高中数学专题训练

合集下载

高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练(带答案)

高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。

高中数学专题训练教学目标(最新完整版)

高中数学专题训练教学目标(最新完整版)

高中数学专题训练教学目标(最新完整版)高中数学专题训练教学目标高中数学专题训练的教学目标主要包括以下几个方面:1.提高学生的数学基础:专题训练的目的是针对学生在数学学习中的薄弱环节进行有针对性的训练,因此,通过高中数学专题训练,学生能够更好地掌握数学基础知识,提高数学基础水平。

2.培养学生的数学思维:数学是一门需要思维的学科,通过高中数学专题训练,学生能够学习到更多的数学思维方式和方法,如分析、综合、归纳、演绎等,从而提高学生的数学思维能力。

3.提高学生的解题能力:高中数学专题训练的另一个目标是提高学生的解题能力。

通过专题训练,学生能够掌握更多的解题技巧和方法,提高解题速度和准确性。

4.培养学生的自主学习能力:高中数学专题训练需要学生在课前进行预习,课堂上积极参与讨论,课后进行自我总结和复习。

这些过程都能够培养学生的自主学习能力,让学生学会独立思考和解决问题。

5.提高学生的自信心:通过高中数学专题训练,学生能够逐渐克服数学学习中遇到的困难和挑战,提高学习自信心和学习动力。

总之,高中数学专题训练的目标是提高学生的数学基础、数学思维、解题能力、自主学习能力和学习自信心。

高中数学的教学目标高中数学的教学目标主要有以下几点:1.掌握数学的基础知识:高中数学的教学目标首先是让学生掌握基本的数学知识,包括整数、分数、小数、比例、幂、根、对数、指数、百分数、百分数点、根号、小数点、分数线、绝对值、复数等等。

2.培养学生的逻辑思维能力:高中数学不仅是基础知识的教学,更重要的是要培养学生的逻辑思维能力,让他们学会思考和分析问题。

3.培养解决问题的能力:高中数学教学不仅仅是让学生掌握基础知识,更重要的是要培养他们解决问题的能力,让他们学会在面对实际问题时,能够运用数学知识来分析和解决。

4.培养学生的创新意识和创造力:高中数学教学应该注重培养学生的创新意识和创造力,让他们能够用不同的思路和方法来解决问题,并且能够创造新的知识和技术。

高中数学专题训练题

高中数学专题训练题

高中数学专题训练题以下是一份高中数学专题训练题,供您参考:一、选择题(本题共10小题,每小题5分,共50分)1. 下列说法中正确的是 ( )A. 若 x + 2 = y - 3,则 x + 3 = y - 1B. 若 m = n,则 m + a = n + a 成立C. 若 x = y,则 x - 2 = y + 2 成立D. 若 a = b,则 a - b = 0 成立2. 下列运算正确的是 ( )A. 3a + 2b = 5abB. 5a^2 - 2b^2 = 3C. 4a + a = 4a^2D. (x - 1)^2 = x^2 + 1 - 2x3. 下列函数中,在区间 (0,1) 上为增函数的是 ( )A. y = -x + 1B. y = xC. y = (1/2)^xD. y = log(1/2)x4. 下列函数中,在区间(0, +∞) 上为减函数的是 ( )A. y = x^2B. y = (1/2)^xC. y = log(1/2)xD. y = x5. 下列各点中,与点 (-5,3) 关于 x 轴对称的是 ( )A. (-5, -3)B. (5,3)C. (-3,5)D. (3,-5)6. 下列各式中,不成立的是 ( )A. sin(a + b) = sinacosb + cosasinbB. cos(a + b) = cosacosb - sinasinbC. tan(a + b) = tanatanb/ (1 - tanatanb)D. ln(x + sqrt(x^2 + 1)) = t,则 x = ln(t + sqrt(t^2 + 1))7. 下列函数中,在区间 (0,1) 上有零点的是 ( )A. f(x) = x^2 - 2B. f(x) = x^2 - xC. f(x) = x^3 - xD. f(x) = e^x - x8. 下列命题中,正确的是 ( )A. 若 a > b,则 ac > bcB. 若 a > b,则 a^2 > b^2C. 若 a > b,则 a^3 > b^3D. 若 a > b,则 ac^2 > bc^29. 下列函数中,在区间 (0,1) 上有且只有一个零点的是 ( )A. f(x) = x^2 - xB. f(x) = e^x - xC. f(x) = lnxD. f(x) = sinx10. 下列函数中,在区间(0, +∞) 上是减函数的是 ( )A. y = log(1/2)xB. y = x^(1/3)C. y = e^xD. y = lnx。

高中数学专题同步练习训练大全

高中数学专题同步练习训练大全

高中数学专题同步练习训练大全高中数学集合练习题一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2,7 ,8}是 ( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |, 3a2+4},A∩B={-1},则a 的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a 的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1 0 ,m∈R}, 若A∩B=φ, 且A∪B=A,求m的取值范围.高中数学数列练习题一、选择题:(本大题共10小题,每小题5分,共50分)1.设数列,,2,,……则2是这个数列的 ( )D.第九项 A.第六项 B.第七项 C.第八项2.若a≠b,数列a,x1,x 2 ,b和数列a,y1 ,y2 , y3,b都是等差数列,则A.2 3B.3 4x2x1 ( ) y2y1C.1D.4 33. 等差数列{an}中,若a3+a4+a5+a6+a7=450 ,则前9项和S9= ( )A.1620B.810C.900D.6754.在-1和8之间插入两个数a,b,使这四个数成等差数列,则 ( )A. a=2,b=5B. a=-2,b=5C. a=2,b=-5D. a=-2,b=-55.首项为24的等差数列,从第10项开始为正数,则公差d的取值范围是( )A.d 888B.d 3C.≤d 3D. d≤3 p= 3336.等差数列{an}共有2n项,其中奇数项的和为90,偶数项的和为72,且a2na133,则该数列的公差为 ( )A.3B.-3C.-2D.-17.在等差数列{an}中,a100,a110,且a11|a10|,则在Sn中最大的负数为( )A.S17B.S18C.S19D.S208.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值是4,则抽取的是: ( )A.a11B.a10C.a9D.a89.设函数f(x)满足f(n+1)=A.95 2f(n)n_(n∈N)且f(1)=2,则f(20)为 ( ) 2 C.105 D.192B.9710.已知无穷等差数列{a n},前n项和S n 中,S 6 S 8 ,则 ( )A.在数列{a n }中a7 最大;B.在数列{a n }中,a 3 或a 4 最大;C.前三项之和S 3 必与前11项之和S 11 相等;D.当n≥8时,a n 0.二、填空题:(本大题共4小题,每小题5分,共20分)11.集合Mmm6n,nN_,且m60中所有元素的和等于_________.a1a2a3an,则S13_____ 12、在等差数列{an}中,a3a7a108,a4a1114.记Sn 13、已知等差数列{an}中,a7a916,a41,则a16的值是.Sn5n1a=,f(n)n;Tn3n1bn14.等差数列{an}、{bn}、{cn}与{dn}的前n项和分别记为Sn、Tn、Pn、Qn.f(n)cn5n2P=,g(n)n.则的最小值= g(n)dn3n2Qn三、解答题:15.(12分)(1)在等差数列{an}中,d1,a78,求an和Sn; 3(2)等差数列{an}中,a4=14,前10项和S10185.求an;16.(13分)一个首项为正数的等差数列{an},如果它的前三项之和与前11项之和相等,那么该数列的前多少项和最大17.(13分)数列{an}中,a18,a42,且满足an22an1an0|a1||a2||an|,求Sn。

高中数学不等式专题训练7套含答案

高中数学不等式专题训练7套含答案

不等式单元试卷一班级 姓名 座号 成绩一、选择题(每题正确答案只有一个,共8题,每小题5分)1.若a <b <0,则 ( )A . b 11<aB . 0<b a <1C . a b >b 2D . bb a a >2.若|a +c|<b ,则 ( )A . |a |<|b|-|c|B . |a |>|c|-|b|C . |a |>|b|-|c|D . |a |<|c|-|b| 3.设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bdB . db>c a C . a +c >b +d D . a -c >b -d4.下列命题中正确的一个是 ( ) A .ba ab +≥2成立当且仅当a ,b 均为正数B .2222ba b a +≥+成立当且仅当a ,b 均为正数 C .log a b +log a b ≥2成立当且仅当a ,b ∈(1,+∞) D .|a +a1|≥2成立当且仅当a ≠0 5函数y =log ⎪⎭⎫⎝⎛-+⋅+-2134223x x x x 的定义域是 ( )A .x ≤1或x ≥3B .x <-2或x >1C .x <-2或x ≥3D .x <-2或x >36.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( ) A 甲是乙的充分条件,但不是乙的必要条件 B 甲是乙的必要条件,但不是乙的充要条件 C 甲是乙的充要条件 D 甲不是乙的充分条件,也不是乙的必要条件7.已知实数x ,y 满足x 2+y 2=1,则代数式(1-x y)(1+x y)有 ( ) A .最小值21和最大值1 B .最小值43和最大值1 C .最小值21和最大值43D .最小值1 8.函数y =xx x +++132(x >0)的最小值是( )A .23B .-1+23C .1+23D .-2+23二、填空题(请将正确的答案填到横线上,共4题,每小题4分)9.关于x 的不等式a x 2+b x +2>0的解集是}3121|{<<-x x ,则a +b=_____________.10.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________.11.方程()02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 .12.建造一个容积83m ,深为m 2长的游泳池,若池底和池壁的造价每平方米分别为120元和80元,则游泳池的最低总造价为__________元. 三、解答题(本大题共4小题,共44分)13.(10分)已知.))((,1,0,xy bx ay by ax b a b a ≥++=+>求证:且14 (10分)解关于x 的不等式:0122<++x ax (其中R a ∈).15.(12分)设f(x)是定义在上]1,1[-的奇函数,g(x)的图象与f(x)的图象关于直线x =1对称,而当]3,2[∈x 时,44)(2-+-=x x x g .(1)求f(x)的解析式;(2)对于任意的,]1,0[,2121x x x x ≠∈且求证:;2)()(1212x x x f x f -<- (3)对于任意的,]1,0[,2121x x x x ≠∈且求证:.1)()(12≤-x f x f16.(12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm2. 问x、y分别为多少(精确到0.001m) 时用料最省?参考答案二、填空题9.-14 10.1,2,1 11.)1,21()0,21(⋃- 12. 1760 三、解答题13.[解析]: 左边=)()(22222222y x ab xy b a aby abx xy b xy a +++=+++,xy xy b a xy ab b a xy y x =+=++≥∴≥+22222)()2(,2左边 .15.[解析]:(1)由题意知f(x+1)=g(1-x))2()(x g x f -=⇒当224)2(4)2()(,32201x x x x f x x -=--+--=≤-≤≤≤-时,当2)(0110x x f x x -=-∴<-≤-≤<时,,由于f(x)是奇函数2)(x x f =∴ ⎪⎩⎪⎨⎧≤<≤≤--=∴)10()01()(22x x x x x f(2)当,20]1,0[,212121<+<≠∈x x x x x x 时,且 1212122122122))(()()(x x x x x x x x x f x f -<+-=-=-∴(3)当1110,10]1,0[,212222212121≤-≤-∴≤≤≤≤≠∈x x x x x x x x 时,且.12122≤-x x 即 .1)()(212212≤-=-∴x x x f x f16.[解析]:由题意得 x y+41x 2=8,∴y=xx 482-=48xx-(0<x <42). 于定, 框架用料长度为 l =2x +2y+2(x 22)=(23+2)x +x16≥4246+. 当(23+2)x =x16,即x =8-42时等号成立. 此时, x ≈2.343, y=22≈2.828.故当x 为2.343m, y 为2.828m 时, 用料最省.不等式基本性质二一,不等式的8条基本性质补充1,b a b a ab 110<⇔>>且2,)(0+∈>⇒>>R x b a b a x x 3, )(0-∈<⇒>>R x b a b a x x二,基本练习( )1, 2003京春文,1)设a ,b ,c ,d ∈R ,且a >b ,c >d ,则下列结论中正确的是A.a +c >b +dB.a -c >b -dC.ac >bdD.cb d a >( )2,(2001上海春)若a 、b 为实数,则a >b >0是a 2>b 2的A.充分不必要条件B.必要不充分条件C.充要条件D.既非充分条件也非必要条件( )3,若,011<<ba 则下列结论正确..的是A .22b a <B .2b ab <C .ab a <2D .b a >( )4,“a>b”是“ac 2>bc 2”成立的A .必要不充分条件B .充分不必要条C .充要条件D .以上均错( )5,若b a , 为任意实数且b a >,则( ) A ,22b a > B ,1>b a C ,0)lg(>-b a D ,b a )21()21(<( )6,“1>a ”是“11<a”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件( )7,设10<<<a b ,则下列不等式成立的是A .12<<b abB .0log log 2121<<a b C .222<<a b D .12<<ab a( )8,1>ab是0)(<-b a a 成立的A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分不必要条件( )9,若0,0,0><>+ay a y x ,则y x -的值A ,小于0B ,大于0C ,等于0D ,正负不确定( )10,若a >b ,在①ba 11<;②a 3>b 3;③)1lg()1lg(22+>+b a ;④ba 22>中,正确的有 A.1个 B.2个 C.3个 D.4个( )11,(04高考试题)已知a 、b 、c 满足c b a <<,且ac <0,那么下列选项中不一定成立的是 A .ab ac >B . c b a ()-<0C . cb ab 22<D . 0)(<-c a ac( )12,(04高考试题)若011<<ba ,则下列不等式①ab b a <+;②|;|||b a >③b a <;④02<-ab a 中,正确的不等式有A .1个B .2个C .3个D .4个二,填空题13,设01,0<<-<b a ,则2,,ab ab a 三者的大小关系为14,设R x x x B x A ∈+=+=,2,21234且1≠x ,则B A ,的大小关系为15,如果01<<<-b a ,则22,,1,1a b ab 的大小关系为16,设,则b a >是bb a a 11->-成立的 条件17,若53,42≤<<≤b a ,则b a -3的取值范围为 ,bba +2的取值范围为18,若a b a a 231,63<<<≤,则b a +的取值范围为三,解答题19,证明:若0>>b a >0>m ,则ma mb a b m a m b ++<<--不等式的性质三A 卷一、选择题1、下列命题中,正确的是( )A 若ac >bc,则a >bB 、若a 2>b 2,则a >bC 、若,则a <bD 、若b a <,则a <b2、 若a >b,则( ) A 、b a 33>B 、b a >C 、a 3>b 2D 、a 2>b 33、不等式a >b 和同时成立的充分且必要条件是( ) A 、a >b >0 B 、a >0>b C 、011<<a b D 、 011>>ba4、若a <b <0,则下列不等式中不能成立的是( )A 、B 、ab a 11>- C 、| a | > | b | D 、a 2>b 25、设a 、b 、c 、d 都是正数,a >b ,c >d ,a + b > c + d ,ab = cd ,那么a 、b 、c 、d 之间的大小关系是( )A 、a >b >c >dB 、a >c >b >dC 、c >a >d >bD 、a >c >d >b 6、已知a <0 ,-1<b <0,那么( )A 、a >ab >ab 2B 、ab 2>ab >aC 、ab >a >ab 2D 、ab >ab 2>a 7、若x + y = 2,b <x <a ,则下列不等式正确的是( )A 、b + 2<y <a + 2B 、a + 2<y <b + 2C 、2-a <y <2-bD 、2-b <y <2-a8、给定命题(1) a >b 且ab <0,(2)b a > b,(3)| a | <b b <a < 2a >b ,其中真命题的个数是( ) A 、3 B 、2 C 、1 D 、0 二、填空题9、已知a <b <0,c >0,在下列空白处填上恰当的不等号。

高中数学《集合》专项练习

高中数学《集合》专项练习

专题一.集合与逻辑,高中筑根基l集合的概念集合中的元素具有确定性、互异性和无序性.常用数集及其记法表示自然数集,表示正整数集,表示整数集,表示有理数集,表示实数集.集合与元素间的关系元素a与集合M的关系是,或者,两者必居其一.子集、真子集、集合相等名称记号意义性质示意图子集A中的任一元素都属于B(1)A⊆A(2)∅⊆A(3)若A⊆B且B⊆C,则A⊆C(4)若A⊆B且B⊆A,则A=B或真子集A⊆B,且B中至少有一元素不属于A(1)∅⊊A(A为非空子集)(2)若A⊊B且B⊊C,则A⊊C集合相等A=BA中的任一元素都属于B,B中的任一元素都属于A(1)A⊆B(2)B⊆A子集个数问题已知集合A有n(n≥1)个元素,则它有个子集,它有个真子集,它有个非空子集,它有个非空真子集.l集合易错题自测对集合表示方法理解存在偏差1.已知A={x|x>0},B={y y>1},求A∩B.2.已知A={y|y=x+2},B={(x,y)|x2+y2=4},求A∩B。

在解含参数集合问题时忽视空集3.已知A={x|2a<x<a2},B={x|-2<x<1},且A⊆B,求a的取值范围。

在解含参数问题时忽视元素的互异性4.已知1∈{a+2,(a+1)2, a2+3a+3},求实数a的值。

集合基础达标训练5.(2021•乙卷)已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=( )A.∅B.SC.TD.Z6.(2017•江苏)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为 .7.(多选)下列说法正确的是( )A.任何集合都是它自身的真子集B.集合{a,b}共有4个子集C.集合{x|x=3n+1,n∈Z}={x|x=3n-2,n∈Z}D.集合{x|x=1+a2,a∈N*}={x|x=a2-4a+5,a∈N*}8.(多选)江苏省实验中学科技城校举行秋季运动会,高一某班共有30名同学参加比赛,有20人参加田赛,13人参加径赛,有19人参加球类比赛,同时参加田赛与径赛的有8人,同时参加田赛与球类比赛的有9人,没有人同时参加三项比赛.以下说法正确的有( )A.同时参加径赛和球类比赛的人数有3人B.只参加球类一项比赛的人数有2人C.只参加径赛一项比赛的人数为0人D.只参加田赛一项比赛的人数为3人l充分条件与必要条件记忆口诀:9.(2022•浙江)设x∈R,则“sin x=1”是“cos x=0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件10.(2022•天津)“x为整数”是“2x+1为整数”的( )条件A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要11.设命题甲为“0<x <5”,命题乙为“x -2 <3”,那么甲是乙的()A.充分而不必要条件B.充分必要条件C.必要而不充分条件D.既不充分也不必要条件12.(2020•天津)设a ∈R ,则“a >1”是“a 2>a ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13.(2019•上海)已知a 、b ∈R ,则“a 2>b 2”是“|a |>|b |”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.(2019•浙江)若a >0,b >0,则“a +b ≤4”是“ab ≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件15.(2018•上海)已知a ∈R ,则“a >1”是“1a<1”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件16.“-2<m <2”是“x 2-mx +1>0在x ∈(1,+∞)上恒成立”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件17.(2022•长沙期末)(多选)下列有关命题的说法正确的是( )A.命题“同位角相等,两直线平行”的逆否命题为:“两直线不平行,同位角不相等”B.“若实数x ,y 满足x 2+y 2=0,则x ,y 全为0”的否命题为真命题C.命题“∃x ∈R ,tan x =2”为假命题D.对于命题p :∃x 0∈R ,x 20+2x 0+2≤0,则¬P :∀x ∈R ,x 2+2x +2>018.(2022•长沙月考)(多选)下列说法正确的是( )A.“x2-2x=0”是“x=2”的必要不充分条件B.“x>2且y>3”是“x+y>5”的充分不必要条件C.当a≠0时,“b2-4ac<0”是“方程ax2+bx+c=0有解”的充要条件D.若p是q的充分不必要条件,则q是p的必要不充分条件19.(多选)下列说法正确的是( )A.E由|x|<-3所有实数组成集合,F由立德中学某班会运动的所有学生组成的集合.E、F均不存在B.E={x|x2-4x+4=0},F由5个2组成的集合.则E=F={2}C.E={x∈Z|3x-2∈Z},{1,-1}⊆F⊆E,则F可能有4个D.E={(x,y)|y=2x,|x|≤1,x∈Z},用列举法表示集合E为{(1,2),(-1,-2)}.20.(多选)下列选项是a>b>0成立的一个必要条件的是( )A.1a >1bB.a>bC.a3>b3D.sin a>sin b21.(多选)下列四个命题中为真命题的是( )A.“x>2”是“x<3”的既不充分也不必要条件B.“三角形为正三角形”是“三角形为等腰三角形”的必要不充分条件C.关于x的方程ax2+bx+c=0(a≠0)有实数根的充要条件是Δ=b2-4ac≥0D.若集合A⊆B,则x∈A是x∈B的充分不必要条件22.(多选)已知x,y均为正实数,则下列各式可成为“x<y”的充要条件是( )A.1x >1yB.x-y>sin x-sin yC.x-y<cos x-cos yD.e x-e y<x2-y2l全称量词与存在量词1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若p,则q”形式的命题中的p称为命题的条件,q称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题。

高中数学必修一第三章函数的概念与性质考点专题训练(带答案)

高中数学必修一第三章函数的概念与性质考点专题训练(带答案)

高中数学必修一第三章函数的概念与性质考点专题训练单选题1、函数f(x)=log 2x −1x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4) 答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项. f (1)=0−1=−1<0,f (2)=1−12=12>0,且函数f (x )=log 2x −1x 的定义域是(0,+∞),定义域内y =log 2x 是增函数,y =−1x 也是增函数,所以f (x )是增函数,且f (1)f (2)<0,所以函数f(x)=log 2x −1x 的零点所在的区间为(1,2). 故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断. 2、函数y =√2x +4x−1的定义域为( )A .[0,1)B .(1,+∞)C .(0,1)∪(1,+∞)D .[0,1)∪(1,+∞) 答案:D分析:由题意列不等式组求解由题意得{2x ≥0x −1≠0,解得x ≥0且x ≠1,故选:D3、现有下列函数:①y =x 3;②y =(12)x;③y =4x 2;④y =x 5+1;⑤y =(x −1)2;⑥y =x ;⑦y =a x (a >1),其中幂函数的个数为( ) A .1B .2C .3D .4 答案:B分析:根据幂函数的定义逐个辨析即可幂函数满足y=x a形式,故y=x3,y=x满足条件,共2个故选:B,则f(x)()4、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),因为函数f(x)=x3−1x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,=x−3在(0,+∞)上单调递减,在(−∞,0)上单调递减,而y=1x3在(0,+∞)上单调递增,在(−∞,0)上单调递增.所以函数f(x)=x3−1x3故选:A.小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题.5、下列函数为奇函数的是()A.y=x2B.y=x3C.y=|x|D.y=√x答案:B分析:根据奇偶函数的定义判断即可;解:对于A:y=f(x)=x2定义域为R,且f(−x)=(−x)2=x2=f(x),所以y=x2为偶函数,故A错误;对于B:y=g(x)=x3定义域为R,且g(−x)=(−x)3=−x3=−g(x),所以y=x3为奇函数,故B正确;对于C:y=ℎ(x)=|x|定义域为R,且ℎ(−x)=|−x|=|x|=ℎ(x),所以y=|x|为偶函数,故C错误;对于D:y=√x定义域为[0,+∞),定义域不关于原点对称,故y=√x为非奇非偶函数,故D错误;故选:B6、已知幂函数y=f(x)的图象过点P(2,4),则f(3)=()A.2B.3C.8D.9答案:D分析:先利用待定系数法求出幂函数的解析式,再求f(3)的值解:设f(x)=xα,则2α=4,得α=2,所以f(x)=x2,所以f(3)=32=9,故选:D7、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.8、已知f(x)是一次函数,且f(x−1)=3x−5,则f(x)=()A.3x−2B.2x+3C.3x+2D.2x−3答案:A分析:设一次函数y=ax+b(a≠0),代入已知式,由恒等式知识求解.设一次函数y=ax+b(a≠0),则f(x−1)=a(x−1)+b=ax−a+b,由f(x−1)=3x−5得ax−a+b=3x−5,即{a=3b−a=−5,解得{a=3b=−2,∴f(x)=3x−2.故选:A.多选题9、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误;设D 的坐标为(t,0),由题得△AOB ∽△CBD ,则有1220=128−20t−20,解可得t =200,所以选项C 正确;当x =128时,y =216,所以y 的最大值是216.所以选项D 正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟, 一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A 正确,设D 的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等, 则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD , 则△AOB ∽△CBD , 则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确; 由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误; 当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确. 故选:ACD10、已知函数f(x)={−x,x <0x 2,x >0,则有( )A .存在x 0>0,使得f (x 0)=−x 0B .存在x 0<0,使得f (x 0)=x 02C .函数f (−x )与f(x)的单调区间和单调性相同D .若f (x 1)=f (x 2)且x 1≠x 2,则x 1+x 2≤0 答案:BC分析:根据函数解析式,分别解AB 选项对应的方程,即可判定A 错,B 正确;求出f (−x )的解析式,判定f (−x )与f(x)的单调区间与单调性,即可得出C 正确;利用特殊值法,即可判断D 错.因为f(x)={−x,x <0x 2,x >0,当x 0>0时,f(x 0)=x 02,由f (x 0)=−x 0可得x 02=−x 0,解得x 0=0或−1,显然都不满足x 0>0,故A错;当x 0<0时,f(x 0)=−x 0,由f (x 0)=x 02可得−x 0=x 02,解得x 0=0或−1,显然x 0=−1满足x 0<0,故B 正确;当x <0时,f(x)=−x 显然单调递减,即f(x)的减区间为(−∞,0);当x >0时,f(x)=x 2显然单调递增,即f(x)的增区间为(0,+∞);又f(−x)={x,−x <0x 2,−x >0 ={x,x >0x 2,x <0 ,因此f (−x )在(−∞,0)上单调递减,在(0,+∞)上单调递增;即函数f (−x )与f(x)的单调区间和单调性相同,故C 正确;D 选项,若不妨令x 1<x 2,f (x 1)=f (x 2)=14,则x 1=−14,x 2=12,此时x 1+x 2=14>0,故D 错; 故选:BC.小提示:关键点点睛:求解本题的关键在于根据解析式判定分段函数的性质,利用分段函数的性质,结合选项即可得解.11、已知函数f (x )的定义域是(0,+∞),且f (xy )=f (x )+f (y ),当x >1时,f (x )<0,f (2)=−1,则下列说法正确的是( ) A .f (1)=0B .函数f (x )在(0,+∞)上是减函数C .f (12022)+f (12021)+⋅⋅⋅+f (13)+f (12)+f (2)+f (3)+⋅⋅⋅+f (2021)+f (2022)=2022 D .不等式f (1x )−f (x −3)≥2的解集为[4,+∞) 答案:ABD分析:利用赋值法求得f (1)=0,判断A ;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用f (xy )=f (x )+f (y ),可求得C 中式子的值,判断C ;求出f (14)=f (12)+f (12)=2,将f (1x )−f (x −3)≥2转化为f (1x )+f (1x−3)≥f (14),即可解不等式组求出其解集,判断D. 对于A ,令x =y =1 ,得f (1)=f (1)+f (1)=2f (1),所以f (1)=0,故A 正确;对于B ,令y =1x >0,得f (1)=f (x )+f (1x )=0,所以f (1x )=−f (x ), 任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)−f (x 1)=f (x 2)+f (1x 1)=f (x2x 1),因为x 2x 1>1,所以f (x2x1)<0,所以f (x 2)<f (x 1),所以f (x )在(0,+∞)上是减函数,故B 正确;对于C ,f (12022)+f (12021)+⋅⋅⋅+f (13)+f (12)+f (2)+f (3)+⋅⋅⋅+f (2021)+f (2022) =f (12022×2022)+f (12021×2021)+⋅⋅⋅+f (13×3)+f (12×2)=f (1)+f (1)+⋅⋅⋅+f (1)+f (1)=0,故C 错误;对于D ,因为f (2)=−1,且f (1x )=−f (x ),所以f (12)=−f (2)=1,所以f (14)=f (12)+f (12)=2,所以f (1x )−f (x −3)≥2等价于f (1x )+f (1x−3)≥f (14), 又f (x )在(0,+∞)上是减函数,且f (xy )=f (x )+f (y ),所以{ 1x (x−3)≤141x>01x−3>0 , 解得x ≥4,故D 正确, 故选:ABD . 填空题12、为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为W =f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是____________________.答案:①②③分析:根据定义逐一判断,即可得到结果−f(b)−f(a)b−a表示区间端点连线斜率的负数,在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;所以答案是:①②③小提示:本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.13、已知函数f(x)=mx2+nx+2(m,n∈R)是定义在[2m,m+3]上的偶函数,则函数g(x)=f(x)+2x在[−2,2]上的最小值为______.答案:-6分析:先利用题意能得到f(−x)=f(x)和2m+m+3=0,解得n=0和m=−1,代入f(x)中,再代入g(x),再结合二次函数的性质求最小值因为函数f(x)=mx2+nx+2(m,n∈R)是定义在[2m,m+3]上的偶函数,故{f(−x)=f(x)2m+m+3=0,即{mx2−nx+2=mx2+nx+2m=−1,则{2nx=0m=−1解得{n=0m=−1,所以g(x)=f(x)+2x=−x2+2x+2=3−(x−1)2,x∈[−2,2],所以g(−2)=−(−2)2+2×(−2)+2=−6,g(2)=−22+2×2+2=2,则g(x)min=−6,所以答案是:-614、已知y=f(x)是定义在区间(-2,2)上单调递减的函数,若f(m-1)>f(1-2m),则m的取值范围是_______.答案:(−12,23)分析:结合函数定义域和函数的单调性列不等式求解即可.由题意得:{-2<m-1<2,-2<1-2m<2,m-1<1-2m,解得−12<m<23.所以答案是:(−12,23)解答题15、已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=−x2+2x.(1)求x<0时,函数f(x)的解析式;(2)若函数f(x)在区间[−1,a−2]上单调递增,求实数a的取值范围.(3)解不等式f(x)≥x+2.答案:(1)f(x)=x2+2x;(2)(1,3];(3)(−∞,−2]分析:(1)设x<0,计算f(−x),再根据奇函数的性质f(x)=−f(−x),即可得对应解析式;(2)作出函数f(x)的图像,利用数形结合思想,列出关于a的不等式组求解;(3)由(1)知分段函数f(x)的解析式,分类讨论解不等式再取并集即可.(1)设x<0,则−x>0,所以f(−x)=−(−x)2+2(−x)=−x2−2x又f(x)为奇函数,所以f(x)=−f(−x),所以当x<0时,f(x)=x2+2x,(2)作出函数f(x)的图像,如图所示:要使f(x)在[−1,a −2]上单调递增,结合f(x)的图象知{a −2>−1a −2≤1,所以1<a ≤3,所以a 的取值范围是(1,3].(3)由(1)知f(x)={−x 2+2x,x ≥0x 2+2x,x <0,解不等式f(x)≥x +2,等价于{x ≥0−x 2+2x ≥x +2 或{x <0x 2+2x ≥x +2 ,解得:∅或x ≤−2 综上可知,不等式的解集为(−∞,−2]小提示:易错点睛:本题考查利用函数奇偶性求解分段函数解析式、根据函数在区间内的单调性求解参数范围的问题,易错点是忽略区间两个端点之间的大小关系,造成取值范围缺少下限,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数知识点考试要求:(1)了解导数概念的某些实际背景 (2)理解导数的几何意义 (3)掌握函数的导数公式(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、 极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.知识要点)(x f y =1.导数的几何意义:函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=-2. 导数的四则运算法则:''')(v u v u ±=±)(...)()()(...)()(''2'1'21x f x f x f y x f x f x f y n n +++=⇒+++=⇒''''''')()(cv cv v c cv u v vu uv =+=⇒+=(c 为常数))0(2'''≠-=⎪⎭⎫⎝⎛v v u v vu v u 3.函数单调性:⑴函数单调性的判定方法:设函数)(x f y =在某个区间内可导, 如果)('x f >0,则)(x f y =为增函数; 如果)('x f <0,则)(x f y =为减函数. ⑵常数的判定方法;如果函数)(x f y =在区间I 内恒有)('x f =0,则)(x f y =为常数.4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理) 当函数)(x f 在点0x 处连续时,①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值.也就是说0x 是极值点的充分条件是0x 点两侧导数异号,而不是)('x f =0①. 此外,函数不可导的点也可能是函数的极值点②. 当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近的点不同).注①: 若点0x 是可导函数)(x f 的极值点,则)('x f =0. 但反过来不一定成立. 对于可导函数,其一点0x 是极值点的必要条件是若函数在该点可导,则导数值为零. 例如:函数3)(x x f y ==,0=x 使)('x f =0,但0=x 不是极值点.②例如:函数||)(x x f y ==,在点0=x 处不可导,但点0=x 是函数的极小值点.5. 极值与最值区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.6. 几种常见的函数导数:I.0'=C (C 为常数) x x cos )(sin '=1')(-=n n nx x (R n ∈) x x sin )(cos '-=II. x x 1)(ln '=e xx a a log 1)(log '=x x e e =')( a a a x x ln )('=1、(广东卷)函数错误!未找到引用源。

是减函数的区间为( )(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

2.(全国卷Ⅰ)函数错误!未找到引用源。

,已知错误!未找到引用源。

在错误!未找到引用源。

时取得极值,则错误!未找到引用源。

=( )(A )2 (B )3 (C )4 (D )53. (湖北卷)在函数错误!未找到引用源。

的图象上,其切线的倾斜角小于错误!未找到引用源。

的点中,坐标为整数的点的个数是 ( ) A .3 B .2 C .1 4.(江西)已知函数错误!未找到引用源。

的图象如右图所示(其中找到引用源。

是函数错误!未找到引用源。

的导函数),象中错误!未找到引用源。

的图象大致是( C )5.(浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( )(A) 错误!未找到引用源。

(B)错误!未找到引用源。

(C) 错误!未找到引用源。

(D)16. (重庆卷)曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为______8/3____。

7.(江苏卷)(14)曲线错误!未找到引用源。

在点(1,3)处的切线方程是错误!未找到引用源。

8. ( 全国卷III )曲线错误!未找到引用源。

在点(1,1)处的切线方程为x+y-2=09. (北京卷)过原点作曲线y =e x 的切线,则切点的坐标为 (1, e ); ,切线的斜率为e .B D高中数学专题训练—二次函数与幂函数一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 本题为二次函数的单调性问题,取决于对称轴的位置,若函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数,则有对称轴x =a ≤1,故“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的充分不必要条件.2.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )答案 C解析 若a >0,A 不符合条件,若a <0,D 不符合条件,若b >0,对B ,∴对称轴-ba <0,不符合,∴选C.3.函数y =x α(x ≥1)的图象如图所示,α满足条件( )A.α<-1 B.-1<α<0 C.0<α<1 D.α>1答案 C解析类比函数y=x 12即可.4.若函数f(x)=ax2+bx+c满足f(4)=f(1),那么() A.f(2)>f(3)B.f(3)>f(2)C.f(3)=f(2)D.f(3)与f(2)的大小关系不确定答案 C解析∵f(4)=f(1)∴对称轴为52,∴f(2)=f(3).5.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是()A.[1,+∞) B.[0,2]C.[1,2] D.(-∞,2]答案 C解析由函数的单调性和对称轴知,1≤m≤2,选C.6.(2010·安徽卷)设abc>0,二次函数f(x)=ax2+bx+c的图象可能是() 答案 D解析若a>0,b<0,c<0,则对称轴x=-b2a>0,函数f(x)的图象与y轴的交点(c,0)在x轴下方.故选D.7.已知f(x)=ax2+2ax+4(0<a<3),若x1<x2,x1+x2=1-a,则() A.f(x1)>f(x2)B.f(x1)<f(x2)C.f(x1)=f(x2)D.f(x1)与f(x2)的大小不能确定答案 B解析解法1:设A(x1,f(x1)),B(x2,f(x2)),∵x1+x22=1-a2∈(-1,12),又对称轴x=-1,∴AB中点在对称轴右侧.∴f(x1)<f(x2),故选B.(本方法充分运用了二次函数的对称性及问题的特殊性:对称轴已知).解法2:作差f(x1)-f(x2)=(ax21+2ax1+4)-(ax22+2ax2+4)=a(x1-x2)(x1+x2+2)=a(x1-x2)(3-a)又0<a <3,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故选B. 二、填空题8.已知y =(cos x -a )2-1,当cos x =-1时y 取最大值,当cos x =a 时,y 取最小值,则a 的范围是________.解析 由题意知⎩⎨⎧-a ≤0-1≤a ≤1∴0≤a ≤19.抛物线y =8x 2-(m -1)x +m -7的顶点在x 轴上,则m =________. 答案 9或25解析 y =8⎝ ⎛⎭⎪⎫x -m -1162+m -7-8·⎝ ⎛⎭⎪⎫m -1162∵顶点在x 轴∴m -7-8·⎝ ⎛⎭⎪⎫m -1162=0,∴m =9或25. 10.(2010·衡水调研)设函数f 1(x )=x 12,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2010)))=________.答案 12010解析 f 3(2010)=20102 f 2(20102)=(20102)-1=2010-2f 1(2010-2)=(2010-2)12=2010-1=12010.11.在函数f (x )=ax 2+bx +c 中,若a ,b ,c 成等比数列且f (0)=-4,则f (x )有最________值(填“大”或“小”),且该值为________.答案 大 -3解析 ∵f (0)=c =-4,a ,b ,c 成等比,∴b 2=a ·c ,∴a <0∴f (x )有最大值,最大值为c -b24a =-3.12.已知幂函数f (x )=x 1-α3在(-∞,0)上是增函数,在(0,+∞)上是减函数,那么最小的正整数a =________.答案 313.方程x 2-mx +1=0的两根为α,β,且α>0,1<β<2,则实数m 的取值范围是________.答案 2<m <52解析 令f (x )=x 2-mx +1由题意知⎩⎨⎧f (1)<0f (2)>0⇒2<m <52.三、解答题14.已知函数f (x )=2x -x m ,且f (4)=-72.(1)求m 的值;(2)判断f (x )在(0,+∞)上的单调性,并给予证明. 答案 (1)m =1 (2)递减解析 (1)∵f (4)=-72, ∴24-4m =-72.∴m =1.(2)f (x )=2x -x 在(0,+∞)上单调递减,证明如下:任取0<x 1<x 2,则f (x 1)-f (x 2)=(2x 1-x 1)-(2x 2-x 2)=(x 2-x 1)(2x 1x 2+1).∵0<x 1<x 2,∴x 2-x 1>0,2x 1x 2+1>0.∴f (x 1)-f (x 2)>0,∴f (x 1)>f (x 2),即f (x )=2x -x 在(0,+∞)上单调递减. 15.(2011·山东省实验中学)已知对于任意实数x ,二次函数f (x )=x 2-4ax +2a +12(a ∈R )的值都是非负的,求函数g (a )=(a +1)(|a -1|+2)的值域.答案 [-94,9]解 由条件知Δ≤0,即(-4a )2-4(2a +12)≤0,∴-32≤a ≤2.①当-32≤a <1时,g (a )=(a +1)(-a +3)=-a 2+2a +3=-(a -1)2+4, ∴由二次函数图象可知, -94≤g (a )<4.②当1≤a ≤2时,g (a )=(a +1)2, ∴当a =1时,g (a )min =4; 当a =2时,g (a )max =9; ∴4≤g (a )≤9.综上所述,g (a )的值域为[-94,9].1.若函数f (x )=log 12(x 2-6x +5)在(a ,+∞)上是减函数,则a 的取值范围是( )A .(-∞,1]B .(3,+∞)C .(-∞,3)D .[5,+∞) 答案 D解析 f (x )的减区间为(5,+∞),若f (x )在(a ,+∞)上是减函数,则a ≥5,故选D.2.设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列图象之一,则a 的值为( )A .1B .-1 C.-1-52 D.-1+52答案 B解析 ∵b >0,∴不是前两个图形,从后两个图形看-b2a >0,∴a <0. 故应是第3个图形.∵过原点,∴a 2-1=0.结合a <0.∴a =-1. 3.如图所示,是二次函数y =ax 2+bx +c 的图象,则|OA |·|OB |等于( ) A.c a B .-c aC .±c a D .无法确定 答案 B解析∵|OA|·|OB|=|OA·OB|=|x1x2|=|ca|=-ca(∵a<0,c>0).4.已知函数f(x)=x2-2x+2的定义域和值域均为[1,b],则b=()A.3 B.2或3C.2 D.1或2答案 C解析函数在[1,+∞)上单增∴b=b2-2b+2解之得:b=2或1(舍).5.函数y=-x2-2ax(0≤x≤1)的最大值是a2,则实数a的取值范围是() A.0≤a≤1 B.0≤a≤2C.-2≤a≤0 D.-1≤a≤0答案 D解析f(x)=-x2-2ax=-(x+a)2+a2若f(x) 在[0,1]上最大值是a2,则0≤-a≤1,即-1≤a≤0,故选D.1.若二次函数f(x)满足f(x+1)-f(x)=2x,f(0)=1,则f(x)=________.答案x2-x+1解析设f(x)=ax2+bx+c,∵f(0)=1,∴c=1,f(x+1)-f(x)=2ax+a+b =2x∴a=1,b=-1.∴f(x)=x2-x+1.2.若函数f(x)=(a-1)x2+(a2-1)x+1是偶函数,则在区间[0,+∞)上f(x)是()A.减函数B.增函数C.常函数D.可能是减函数,也可能是常函数答案 D解析函数f(x)是偶函数,∴a2-1=0当a=1时,f(x)为常函数当a=-1时,f(x)=-x2+1在[0,+∞)为减函数,选D.3.已知f(x)=(x-a)(x-b)-2(a<b),并且α、β是方程f(x)=0的两个根(α<β),则实数a、b、α、β的大小关系可能是()A.α<a<b<βB.a<α<β<bC.a<α<b<βD.α<a<β<b答案 A解析设g(x)=(x-a)(x-b),则f(x)=g(x)-2,分别作出这两个函数的图象,如图所示,可得α<a<b<β,故选A.4.设f (x )=x 2+bx +c ,且f (-1)=f (3),则( ) A .f (1)>c >f (-1) B .f (1)<c <f (-1) C .f (1)>f (-1)>c D .f (1)<f (-1)<c 答案 B解析 由f (-1)=f (3)得-b 2=-1+32=1, 所以b =-2,则f (x )=x 2+bx +c 在区间(-1,1)上单调递减,所以f (-1)>f (0)>f (1),而f (0)=c ,所以f (1)<c <f (-1).5.对一切实数x ,若不等式x 4+(a -1)x 2+1≥0恒成立,则a 的取值范围是( )A .a ≥-1B .a ≥0C .a ≤3D .a ≤1 答案 A解析 令t =x 2≥0,则原不等式转化为t 2+(a -1)t +1≥0,当t ≥0时恒成立. 令f (t )=t 2+(a -1)t +1 则f (0)=1>0(1)当-a -12≤0即a ≥1时恒成立(2)当-a -12>0即a <1时.由Δ=(a -1)2-4≤0 得-1≤a ≤3 ∴-1≤a <1 综上:a ≥-1.6.若二次函数f (x )=ax 2+bx +c 满足f (x 1)=f (x 2),则f (x 1+x 2)等于________. 答案 c解析 ∵f (x 2)=f (x 1),∴x 2+x 1=-b a ,∴f (x 1+x 2)=f (-ba )=c .高中数学专题训练—变化率与导数一、选择题1.若f′(x0)=a≠0,则li mΔx→0f(x0+Δx)-f(x0)Δx=()A.a B.-aC.1a D.-1a答案 A2.(2010·衡水调研)已知函数f(x)=-cos x+ln x,则f′(1)的值为() A.sin1-1 B.1-sin1C.1+sin1 D.-1-sin1答案 C解析∵f(x)=-cos x+ln x,∴f′(x)=1x+sin x,∴f′(1)=1+sin1.3.若曲线y=f(x)在点(x0,f(x0))处的切线方程为2x+y-1=0,则()A.f′(x0)>0 B.f′(x0)<0C.f′(x0)=0 D.f′(x0)不存在答案 B解析切线方程为y=-2x+1,∴f′(x0)=-2<04.(2010·新课标全国)曲线y=x3-2x+1在点(1,0)处的切线方程为()A.y=x-1 B.y=-x+1C.y=2x-2 D.y=-2x+2答案 A解析由题可知,点(1,0)在曲线y=x3-2x+1上,求导可得y′=3x2-2,所以在点(1,0)处的切线的斜率k=1,切线过点(1,0),根据直线的点斜式可得在点(1,0)的曲线y=x3-2x+1的切线方程为y=x-1,故选A.5.f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f′(x)=g′(x),则f(x)与g(x)满足()A.f(x)=g(x)B.f(x)=g(x)=0C.f(x)-g(x)为常数函数D.f(x)+g(x)为常数函数答案 C6.(2010·全国卷Ⅱ)若曲线y=x-12在点(a,a-12)处的切线与两个坐标轴围成的三角形的面积为18,则a=() A.64 B.32C.16 D.8答案 A解析求导得y′=-12x-32(x>0),所以曲线y=x-12在点(a,a-12)处的切线l的斜率k=y′|x=a =-12a-32,由点斜式得切线l的方程为y-a-12=-12a-32(x-a),易求得直线l与x轴,y轴的截距分别为3a,32a-12,所以直线l与两个坐标轴围成的三角形面积S=12×3a×32a-12=94a12=18,解得a=64.7.(2010·辽宁卷)已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,π4)B .[π4,π2)C .(π2,3π4]D .[3π4,π) 答案 D解析 设曲线在点P 处的切线斜率为k ,则k =y ′=-4e x(1+e x )2=-4e x+1e x +2,因为e x>0,所以由均值不等式得k ≥-42e x ×1e x +2,又k <0,∴-1≤k <0,即-1≤tan α<0,所以3π4≤α<π.8.下列图象中,有一个是函数f (x )=13x 3+ax 2+(a 2-1)x +1(a ∈R ,a ≠0)的导函数f ′(x )的图象,则f (-1)=( )A.13 B .-13C.73 D .-13或53 答案 B解析 f ′(x )=x 2+2ax +a 2-1=(x +a )2-1∴y =f ′(x )是开口向上,以x =-a 为对称轴(-a ,-1)为顶点的抛物线. ∴(3)是对应y =f ′(x )的图象∵由图象知f ′(0)=0,对称轴x =-a >0. ∴a 2-1=0,a <0 ∴a =-1∴y =f (x )=13x 3-x 2+1∴f(-1)=-13选B.二、填空题9.曲线y=tan x在x=-π4处的切线方程为______答案y=2x+π2-1解析y′=(sin xcos x)′=cos2x+sin2xcos2x=1cos2x,所以在x=-π4处的斜率为2,曲线y=tan x在x=-π4处的切线方程为y=2x+π2-1.10.已知f(x)=x2+3xf′(2),则f′(2)=________.答案-2解析由题意,得f′(x)=2x+3f′(2)∴f′(2)=2×2+3f′(2),∴f′(2)=-2.11.曲线y=x3+3x2+6x-10的切线中,斜率最小的切线方程为______________.答案3x-y-11=0解析y′=3x2+6x+6=3(x+1)2+3≥3当且仅当x=-1时取等号,当x=-1时y=-14∴切线方程为y+14=3(x+1)即3x-y-11=012.已知函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=12x+2,则f(1)+f′(1)=______答案 3解析在点M(1,f(1))处的切线方程是y=12x+2,∴点M在y=12x+2上.∴f(1)=12·1+2=52.f′(1)=12,∴f(1)+f′(1)=3.13.(09·江西)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处的切线的斜率为________.答案 4解析依题意得f′(x)=g′(x)+2x,f′(1)=g′(1)+2=4.三、解答题14.(2011·济南统考)点P是曲线x2-y-2ln x=0上任意一点,求点P到直线y=x-2的最短距离.答案 2解析y=x2-2ln x=x2-ln x(x>0),y′=2x-1x,令y′=1,即2x-1x=1,解得x=1或x=-12(舍去),故过点(1,1)且斜率为1的切线为:y=x,其到直线y=x-2的距离2即为所求.15.已知曲线C:y=x3-3x2+2x,直线l:y=kx,且直线l与曲线C相切于点(x0,y0)(x0≠0),求直线l的方程及切点坐标.答案y=-14x,(32,-38)解析∵直线过原点,则k=y0x0(x0≠0).由点(x0,y0)在曲线C上,则y0=x30-3x20+2x0,∴y0x0=x2-3x0+2.又y′=3x2-6x+2,∴在(x0,y0)处曲线C的切线斜率应为k=f′(x0)=3x20-6x0+2.∴x20-3x0+2=3x20-6x0+2.整理得2x20-3x0=0.解得x0=32(x0≠0).这时,y0=-38,k=-14.因此,直线l的方程为y=-14x,切点坐标是(32,-38).1.设f0(x)=sin x,f1(x)=f′0(x),f2(x)=f′1(x),…,f n+1(x)=f′n(x),n∈N,则f2011(x)=()A.sin x B.-sin xC.cos x D.-cos x答案 D解析f1(x)=(sin x)′=cos x,f2(x)=(cos x)′=-sin x,f3(x)=(-sin x)′=-cos x,f4(x)=(-cos x)′=sin x,f5(x)=(sin x)′=f1(x),f6(x)=f2(x),…,f n+4(x)=f n(x),可知周期为4.∴f2011(x)=f3(x)=-cos x.2.已知曲线S:y=3x-x3及点P(2,2),则过点P可向S引切线,其切线条数为()A.0 B.1C.2 D.3答案 D解析显然P不在S上,设切点为(x0,y0),由y′=3-3x2,得y′|x=x0=3-3x20切线方程为:y-(3x0-x30)=(3-3x20)(x-x0)∵P(2,2)在切线上∴2-(3x0-x30)=(3-3x20)(2-x0)即x30-3x20+2=0(x0-1)(x20-2x0-2)=0由x0-1=0得x0=1由x20-2x0-2=0得x0=1±3.∵有三个切点,∴由P向S作切线可以作3条.3.(09·安徽)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈[0,5π12],则导数f ′(1)的取值范围是________.答案 [2,2]解析 ∵f ′(x )=sin θ·x 2+3cos θ·x ,∴f ′(1)=sin θ+3cos θ=2sin(θ+π3).∵θ∈[0,5π12],∴θ+π3∈[π3,3π4],∴sin(θ+π3)∈[22,1].4.曲线y =x (x +1)(2-x )有两条平行于y =x 的切线,则二切线之间距离为________.答案 16272解析 y =x (x +1)(2-x )=-x 3+x 2+2xy ′=-3x 2+2x +2,令-3x 2+2x +2=1得x 1=1或x 2=-13∴两个切点分别为(1,2)和(-13,-1427)切线方程为x -y +1=0和x -y -527=0d =|1+527|2=162275.(2010·山东卷,文)已知函数f (x )=ln x -ax +1-ax -1(a ∈R ). 当a =-1时,求曲线y =f (x )在点(2,f (2))处的切线方程.解析 当a =-1时,f (x )=ln x +x +2x -1,x ∈(0,+∞).所以f ′(x )=x 2+x -2x 2,x ∈(0,+∞), 因此f ′(2)=1,即曲线y =f (x )在点(2,f (2))处的切线斜率为1. 又f (2)=ln 2+2,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -(ln 2+2)=x -2, 即x -y +ln 2=0.1.(2011·海淀区)设函数f (x )是R 上以5为周期的可导偶函数,则曲线y =f (x )在x =5处的切线的斜率为________.答案 0解析 由题意得f ′(5)=lim Δx →0 f (5+Δx )-f (5)Δx =lim Δx →0 f (Δx )-f (0)Δx=f ′(0),且f ′(0)=lim Δx →0 f (Δx )-f (0)Δx =-lim -Δx →0 f (0-Δx )-f (0)-Δx=-f ′(0),f ′(0)=0, 因此f ′(5)=0.高中数学专题训练—函数的单调性和最值一、选择题1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先减后增 D .先增后减 答案 C解析 对称轴为x =3,函数在(2,3]上为减函数,在[3,4)上为增函数.2.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),都有f (x 2)-f (x 1)x 2-x 1<0”的是( )A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1) 答案 A解析 满足f (x 2)-f (x 1)x 2-x 1<0其实就是f (x )在(0,+∞)上为减函数,故选A.3.若f (x )=x 2+2(a -1)x +2在区间(-∞,4)上是减函数,那么实数a 的取值范围是( )A .a <-3B .a ≤-3C .a >-3D .a ≥-3 答案 B解析 对称轴x =1-a ≥4.∴a ≤-3.4.下列函数中既是偶函数,又是区间[-1,0]上的减函数的是( ) A .y =cos x B .y =-|x -1|C .y =ln 2-x2+xD .y =e x +e -x答案 D5.函数y =log a (x 2+2x -3),当x =2时,y >0,则此函数的单调递减区间是( )A .(-∞,-3)B .(1,+∞)C .(-∞,-1)D .(-1,+∞) 答案 A解析 当x =2时,y =log a (22+2·2-3) ∴y =log a 5>0,∴a >1 由复合函数单调性知单减区间须满足⎩⎨⎧x 2+2x -3>0x <-1,解之得x <-3.6.已知奇函数f (x )的定义域为(-∞,0)∪(0,+∞),且不等式f (x 1)-f (x 2)x 1-x 2>0对任意两个不相等的正实数x 1、x 2都成立.在下列不等式中,正确的是( )A .f (-5)>f (3)B .f (-5)<f (3)C .f (-3)>f (-5)D .f (-3)<f (-5) 答案 C解析 由f (x 1)-f (x 2)x 1-x 2>0对任意两个不相等的正实数x 1、x 2都成立,可知,f (x )在(0,+∞)上为增函数,又f (x )为奇函数,故f (x )在(-∞,0)上也为增函数,故选C.7.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的一个递增区间是( ) A .(3,8) B .(-7,-2) C .(-2,-3) D .(0,5) 答案 B解析 令-2<x +5<3,得:-7<x <-2.8.(09·天津)已知函数f (x )=⎩⎨⎧x 2+4x ,x ≥0,4x -x 2,x <0.若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞) 答案 C解析 y =x 2+4x =(x +2)2-4在[0,+∞)上单调递增;y =-x 2+4x =-(x -2)2+4在(-∞,0)上单调递增.又x 2+4x -(4x -x 2)=2x 2≥0,∴f (2-a 2)>f (a )⇒2-a 2>a ⇒a 2+a -2<0⇒-2<a <1,故选C.9.(2010·北京卷)给定函数①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1,其中在区间(0,1)上单调递减的函数的序号是( ) A .①② B .②③ C .③④ D .①④ 答案 B解析 ①是幂函数,其在(0,+∞)上为增函数,故此项不符合题意;②中的函数是由函数y =log 12x 向左平移1个单位而得到的,因原函数在(0,+∞)上为减函数,故此项符合题意;③中的函数图象是函数y =x -1的图象保留x 轴上方的部分,下方的图象翻折到x 轴上方而得到的,由其图象可知函数符合题意;④中的函数为指数函数,其底数大于1,故其在R 上单调递增,不符合题意,综上可知选择B.二、填空题10.给出下列命题①y =1x 在定义域内为减函数;②y =(x -1)2在(0,+∞)上是增函数;③y =-1x 在(-∞,0)上为增函数;④y =kx 不是增函数就是减函数. 其中错误命题的个数有________. 答案 3解析 ①②④错误,其中④中若k =0,则命题不成立. 11.函数f (x )=|log a x |(0<a <1)的单调递增区间是________. 答案 [1,+∞) 解析 函数图象如图12.函数f (x )=-x 2+|x |的递减区间是________.答案 ⎣⎢⎡⎦⎥⎤-12,0与⎣⎢⎡⎭⎪⎫12,+∞解析 数形结合13.在给出的下列4个条件中, ①⎩⎨⎧ 0<a <1x ∈(-∞,0) ②⎩⎨⎧ 0<a <1x ∈(0,+∞) ③⎩⎨⎧ a >1a ∈(-∞,0) ④⎩⎨⎧a >1x ∈(0,+∞)能使函数y =log a 1x 2为单调递减函数的是________. (把你认为正确的条件编号都填上). 答案 ①④解析 利用复合函数的性质,①④正确.14.若奇函数f (x )在(-∞,0]上单调递减,则不等式f (lg x )+f (1)>0的解集是________.答案 (0,110)解析 因为f (x )为奇函数,所以f (-x )=-f (x ),又因为f (x )在(-∞,0]上单调递减,所以f (x )在[0,+∞)上也为单调递减函数,所以函数f (x )在R 上为单调递减函数.不等式f(lg x)+f(1)>0可化为f(lg x)>-f(1)=f(-1),所以lg x<-1,解得0<x<1 10.(2010·深圳)若函数h(x)=2x-kx+k3在(1,+∞)上是增函数,则实数k的取值范围是________.答案[-2,+∞)解析由h′(x)=2+kx2≥0,得k≥-2x2,由于-2x2在[1,+∞)内的最大值为-2,于是,实数k的取值范围是[-2,+∞).三、解答题15.(2011·惠州调研)已知f(x)=xx-a(x≠a).(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.答案(1)略(2)0<a≤1解析(1)证明任设x1<x2<-2,则f(x1)-f(x2)=x1x1+2-x2x2+2=2(x1-x2)(x1+2)(x2+2).∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)内单调递增.(2)解任设1<x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a(x2-x1)(x1-a)(x2-a).∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立,∴a≤1.综上所述知0<a≤1.16.函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.答案(1)略(2){m|-1<m<4 3}解(1)证明:设x1,x2∈R,且x1<x2,则x2-x1>0,∴f(x2-x1)>1. f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1>0.∴f(x2)>f(x1).即f(x)是R上的增函数.(2)∵f(4)=f(2+2)=f(2)+f(2)-1=5,∴f(2)=3,∴原不等式可化为f(3m2-m-2)<f(2),∵f(x)是R上的增函数,∴3m2-m-2<2,解得-1<m<4 3,故m的解集为{m|-1<m<4 3}.1.函数f (x )=log 0.5(x +1)+log 0.5(x -3)的单调递减区间是( )A .(3,+∞)B .(1,+∞)C .(-∞,1)D .(-∞,-1)答案 A解析 由已知易得⎩⎨⎧x +1>0,x -3>0,即x >3,又0<0.5<1,∴f (x )在(3,+∞)上单调递减.2.设函数f (x )=2x +1x -1(x <0),则f (x )( )A .有最大值B .有最小值C .是增函数D .是减函数答案 A解析 当x <0时,-x >0,-(2x +1x )=(-2x )+(-1x )≥2(-2x )·(-1x )=22,即2x +1x ≤-22,2x +1x -1≤-22-1,即f (x )≤-22-1,当且仅当-2x =-1x ,即x =-22时取等号,此时函数f (x )有最大值,选A.3.已知f (x )为R 上的减函数,则满足f (|1x |)<f (1)的实数x 的取值范围是( )A .(-1,1)B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)答案 C解析 由已知得:|1x |>1⇒-1<x <0或0<x <1,故选C.4.函数f (x )=x 2x -1(x ∈R 且x ≠1)的单调增区间是________.答案 (-∞,0)和(2,+∞)解析 将原函数y =x 2x -1变形为y =(x -1)+1x -1+2 显然x -1在区间(-∞,-1)和(1,+∞)内取值时,函数单调递增,即得x 在区间(-∞,0)和(2,+∞)内取值时,函数单调递增.5.(2011·合肥)函数f (x )=⎩⎨⎧ ax 2+1,x ≥0(a 2-1)e ax ,x <0在(-∞,+∞)上单调,则a 的取值范围是________.答案 (-∞,- 2 ]∪(1, 2 ]解析 因为f (x )为单调函数,若a >0,则当x ≥0时,f (x )=ax 2+1是单调递增函数,故当x <0时,f (x )也是单调递增函数,又a >0时,e ax 为单调递增函数,所以a 2-1>0,又f (x )在(-∞,+∞)上单调,故还应满足(a 2-1)·e 0≤a ×02+1,即需满足⎩⎨⎧ a >0a 2-1>0⇒1<a ≤2a 2-1≤1同理,当a <0时,满足⎩⎨⎧ a<0a 2-1>0⇒a ≤-2.a 2-1≥1综上得1<a ≤2或a ≤- 2.。

相关文档
最新文档