心角与弦切角的关系或者四边形的内角和等于360°计算出粒子所经过的圆心角θ的大小,用公式t=360T θ︒可求出运动时间.3.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中运动特点,解决了粒子的加速问题。

高中物理速度选择器和回旋加速器练习题及答案及解析

高中物理速度选择器和回旋加速器练习题及答案及解析

(1)电子通过小孔 O 时的速度大小 v; (2)板间匀强磁场的磁感应强度的大小 B 和方向。
【答案】(1) 2eU (2) 1 2mU 方向垂直纸面向里
m
Le
【解析】
【详解】
(1)电子通过加速电场的过程中,由动能定理有: eU 1 mv2 2
解得: v 2eU m
(2)两板间电场的电场强度大小为: E 2U L
处在垂直于纸面向里、磁感应强度大小为 B 的匀强磁场中,M 和 M 是固定在金属盒狭缝
边缘的两平行极板,其上有正对的两个小孔,给极板充电后,上板带正电且两板间电压为
U;质量为 m、带电量为 q 的正离子从 M 板小孔由静止开始加速,经 M 板小孔进入磁场
区域,离子经磁场偏转后又回到 M 板小孔继续加速,再偏转,)电场强度 E
U d
;(2) v0
U Bd
;(3) Ek
qUh d
mU 2 2B2d 2
【解析】
【详解】
(1)电场强度 E U d
(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有: qE qv0B
解得 v0
E B
U Bd
(3)粒子从
N
点射出,由动能定理得:
qE
h
Ek
3.如图所示,M、N 为水平放置的两块平行金属板,板间距为 L,两板间存在相互垂直的
匀强电场和匀强磁场,电势差为UMN U0 ,磁感应强度大小为 B0 .一个带正电的粒子从
两板中点垂直于正交的电、磁场水平射入,沿直线通过金属板,并沿与 ab 垂直的方向由 d 点进入如图所示的区域(忽略电磁场的边缘效应).直线边界 ab 及 ac 在同一竖直平面
(2)在圆形磁场区域,离子做匀速圆周运动,轨迹如图所示

速度选择器和回旋加速器习题知识归纳总结含答案解析

速度选择器和回旋加速器习题知识归纳总结含答案解析

速度选择器和回旋加速器习题知识归纳总结含答案解析一、高中物理解题方法:速度选择器和回旋加速器1.如图所示,有一对平行金属板,两板相距为0.05m 。

电压为10V ;两板之间有匀强磁场,磁感应强度大小为B 0=0.1T ,方向与金属板面平行并垂直于纸面向里。

图中右边有一半径R 为0.1m 、圆心为O 的圆形区域内也存在匀强磁场,磁感应强度大小为B =33T ,方向垂直于纸面向里。

一质量为m =10-26kg 带正电的微粒沿平行于金属板面,从A 点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD 方向射入圆形磁场区域,最后从圆形区域边界上的F 点射出。

已知速度的偏转角60°,不计微粒重力。

求:(1)微粒速度v 的大小; (2)微粒的电量q ;(3)微粒在圆形磁场区域中运动时间t 。

【答案】(1)2000m/s (2)2×10-22C (3423-【解析】 【详解】(1)在正交场中运动时:0U B qv qd= 可解得:v =2000m/s(2)偏转角60°则轨迹对应的圆心角60°,轨迹半径3r R =2v Bqv m r=mv q rB=解得:q =2×10-22C(3)根据2mT Bqπ=则 4601036023t T -==2.PQ 和 MN 分别是完全正对的金属板,接入电动势为E 的电源,如图所示,板间电场可看作匀强电场,MN 之间距离为d ,其间存在着磁感应强度为B ,方向垂直纸面向里的匀强磁场。

紧挨着P 板有一能产生正电荷的粒子源S ,Q 板中间有孔J ,SJK 在一条直线上且与 MN 平行。

产生的粒子初速度不计,粒子重力不计,发现粒子能沿着SJK 路径从孔 K 射出,求粒子的比荷q m。

【答案】222EB d 【解析】 【分析】粒子在PQ 板间是匀加速直线运动,根据动能定理列式;进入MN 板间是匀速直线运动,电场力和洛伦兹力平衡,根据平衡条件列式;最后联立求解即可. 【详解】PQ 板间加速粒子,穿过J 孔是速度为v 根据动能定理,有:212qE mv =沿着SJK 路径从K 孔穿出,粒子受电场力和洛伦兹力平衡:qEqvB d= 解得:222q E m B d = 【点睛】本题关键是明确粒子的受力情况和运动情况,根据动能定理和平衡条件列式.3.实验中经常利用电磁场来改变带电粒子运动的轨迹.如图所示,氕、氘、氚三种粒子同时沿直线在纸面内通过电场强度为E 、磁感应强度为B 的复合场区域.进入时氕与氘、氘与氚的间距均为d ,射出复合场后进入y 轴与MN 之间(其夹角为θ)垂直于纸面向外的匀强磁场区域Ⅰ,然后均垂直于边界MN 射出.虚线MN 与PQ 间为真空区域Ⅱ且PQ 与MN 平行.已知质子比荷为qm,不计重力.(1)求粒子做直线运动时的速度大小v ; (2)求区域Ⅰ内磁场的磁感应强度B 1;(3)若虚线PQ 右侧还存在一垂直于纸面的匀强磁场区域Ⅲ,经该磁场作用后三种粒子均能汇聚于MN 上的一点,求该磁场的最小面积S 和同时进入复合场的氕、氚运动到汇聚点的时间差△t . 【答案】(1)E B (2)mE qdB (3)(2)Bd Eπθ+【解析】 【分析】由电场力与洛伦兹力平衡即可求出速度;由洛伦兹力提供向心力结合几何关系即可求得区域Ⅰ内磁场的磁感应强度B 1;分析可得氚粒子圆周运动直径为3r ,求出磁场最小面积,在结合周期公式即可求得时间差. 【详解】(1)粒子运动轨迹如图所示:由电场力与洛伦兹力平衡,有:Bqv =Eq 解得:Ev B=(2)由洛伦兹力提供向心力,有:21v qB v m r=由几何关系得:r =d解得:1mEB qdB=(3)分析可得氚粒子圆周运动直径为3r ,磁场最小面积为:2213222r r S π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭解得:S =πd 2由题意得:B 2=2B 1由2rT vπ= 可得:2m T qB π=由轨迹可知:△t 1=(3T 1﹣T 1)2θπ, 其中112mT qB π=△t 2=12(3T 2﹣T 2)其中222m T qB π=解得:△t =△t 1+△t 2=()()122m dBqB Eθπθπ++=【点睛】本题考查带电粒子在电磁场中的运动,分析清楚粒子运动过程是解题的关键,注意在磁场中的运动要注意几何关系的应用.4.某粒子实验装置原理图如图所示,狭缝1S 、2S 、3S 在一条直线上,1S 、2S 之间存在电压为U 的电场,平行金属板1P 、2P 相距为d ,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为1B 。

高中物理速度选择器和回旋加速器试题经典及解析

高中物理速度选择器和回旋加速器试题经典及解析

高中物理速度选择器和回旋加速器试题经典及解析一、速度选择器和回旋加速器1.有一个正方体形的匀强磁场和匀强电场区域,它的截面为边长L =0.20m 的正方形,其电场强度为54.010E =⨯V/m ,磁感应强度22.010B -=⨯T ,磁场方向水平且垂直纸面向里,当一束质荷比为104.010mq-=⨯kg/C 的正离子流(其重力不计)以一定的速度从电磁场的正方体区域的左侧边界中点射入,如图所示。

(计算结果保留两位有效数字) (1)要使离子流穿过电场和磁场区域而不发生偏转,电场强度的方向如何?离子流的速度多大?(2)在(1)的情况下,在离电场和磁场区域右边界D =0.40m 处有与边界平行的平直荧光屏。

若只撤去电场,离子流击中屏上a 点;若只撤去磁场,离子流击中屏上b 点。

求ab 间距离。

(a ,b 两点图中未画出)【答案】(1)电场方向竖直向下;2×107m/s ;(2)0.53m 【解析】 【分析】 【详解】(1)电场方向竖直向下,与磁场构成粒子速度选择器,离子运动不偏转,根据平衡条件有qE qvB =解得离子流的速度为Ev B==2×107m/s (2)撤去电场,离子在碰场中做匀速圆周运动,所需向心力由洛伦兹力提供,则有2v qvB m R=解得mvR qB==0.4m 离子离开磁场区边界时,偏转角为θ,根据几何关系有1sin 2L R θ== 解得30θ=o在磁场中的运动如图1所示偏离距离1cos y R R θ=-=0.054m离开磁场后离子做匀速直线运动,总的偏离距离为1tan y y D θ=+=0.28m若撤去磁场,离子在电场中做匀变速曲线运动通过电场的时间L t v≤加速度qE a m=偏转角为θ',如图2所示则21tan 2y v qEL vmv θ'=== 偏离距离为2212y at ==0.05m 离开电场后离子做匀速直线运动,总的偏离距离2tan y y D θ''=+=0.25m所以a 、b 间的距离ab =y +y '=0.53m2.如图所示,两平行金属板AB 中间有互相垂直的匀强电场和匀强磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理速度选择器和回旋加速器试题经典及解析一、速度选择器和回旋加速器1.某一具有速度选择器的质谱仪原理如图所示,A 为粒子加速器,加速电压为U 1;B 为速度选择器,磁场与电场正交,电场方向向左,两板间的电势差为U 2,距离为d ;C 为偏转分离器,磁感应强度为B 2,方向垂直纸面向里。

今有一质量为m 、电荷量为e 的正粒子(初速度忽略,不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做匀速圆周运动,打在照相底片D 上。

求: (1)磁场B 1的大小和方向(2)现有大量的上述粒子进入加速器A ,但加速电压不稳定,在11U U -∆到11U U +∆范围内变化,可以通过调节速度选择器两板的电势差在一定范围内变化,使得加速后的不同速度的粒子都有机会进入C ,则打在照相底片D 上的宽度和速度选择器两板的电势差的变化范围。

【答案】(1)2112U mB dU e=2)()()11112222m U U m U U D B e e +∆-∆=,()11min 1U U U U U -∆=()11max 1U U U U U +∆=【解析】 【分析】 【详解】(1)在加速电场中2112U e mv =12U ev m=在速度选择器B 中21U eB v e d=得1B =根据左手定则可知方向垂直纸面向里;(2)由可得加速电压不稳后获得的速度在一个范围内变化,最小值为1v =112mv R eB =最大值为2v =222mv R eB =打在D 上的宽度为2122D R R =-22D B = 若要使不同速度的粒子都有机会通过速度选择器,则对速度为v 的粒子有1UeB v e d=得U=B 1vd代入B 1得2U U = 再代入v 的值可得电压的最小值min U U =最大值max U U =2.如图所示,水平放置的两平行金属板间存在着相互垂直的匀强电场和匀强磁场。

已知两板间的电势差为U ,距离为d ;匀强磁场的磁感应强度为B ,方向垂直纸面向里。

一质量为m 、电荷量为q 的带电粒子从A 点沿水平方向射入到两板之间,恰好沿直线从M 点射出;如果撤去磁场,粒子从N 点射出。

M 、N 两点间的距离为h 。

不计粒子的重力。

求: (1)匀强电场场强的大小E ; (2)粒子从A 点射入时的速度大小v 0; (3)粒子从N 点射出时的动能E k 。

【答案】(1)电场强度U E d =;(2)0U v Bd=;(3)2222k qUh mU E d B d =+【解析】 【详解】(1)电场强度U E d=(2)粒子做匀速直线运动,电场力与洛伦兹力大小相等,方向相反,有:0qE qv B = 解得0E U v B Bd== (3)粒子从N 点射出,由动能定理得:2012k qE h E mv ⋅=-解得2222k qUh mU E d B d=+3.如图所示:在两个水平平行金属极板间存在着向下的匀强电场和垂直纸面向里的匀强磁场,电场强度和磁感应强度的大小分别为E =1×103N/C 和B 1=0.02T ,极板长度L =0.4m ,间距足够大。

在极板的右侧还存在着另一圆形匀强磁场区域,磁场的方向垂直纸面向外,圆形磁场的圆心O 位于平行金属板的中线上,圆形磁场的半径R =0.6m 。

有一带正电的粒子以一定初速度v 0沿极板中线水平向右飞入极板间恰好做匀速直线运动,然后进入圆形匀强磁场区域,飞出后速度方向偏转了74°,不计粒子重力,粒子的比荷qm=3.125×106C/kg ,sin37°=0.6,cos37°=0.85。

求: (1)粒子初速度v 0的大小;(2)圆形匀强磁场区域的磁感应强度B 2的大小;(3)在其他条件都不变的情况下,将极板间的磁场撤去,为使粒子飞出极板后不能进入圆形磁场,则圆形磁场的圆心O 离极板右边缘的水平距离d 应该满足的条件。

【答案】(1)v 0=5×104m/s ;(2)B 2=0.02T ;(3) 1.144m d ≥。

【解析】 【详解】(1)粒子在电场和磁场中匀速运动,洛伦兹力与电场力平衡qv 0B 1=Eq带电粒子初速度v 0=5×104m/s(2)带电粒子进入磁场后做匀速圆周运动,洛伦兹力充当向心力2002v qv B m r=轨迹如图所示:由几何关系,带电粒子做圆周运动的半径为40.8m tan 373R r R ===︒联立解得:B 2=0.02T(3)带电粒子在电场中做类平抛运动 水平方向0L v t =⋅竖直方向212y at =由牛顿第二定律qE ma =粒子飞出极板后不能进入圆形磁场即轨迹刚好与圆形磁场相切,如图所示:由几何关系 ,利用三角形相似,有:22()22L y y Rd +=+, 解得1.144m d =,若想带电粒子不能飞入圆形磁场,应满足 1.144m d ≥。

4.如图所示,相距为d 的平行金属板M 、N 间存在匀强电场和垂直纸面向里、磁感应强度为B 0的匀强磁场;在xOy 直角坐标平面内,第一象限有沿y 轴负方向场强为E 的匀强电场,第四象限有垂直坐标平面向里、磁感应强度为B 的匀强磁场.一质量为m 、电荷量为q 的正离子(不计重力)以初速度v 0沿平行于金属板方向射入两板间并做匀速直线运动,从P 点垂直y 轴进入第一象限,经过x 轴上的A 点射出电场进入磁场.已知离子过A 点时的速度方向与x 轴成45°角.求:(1)金属板M 、N 间的电压U ;(2)离子运动到A 点时速度v 的大小和由P 点运动到A 点所需时间t ;(3)离子第一次离开第四象限磁场区域的位置C (图中未画出)与坐标原点的距离OC .【答案】(1)00B v d ;(2) t =0mv qE;(3) 2002mv mv qE qB + 【解析】 【分析】 【详解】离子的运动轨迹如下图所示(1)设平行金属板M 、N 间匀强电场的场强为0E ,则有:0U E d =因离子所受重力不计,所以在平行金属板间只受有电场力和洛伦兹力,又因离子沿平行于金属板方向射入两板间并做匀速直线运动,则由平衡条件得:000qE qv B = 解得:金属板M 、N 间的电压00U B v d =(2)在第一象限的电场中离子做类平抛运动,则由运动的合成与分解得:0cos 45v v=o故离子运动到A 点时的速度:02v v =根据牛顿第二定律:qE ma =设离子电场中运动时间t ,出电场时在y 方向上的速度为y v ,则在y 方向上根据运动学公式得y v at =且0tan 45y v v =o联立以上各式解得,离子在电场E 中运动到A 点所需时间:0mv t qE=(3)在磁场中离子做匀速圆周运动,洛伦兹力提供向心力,则由牛顿第二定律有:2v qvB m R=解得:02mv mv R qB qB== 由几何知识可得022cos 452mv AC R R qB===o在电场中,x 方向上离子做匀速直线运动,则200mv OA v t qE==因此离子第一次离开第四象限磁场区域的位置C 与坐标原点的距离为:2002mv mv OC OA AC qE qB=+=+【点睛】本题考查电场力与洛伦兹力平衡时的匀速直线运动、带电粒子在匀强磁场中的运动的半径与速率关系、带电粒子在匀强电场中的运动、运动的合成与分解、牛顿第二定律、向心力、左手定则等知识,意在考查考生处理类平抛运动及匀速圆周运动问题的能力.5.如图所示的速度选择器水平放置,板长为L ,两板间距离也为L ,下极板带正电,上极板带负电,两板间电场强度大小为E ,两板间分布有匀强磁场,磁感强度方向垂直纸面向外,大小为B , E 与B 方向相互垂直.一带正电的粒子(不计重力)质量为m ,带电量为q ,从两板左侧中点沿图中虚线水平向右射入速度选择器. (1)若该粒子恰能匀速通过图中虚线,求该粒子的速度大小;(2)若撤去磁场,保持电场不变,让该粒子以一未知速度从同一位置水平射入,最后恰能从板 的边缘飞出,求此粒子入射速度的大小;(3)若撤去电场,保持磁场不变,让该粒子以另一未知速度从同一位置水平射入,最后恰能从板的边缘飞出,求此粒子入射速度的大小.【答案】(1)E B ; (2qELm3)54qBL m 或4qBL m【解析】 【分析】 【详解】(1)若该粒子恰能匀速通过图中虚线,电场力向上,洛伦兹力向下,根据平衡条件,有:qv 1B =qE解得:1E v B=(2)若撤去磁场,保持电场不变,粒子在电场中做类平抛运动,则 水平方向有:L =v 2t竖直方向有:21122L at = 由牛顿第二定律有:qE =ma解得:2qELv m=(3)若粒子从板右边缘飞出,则2222L r L r =+-()解得:5 4r L =由233v qv B m r= 得:354qBLv m=若粒子从板左边缘飞出,则:4L r =由244v qv B mr=得:44qBLv m=6.如图所示的平面直角坐标系,x 轴水平,y 轴竖直,第一象限内有磁感应强度大小为B ,方向垂直坐标平面向外的匀强磁场;第二象限内有一对平行于x 轴放置的金属板,板间有正交的匀强电场和匀强磁场,电场方向沿y 轴负方向,场强大小未知,磁场垂直坐标平面向里,磁感应强度大小也为B ;第四象限内有匀强电场,电场方向与x 轴正方向成45°角斜向右上方,场强大小与平行金属板间的场强大小相同.现有一质量为m ,电荷量为q 的粒子以某一初速度进入平行金属板,并始终沿x 轴正方向运动,粒子进入第一象限后,从x 轴上的D 点与x 轴正方向成45°角进入第四象限,M 点为粒子第二次通过x 轴的位置.已知OD 距离为L ,不计粒子重力.求:(1)粒子运动的初速度大小和匀强电场的场强大小. (2)DM 间的距离.(结果用m 、q 、v 0、L 和B 表示) 【答案】(1)22B qLE m= (2)220222m v DM B q L =【解析】 【详解】(1)、粒子在板间受电场力和洛伦兹力做匀速直线运动,设粒子初速度为v 0,由平衡条件有:qv 0B=qE…①粒子在第一象限内做匀速圆周运动,圆心为O 1,半径为R ,轨迹如图,由几何关系知R =245LL cos =︒…② 由牛顿第二定律和圆周运动的向心力公式有:qv 0B =m 20 v R…③由②③式解得:v 0=2BqLm…④ 由①④式解得:E =22 B qLm…⑤ (2)、由题意可知,粒子从D 进入第四象限后做类平抛运动,轨迹如图,设粒子从D 到M 的运动时间为t ,将运动分解在沿场强方向和垂直于场强的方向上,则粒子沿DG 方向做匀速直线运动的位移为:DG =v 0t …⑥粒子沿DF 方向做匀加速直线运动的位移为:22122Eqt DF at m==…⑦ 由几何关系可知: DG DF =, 2DM DG =…⑧由⑤⑥⑦⑧式可解得220222 m v DM q B L=. 【点睛】此类型的题首先要对物体的运动进行分段,然后对物体在各段中进行正确的受力分析和运动的分析,进行列式求解; 洛伦兹力对电荷不做功,只是改变运动电荷的运动方向,不改变运动电荷的速度大小.带电粒子做匀速圆周运动的圆心、半径及运动时间的确定:①、圆心的确定:因为洛伦兹力提供向心力,所以洛伦兹力总是垂直于速度的方向,画出带电粒子运动轨迹中任意两点(一般是射入磁场和射出磁场的两点)洛伦兹力的方向,其延长线的交点即为圆心.②、半径的确定:半径一般都是在确定圆心的基础上用平面几何的知识求解,常常用到解三角形,尤其是直角三角形.③、运动时间的确定:利用圆心角与弦切角的关系或者四边形的内角和等于360°计算出粒子所经过的圆心角θ的大小,用公式t=360T θ︒可求出运动时间.7.某速度选择器结构如图所示,三块平行金属板Ⅰ、Ⅱ、Ⅲ水平放置,它们之间距离均为d ,三金属板上小孔O 1、O 2、O 3在同一竖直线上,Ⅰ、Ⅱ间有竖直方向匀强电场E 1,Ⅱ、Ⅲ间有水平向左电场强度为E 2的匀强电场及垂直于纸面向里磁感应强度为B 2的匀强磁场.一质子由金属板I 上端O 1点静止释放,经电场E 1加速,经过O 2进入E 2、B 2的复合场中,最终从Ⅲ的下端O 3射出,已知质子带电量为e ,质量为m .则A .O 3处出射时粒子速度为222E v B = B .Ⅰ、Ⅱ两板间电压2122mE U eB =C .粒子通过Ⅰ、Ⅱ金属板和Ⅱ、Ⅲ金属板的时间之比为1︰1D .把质子换成α粒子,则α粒子也能从O 3射出 【答案】AB 【解析】 【详解】A .经过O 2点进入E 2、B 2的复合场中,最终沿直线从Ⅲ的下端O 3点射出,因质子受到电场力与洛伦兹力,只要当两者大小相等时,才能做直线运动,且速度不变的,依据qE 2=B 2qv解得:v=22E B故A 正确;B .质子在Ⅰ、Ⅱ两板间,在电场力作用下,做匀加速直线运动,根据动能定理,即为qU 1=12mv 2,而质子以相同的速度进入Ⅱ、Ⅲ金属板做匀速直线运动,则有v =22 E B ,那么Ⅰ、Ⅱ两板间电压U 1=2222 2mE eB 故B 正确;C .粒子通过Ⅰ、Ⅱ金属板做匀加速直线运动,而在Ⅱ、Ⅲ金属板做匀速直线运动,依据运动学公式,即有d =102vt +⋅ 而d =vt 2,那么它们的时间之比为2:1,故C 错误;D .若将质子换成α粒子,根据qU 1=12mv 2 导致粒子的比荷发生变化,从而影响α粒子在Ⅱ、Ⅲ金属板做匀速直线运动,因此α粒子不能从O 3射出,故D 错误; 故选AB . 【点睛】考查粒子在复合场中做直线运动时,一定是匀速直线运动,并掌握动能定理与运动学公式的应用,注意粒子何时匀加速直线运动与匀速直线运动是解题的关键.8.如图所示,两竖直金属板间电压为U 1,两水平金属板的间距为d .竖直金属板a 上有一质量为m 、电荷量为q 的微粒(重力不计)从静止经电场加速后,从另一竖直金属板上的小孔水平进入两水平金属板间并继续沿直线运动.水平金属板内的匀强磁场及其右侧宽度一定、高度足够高的匀强磁场方向都垂直纸面向里,磁感应强度大小均为B ,求:(1)微粒刚进入水平金属板间时的速度大小v 0; (2)两水平金属板间的电压;(3)为使微粒不从磁场右边界射出,右侧磁场的最小宽度D . 【答案】(1)102qU v m =12qU U m = (3)12qU m D Bq m=【解析】 【分析】(1)粒子在电场中加速,根据动能定理可求得微粒进入平行金属板间的速度大小; (2)根据粒子在平行板间做直线运动可知,电场力与洛伦兹力大小相等,列式可求得电压大小;(3)粒子在磁场中做匀速圆周运动,根据几何关系可知半径与D 之间的关系,再由洛伦兹充当向心力可求得最小宽度. 【详解】(1)在加速电场中,由动能定理,得 qU 1=12mv 02, 解得v 012qU m(2)在水平金属板间时,微粒做直线运动,则Bqv 0=qU d, 解得U =Bd12qU m(3)若微粒进入磁场偏转后恰与右边界相切,此时对应宽度为D ,则Bqv 0=m 20v r且r =D ,解得D =12qU m Bq m【点睛】题考查带电粒子在电场和磁场中的运动,要注意明确带电粒子在磁场中运动时注意几何关系的应用,明确向心力公式的应用;而带电粒子在电场中的运动要注意根据功能关系以及运动的合成和分解规律求解.9.如图是回旋加速器示意图,置于真空中的两金属D 形盒的半径为R ,盒间有一较窄的狭缝,狭缝宽度远小于D 形盒的半径,狭缝间所加交变电压的频率为f ,电压大小恒为U ,D 形盒中匀强磁场方向如图所示,在左侧D 形盒圆心处放有粒子源S ,产生的带电粒子的质量为m ,电荷量为q 。

相关文档
最新文档