北京理工大学微波实验报告——无线通信系统
北理工微波实验报告总结

实验一实验一 一般微波测试系统的调试一般微波测试系统的调试一、实验目的1.了解一般微波测试系统的组成及其主要元、了解一般微波测试系统的组成及其主要元、器件的作用,器件的作用,初步掌握它们的调整方法。
2. 掌握频率、波导波长和驻波比的测量方法。
掌握频率、波导波长和驻波比的测量方法。
3. 掌握晶体校正曲线的绘制方法。
掌握晶体校正曲线的绘制方法。
二、实验装置与实验原理常用的一般微波测试系统如1-1所示(示意图)。
微波信号源隔离器可变衰减器频率计精密衰减器测量线终端负载测量放大器图1-1本实验是由矩形波导(3厘米波段,10TE 模)组成的微波测试系统。
其中,微波信号源(固态源或反射式速调管振荡器)产生一个受到(方波)(固态源或反射式速调管振荡器)产生一个受到(方波)调制的微波高频振荡,其可调频率调制的微波高频振荡,其可调频率范围约为7.5~12.4GHz 。
隔离器的构成是:在一小段波导内放有一个表面涂有吸收材料的铁氧体薄片,并外加一个恒定磁场使之磁化,从而对不同方向传输的微波信号产生了不同的磁导率,导致向正方向(终端负载方向)传播的波衰减很小,而反向(向信号源)传播的波则衰减很大,此即所谓的隔离作用,此即所谓的隔离作用,它使信号源能较稳定地工作。
它使信号源能较稳定地工作。
它使信号源能较稳定地工作。
频率计实际上就是一个可调频率计实际上就是一个可调的圆柱形谐振腔,其底部有孔(或缝隙)的圆柱形谐振腔,其底部有孔(或缝隙)与波导相通。
在失谐状态下它从波导内吸收的能量与波导相通。
在失谐状态下它从波导内吸收的能量很小,对系统影响不大;当调到与微波信号源地频率一致(谐振)时,腔中的场最强,从波导(主传输线)(主传输线)内吸收的能量也较多,内吸收的能量也较多,从而使测量放大器的指示数从某一值突然降到某一最低值,如图1-2(a)所示。
此时即可从频率计的刻度上读出信号源的频率。
从图1-1可知,腔与波导(主传输线)只有一个耦合元件(孔),形成主传输线的分路,这种连接方式称为吸收式(或称反应式)连接方法。
通信工程专业微波站实习报告

通信工程专业微波站实习报告一、实习背景和目的作为通信工程专业的学生,我在大三暑期选择了在一家通信设备公司进行为期一个月的微波站实习。
本次实习旨在通过参与微波站的建设和维护工作,深入了解微波通信系统的原理和技术,提升自己在通信领域的实践能力,为未来的就业和学习打下基础。
二、实习内容1. 熟悉微波通信系统的基本原理和组成部分,包括天线、馈线、收发设备等。
2. 学习使用微波通信系统的相关设备和工具,如频谱分析仪、天线调试仪等。
3. 参与微波站的布局和安装工作,包括天线的架设和馈线的铺设。
4. 学习进行微波天线的调试和优化,通过信号强度和误码率等指标来评估系统的性能。
5. 参与微波通信系统的维护工作,如设备故障的排查和修复。
三、实习收获和体会1. 了解了微波通信系统的基本原理和组成部分,对通信技术有了更深入的认识。
通过实践操作,对理论知识有了更深刻的理解和掌握。
2. 学会了使用微波通信系统的相关设备和工具,提高了自己的实践能力和操作技巧。
3. 实践中遇到了一些问题和挑战,例如布线的困难、设备故障的排查。
通过与同事的讨论和学习,我逐渐克服了这些困难,并找到解决问题的方法。
4. 在调试和优化微波天线的过程中,我学会了如何通过调整天线的方向和倾斜角度来优化信号传输质量。
同时,通过频谱分析仪和误码率测试仪等工具,我也学会了如何评估系统的性能。
5. 在维护微波通信系统的过程中,我了解了故障排查的基本方法和流程,例如使用示波器和多用表进行电路故障的定位和维修。
通过这次实习,我不仅增加了自己的专业知识和实践经验,还培养了团队合作精神和解决问题的能力。
在实践中我懂得了理论知识与实际操作的结合,只有将两者结合起来才能真正理解和掌握这门学科。
四、实习总结通过此次微波站实习,我对通信工程这个专业有了更加深入的了解,并在实践中提升了自己的专业能力和操作技巧。
通过实践,我实现了理论与实践的结合,加深了对通信工程的理解。
同时,我也发现了自己在专业知识和技能方面的不足之处,这给了我后续学习和提升的方向。
北邮微波技术实验报告

一、实验目的1. 理解微波技术的基本原理,掌握微波的基本特性。
2. 学习微波元件和器件的基本功能及使用方法。
3. 通过实验操作,验证微波技术在实际应用中的效果。
二、实验原理微波技术是利用频率在300MHz至300GHz之间的电磁波进行信息传输、处理和接收的技术。
本实验主要涉及微波的基本特性、微波元件和器件的应用以及微波电路的搭建。
三、实验仪器与设备1. 微波暗室2. 微波信号源3. 微波功率计4. 微波定向耦合器5. 微波移相器6. 微波衰减器7. 微波测量线8. 信号分析仪9. 示波器四、实验内容1. 微波基本特性实验(1)测量微波传播速度:通过测量微波信号在实验装置中的传播时间,计算微波在空气中的传播速度。
(2)测量微波衰减:利用微波信号源和功率计,测量微波在传输过程中不同位置的衰减值。
(3)测量微波反射系数:通过测量微波信号在实验装置中的反射强度,计算微波的反射系数。
2. 微波元件和器件应用实验(1)微波移相器:通过调整移相器的相位,观察微波信号在输出端的变化。
(2)微波衰减器:通过调整衰减器的衰减量,观察微波信号在输出端的变化。
(3)微波定向耦合器:通过观察微波信号在定向耦合器两端的输出,验证其功能。
3. 微波电路搭建实验(1)搭建微波滤波器:利用微波元件和器件,搭建一个微波滤波器,并测试其性能。
(2)搭建微波天线:利用微波元件和器件,搭建一个微波天线,并测试其增益。
五、实验步骤1. 微波基本特性实验(1)连接实验装置,确保连接正确。
(2)开启微波信号源,设置合适的频率和功率。
(3)测量微波传播速度、衰减和反射系数。
2. 微波元件和器件应用实验(1)连接微波移相器、衰减器和定向耦合器。
(2)调整移相器、衰减器和定向耦合器的参数,观察微波信号在输出端的变化。
3. 微波电路搭建实验(1)根据设计要求,搭建微波滤波器和天线。
(2)测试微波滤波器和天线的性能。
六、实验结果与分析1. 微波基本特性实验(1)微波传播速度:根据实验数据,计算微波在空气中的传播速度,并与理论值进行比较。
微波技术实验报告北邮

微波技术实验报告北邮一、实验目的本实验旨在使学生熟悉微波技术的基本理论,掌握微波器件的测量方法,并通过实际操作加深对微波信号传输、调制和解调等过程的理解。
通过实验,学生能够培养分析问题和解决问题的能力,为将来在微波通信领域的工作打下坚实的基础。
二、实验原理微波技术是利用波长在1毫米至1米之间的电磁波进行信息传输的技术。
微波具有较高的频率和较短的波长,因此能够实现高速数据传输。
在实验中,我们主要研究微波信号的产生、传输、调制和解调等基本过程。
三、实验设备1. 微波信号发生器:用于产生稳定的微波信号。
2. 微波传输线:用于传输微波信号。
3. 微波调制器:用于对微波信号进行调制,实现信号的传输。
4. 微波解调器:用于将调制后的信号还原为原始信号。
5. 微波测量仪器:包括功率计、频率计等,用于测量微波信号的参数。
四、实验内容1. 微波信号的产生与测量:通过微波信号发生器产生微波信号,并使用频率计测量信号的频率。
2. 微波信号的传输:利用微波传输线将信号从一个点传输到另一个点,并观察信号的衰减情况。
3. 微波信号的调制与解调:使用调制器对微波信号进行调制,然后通过解调器将调制后的信号还原。
4. 微波信号的传输特性分析:分析不同条件下微波信号的传输特性,如衰减、反射、折射等。
五、实验步骤1. 打开微波信号发生器,设置合适的频率和功率。
2. 将微波信号发生器的输出端连接到微波传输线的输入端。
3. 测量传输线上的信号强度,并记录数据。
4. 将调制器连接到传输线的输出端,对信号进行调制。
5. 将调制后的信号通过解调器还原,并测量解调后的信号参数。
6. 分析信号在不同传输条件下的特性,如衰减系数、反射率等。
六、实验结果通过本次实验,我们成功地产生了稳定的微波信号,并测量了其频率和功率。
在传输过程中,我们观察到了信号的衰减现象,并记录了不同传输条件下的信号强度。
通过调制和解调过程,我们验证了微波信号的可调制性和可解调性。
无线通信实验报告

无线通信实验报告无线通信实验报告一、引言无线通信是现代社会中不可或缺的一部分,它以无线电波为媒介,使得信息可以在无线环境中传递。
在本次实验中,我们将探索无线通信的基本原理和技术。
本实验分为三个部分:无线信号传输、信号调制与解调以及信号传输中的噪声。
二、无线信号传输在无线通信中,信号的传输是关键环节。
我们使用了一对无线电发射器和接收器进行实验。
首先,我们将发射器和接收器分别连接到电源,并调整频率使其匹配。
然后,我们通过发射器发送一个特定的信号,接收器将接收到的信号传递给示波器进行观察。
实验结果显示,无线信号的传输受到环境的影响。
在开放空间中,信号的传输效果最好,而在有障碍物的环境中,信号会受到衰减和多径效应的影响,导致信号质量下降。
三、信号调制与解调信号调制是将原始信号转换为适合无线传输的形式,而解调则是将接收到的信号还原为原始信号。
在本实验中,我们使用了调频(FM)和调幅(AM)两种常见的调制方式。
通过调频调制,我们可以将音频信号转换为无线电波。
实验中,我们使用示波器观察到调频信号的频谱特征,发现调频信号的频率随着音频信号的变化而改变。
而调幅调制则是通过改变信号的幅度来传输信息。
在解调过程中,我们使用了相应的解调器将接收到的信号还原为原始信号。
实验结果表明,解调过程中会存在一定的失真,尤其是在信号质量较差的情况下。
四、信号传输中的噪声在无线通信中,噪声是无法避免的。
噪声会对信号的传输和接收造成干扰,降低通信质量。
在本实验中,我们使用了噪声发生器模拟了不同强度的噪声环境。
实验结果显示,噪声的强度越大,信号的质量越差。
噪声会使得信号的幅度和频率发生变化,导致信息的丢失和失真。
因此,在无线通信中,我们需要采取一定的措施来降低噪声的影响,如增加信号的功率或使用编码技术。
五、结论通过本次实验,我们深入了解了无线通信的基本原理和技术。
我们了解到信号的传输受到环境和噪声的影响,需要采取相应的措施来提高通信质量。
北邮微波实验报告

北邮微波实验报告北邮微波实验报告引言:微波技术是现代通信领域的重要组成部分,其在无线通信、雷达探测、卫星通信等方面发挥着重要作用。
本次实验旨在通过对微波的实际操作,深入了解微波的特性和应用。
一、实验目的本次实验的主要目的是:1. 了解微波的基本特性和传输原理;2. 掌握微波实验仪器的使用方法;3. 学习微波的传输线特性及其在微波系统中的应用。
二、实验原理微波是指频率在300MHz至300GHz之间的电磁波,具有较高的频率和较短的波长。
微波的传输线主要包括同轴电缆和微带线两种,其特性阻抗和传输损耗与频率、材料和结构参数有关。
三、实验步骤1. 实验仪器准备:将微波发生器、功率计、频谱分析仪等仪器连接好,确保仪器间的连接正确可靠。
2. 测量微波信号的功率:使用功率计对微波信号的功率进行测量,记录下测量结果。
3. 测量微波信号的频谱:使用频谱分析仪对微波信号的频谱进行测量,观察并记录下频谱特性。
4. 测量微波传输线的特性阻抗:将微波传输线连接好,通过测量反射系数和传输系数等参数,计算出传输线的特性阻抗。
5. 测量微波传输线的传输损耗:通过测量微波信号在传输线中的衰减量,计算出传输线的传输损耗。
6. 分析实验结果:根据实验数据,分析微波信号的功率、频谱特性以及传输线的特性阻抗和传输损耗等。
四、实验结果与分析通过实验测量,我们得到了微波信号的功率、频谱特性以及传输线的特性阻抗和传输损耗等数据。
根据实验结果可以得出以下结论:1. 微波信号的功率与输入功率之间存在一定的关系,可以通过功率计进行测量和调整。
2. 微波信号的频谱特性与信号的频率和幅度有关,可以通过频谱分析仪进行测量和分析。
3. 微波传输线的特性阻抗与线路结构和材料参数有关,可以通过测量反射系数和传输系数等参数进行计算。
4. 微波传输线的传输损耗与线路长度和材料损耗有关,可以通过测量微波信号在传输线中的衰减量进行计算。
五、实验总结通过本次实验,我们深入了解了微波的特性和应用,并掌握了微波实验仪器的使用方法。
无线通信系统实验实验报告

无线通信系统实验实验报告一、实验目的本次无线通信系统实验的主要目的是深入了解无线通信的基本原理和技术,通过实际操作和测量,掌握无线信号的传输、调制解调、编码解码等关键环节,提高对无线通信系统的认识和实践能力。
二、实验设备本次实验所使用的设备包括:信号发生器、频谱分析仪、无线收发模块、示波器、计算机等。
三、实验原理(一)无线信号的传输无线通信是通过电磁波在空间中传播来实现信息传递的。
电磁波的频率和波长决定了其传播特性和适用场景。
(二)调制解调调制是将原始信号加载到高频载波上,以便在无线信道中传输。
常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)等。
解调则是从接收到的已调信号中恢复出原始信号。
(三)编码解码为了提高通信的可靠性和有效性,通常需要对原始数据进行编码处理,如纠错编码、压缩编码等。
在接收端,再进行相应的解码操作。
四、实验内容与步骤(一)无线信号的发射与接收1、设置信号发生器产生特定频率和幅度的正弦波信号。
2、将该信号输入到无线发射模块,通过天线发射出去。
3、使用无线接收模块接收信号,并通过示波器观察接收到的信号波形。
(二)调制实验1、分别进行 AM、FM 和 PM 调制实验,观察调制前后信号的频谱变化。
2、调整调制参数,如调制深度、频率偏移等,分析其对调制效果的影响。
(三)编码解码实验1、采用某种纠错编码算法对原始数据进行编码。
2、在接收端进行解码,并计算误码率,评估编码的性能。
五、实验数据记录与分析(一)无线信号发射与接收记录发射信号和接收信号的频率、幅度等参数,分析信号在传输过程中的衰减和失真情况。
(二)调制实验绘制调制前后信号的频谱图,对比不同调制方式下频谱的特点,以及调制参数对频谱的影响。
(三)编码解码实验记录不同编码方式下的误码率数据,分析编码的纠错能力和效率。
六、实验中遇到的问题及解决方法(一)信号干扰在实验过程中,由于周围环境中的其他无线信号干扰,导致接收信号不稳定。
无线通信实验报告

无线通信实验报告《无线通信实验报告》无线通信技术是当今社会中不可或缺的一部分,它的发展不仅改变了人们的生活方式,也推动了整个社会的进步。
为了更好地理解和掌握无线通信技术,我们进行了一次无线通信实验,以下是实验报告。
实验目的:通过实验,了解无线通信技术的基本原理和应用,掌握无线通信系统的搭建和调试方法,提高对无线通信技术的理论和实践操作能力。
实验内容:1. 了解无线通信技术的基本原理和应用;2. 学习无线通信系统的搭建和调试方法;3. 进行无线通信系统的实际操作,观察和记录实验现象;4. 分析实验结果,总结无线通信技术的特点和应用场景。
实验步骤:1. 阅读相关无线通信技术的理论知识,了解无线通信系统的基本原理和应用;2. 按照实验指导书的要求,搭建无线通信系统实验平台;3. 进行无线通信系统的调试和操作,观察和记录实验现象;4. 分析实验结果,总结无线通信技术的特点和应用场景。
实验结果:通过实验,我们深入了解了无线通信技术的基本原理和应用,掌握了无线通信系统的搭建和调试方法,提高了对无线通信技术的理论和实践操作能力。
同时,我们也发现无线通信技术具有广泛的应用场景,可以在移动通信、物联网、航空航天等领域发挥重要作用。
结论:无线通信技术是一项重要的技术,它的发展不仅改变了人们的生活方式,也推动了整个社会的进步。
通过本次实验,我们更加深入地了解了无线通信技术的基本原理和应用,掌握了无线通信系统的搭建和调试方法,提高了对无线通信技术的理论和实践操作能力。
希望通过不断的学习和实践,我们能够更好地应用无线通信技术,为社会的发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一无线通信系统(图像传输)实验
一、实验目的
1、掌握无线通信(图像传输)收发系统的工作原理;
2、了解各电路模块在系统中的作用。
二、实验内容
a)测试发射机的工作状态;
b)测试接收机的工作状态;
c)测试图像传输系统的工作状态;
d)通过改变系统内部连接方式造成对图像信号质量的影响来了解各电路模块的作用。
三、无线图像传输系统的基本工作原理
发射设备和接收设备是通信设备的重要组成部分。
其作用是将已调波经过某些处理(如放大、变频)之后,送给天馈系统,发向对方或转发中继站;接收系统再将空间传播的信号通过天线接收进来,经过某些处理(如放大、变频)之后,送到后级进行解调、编码等。
还原出基带信息送给用户终端。
为了使发射系统和接收系统同时工作,并且了解各电路模块在系统中的作用,通过实验箱中的天线模块和摄像头及显示器,使得发射和接收系统自闭环,通过图像质量来验证通信系统的工作状态,及各个电路模块的作用和连接变化时对通信或图像质量的影响。
以原理框图为例,简单介绍一下各部分的功能与作用。
摄像头采集的信号送入调制器进频率调制,再经过一次变频后、滤波(滤去变频产生的谐波、杂波等)、放大、通过天线发射出去。
经过空间传播,接收天线将信号接收进来,再经过低噪声放大、滤波(滤去空间同时接收到的其它杂波)、下变频到480MHz,再经中频滤波,滤去谐波和杂波、经视频解调器,解调后输出到显示器还原图像信号。
四、实验仪器
信号源、频谱分析仪等。
五.测试方法与实验步骤
(一)发射机测试
图1原理框图
基带信号送入调制器,进行调制(调幅或调频等调制),调制后根据频率要求进行上变频,变换到所需微波频率,并应有一定带宽,然后功率放大,通过天线发射或其它方式传播。
每次变频后,会相应产生谐波和杂波,一般变频后加响应频段的滤波器,以滤除谐波和杂波。
保证发射信号的质量或频率稳定度。
另外调制器或变频器本振信号的稳定度也直接影响发射信号的好坏,因而,对本振信号的
质量也有严格的要求。
频率稳定度是指:在规定的时间间隔内,频率准确度变化的最大值。
变频器所需的本振源根据需要可选用VCO、DRO、PLL等。
a)测试发射系统功率:按照图2连接电路。
图 2 发射机框图
设信号源频率为480MHz,信号源输出功率为0dBm。
测试发射机输出功率;再逐渐增加信号输入功率,观察发射机输出功率直至达到饱和。
b) 测试发射频率稳定度:以上连接不变,设定信号源频率为480MHz,信号源输出功率仍为0dBm。
通过频谱分析仪观察 2.2GHz射频输出信号的相位噪声,分别设置频谱分析仪SPAN为1MHz和100KHz,可分别观察到偏离载频100KHz和10KHz的单边带相位噪声谱密度,判断发射信号的短期频率稳定度。
图3 测试方框图
c)测试发射信号的带外谐波、杂波抑制。
以上连接不变,设定信号源频率为480MHz,信号源输出功率仍为0dBm,通过频谱分析仪观察2.2GHz射频输出信号的频谱,设置频谱分析仪SPAN为5GHz,此时观察频谱输出的谐波、杂波等,与主频相比较,其差值为抑制度。
(二)接收机测试
接收系统或接收设备是通信设备的重要组成部分,其作用是:通过天线接收通信对方或经中继转发的射频信号,经过某些处理(如放大、变频)之后,送到后级进行解调、编码等,还原出基带信息送给用户终端。
现代无线接收系统一般都采用超外差式结构。
超外差式结构的主要特征是在电路构成上具有变频器和中频放大器。
图4接收机方框图
a)测试接收系统增益:按照图4连接电路,在低噪声放大器输入端连接信号源,中频放大器输出端接频谱分析仪。
设定信号源频率为2.2GHz;输出功率为-60dBm。
中频放大器输出频率为480MHz,此时频谱分析仪显示幅度与-60dBm差值为接收链路总增益。
b)测试接收机灵敏度:图4连接不变。
改变信号源输出功率大小,可从-60dBm继续往小变化,在频谱分析仪上观察输出信号频谱。
当频谱分析仪RBW设为10MHz,频谱分析仪显示的频谱与频谱分析
仪基底噪声差值为10dB时,这时信号源输出功率幅度为接收机最小接收灵敏度。
c)测试接收机动态范围:图4连接不变。
设定信号源输出功率为接收机最小接收灵敏度,改变信号源输出功率大小,不断增加信号源输出功率,观察输出幅度变化。
当输入幅度增加,输出幅度也增加,但增加量小于1 dB时,为接收机线性动态范围;当输入幅度变化,输出幅度不变化时,为接收机动态范围。
d)测试接收机噪声系数:在微波滤波器输入端连接噪声系数测试仪的噪声源,视频放大器输出端接噪声系数测试仪。
见图5。
应按照仪器使用说明进行被测系统的测试。
图5 接收机噪声测试
(三)系统测试
发射机和接收机结构不变的情况下,接入微波发射、接收天线,再外加摄像头和显示器,即将发射和接收系统通过天线、摄像头、显示器自闭环来测试收/发系统的工作状态。
a)传输图像实验。
通过摄像头和显示器验证接收和发射系统的工作状态。
发射系统的衰减器的输入端接摄像头;接收系统中频放大器输出端接解调器输入端,解调器输出端接显示器。
连接好后,给各电路模块及显示器、摄像头加电,两天线距离40公分左右,并且两只天线的极化方式要一致。
这时显示器上应显示有摄像头摄到的图像。
b)收发天线相对位置发生变化,极化状态发生变化,观察图像质量的好坏。
通过这个实验可以非常
直观地了解发射和接收的工作状态。
c)调整发射机的系统参数如降低输出功率等,观察图像质量的变化;
d)调整接收机的系统参数如在低噪声电路前加衰减器,观察图像质量的变化,。
六、实验结果
1.发射机测试
(1)输入信号:480MHz,0dBm
(2)输出信号:0.6dBm
图像:
(4)相位噪声
①100KHz的时候
N-A=38dB,C=2.5dB,B=30KHz
N0=N-A+C-10lgB=38+2.5-10lg(3×104)=-4.27dB
②1MHz的时候
N-A=-40dB,C=2.5dB,B=300KHz
N0=N-A+C-10lgB=-40+2.5-10lg(3×105)=-92.27dB
(5)中央滤波器,衰减为2dB
上变频器损耗6dB
射频带通滤波器5~7dB衰减
射频放大器15~16dB递增
求整个电路的增益
-2-6-5+16=3dB
2. 系统测试
E面发射,接收E面清晰,H面模糊。
七、思考题
1、详细描述图像传输系统中发射机的各个组成部分及其功能。
答:摄像头采集的信号送入调制器进行频率调制,经过一次变频后,滤波,放大,通过天线发射出去。
经过空间传播接受天线将信号接受进来,经过低噪放大,滤波,下变频到480MHz,再经中频滤波,滤去谐波和杂波,经视频解调器解调输出到显示器还原图像信号。
2、该发射机的输入功率、接收机增益与接收机灵敏度?
3、若在接收机的低噪声放大器前加入衰减器,会明显改变图像质量,而在中频放大器前加入衰减器,图像质量变差程度有限,为什么?
答:低噪声放大器位于放大链路输入端,针对给定的增益要求,引入尽可能小的内部噪声,并在输出端获得最大可能的信噪比而设计的放大器。
而减小其前端输入功率会出现门限效应使得信号被淹没在噪声中,所以对图像质量影响较大。
而中频放大器前的图像信号已经经过了射频、中频两级滤波,这时加入衰减器只是对其功率发生改变,其质量变差程度有限。
4、说明有哪些内部因素会影响本系统的图像质量?
答:1)内部电路存在着传输损耗。
2)各端口之前非理想匹配,对信号有衰减和一些不可预期的叠加。
3)滤波器非理想,其特性将对信号产生影响。
4)输入信号超出了接收机的动态范围,放大器工作在非线性。
5)系统内部存在噪声。
6)解调器能否充分解调。
7)发射器的输出功率、衰减器的衰减比。
5、举例说明有哪些外部因素会影响本系统的图像质量?可能通过什么途径能够解决。
答:1)无线通信中最容易受外部环境因素制约,例如传播过程中信号损耗,以及多径效应和衰减也会引起接收机接收错误图像数据。
传播损耗包括自由空间损耗和其他损耗,其他主要的损耗包括:大气、降雨、云、雾损耗;树木遮挡损耗;建筑物等遮挡物的损耗。
解决方法:设计一些纠错方法,如汉明码,循环码一类的,总而言之应用一个无线通信协议应该能够有效检出并纠正数据的错误。
2)可能接收到其他实验产生的射频信号干扰测试,比如测试点旁边有类似的试验进行,而两者之间有没有有效的屏障。
解决方法:搭载不同的载频,或者采取不同的调制方式。
3)改变了天线发射接收的相对位置,极化状态变化,甚至正交。
解决方法:旋转天线使正对。