第二章系统模型与系统分析

合集下载

系统分析第二章系统分析ppt

系统分析第二章系统分析ppt

系统分析第二章系统分析ppt一、模型与模型化简介模型化模型化就是为描述系统的构成和行为,对实体系统的各种因素进行适当筛选,用一定方式(数学、图像等)表达系统实体的方法。

------构模的过程3.模型(化)的地位与作用3.模型(化)的地位与作用地位:4.模型的分类概念模型:通过人们的经验、知识和直觉形成的。

形式上分为思维、字句或描述的。

5.建立模型的一般原则①建立方框图6.建模的基本步骤①明确建模的目的和要求;②对系统进行一般语言描述;③弄清系统中的主要因素及其相互关系;④确定模型的结构;⑤估计模型的参数;⑥实验研究;⑦必要修改。

7.模型化的基本方法(4)老手法:2、系统结构的表达方式二元关系的性质二元关系的集合系统结构的表达方式有向连接图:图的基本的矩阵表示,描述图中各节点两两间邻接的关系,记作A。

矩阵A的元素aij定义:汇点:矩阵A中元素全为零的行所对应的节点。

在可达矩阵中存在两个节点相应的行、列元素值分别完全相同,则说明这两个节点构成回路集,只要选择其中的一个节点即可代表回路集中的其他节点,这样就可简化可达矩阵,称为缩减可达矩阵,记作Mˊ。

(1)区域分解:将系统元素分成相互独立的子系统(2)级位分解:对各子系统元素进行分级(3)提取骨架矩阵(4)画有向图将M分级重新排列实现某一可达矩阵M、具有最小二元关系个数(“1”元素最少)的邻接矩阵叫做M的最小实现二元关系矩阵,即骨架矩阵,记作A’。

骨架矩阵(二)解释结构模型技术(ISM)(InteractiveStructureModeling)1.作用:主要描述系统构成元素之间的关联关系,主要适用于一些宏观问题的定性分析。

2.任务:通过构造解析将复杂的系统分解成条理分明、多级递阶的结构形式(结构图)ISM技术的基本思想:ISM技术的核心:通过各种创造性技术,提取问题的构成要素,利用有向图、矩阵等工具和计算机技术,对要素及其相互关系等信息进行处理,最后用文字加以解释说明,明确问题的层次和整体结构,提高对问题的认识和理解程度。

(完整版)第二章模型化

(完整版)第二章模型化

第二章 系统模型与模型化第一节 概述一、模型及模型化的定义模型可以说是现实系统的替代物。

模型应反映出系统的主要组成部分、各部分的相互作用,以及在运用条件下的因果作用及相互关系。

模型是现实系统的理想化抽象或简洁表示,它描绘了现实系统的某些主要特点,它是为了客观地研究系统而发展起来的。

模型有三个特征:①它是现实世界部分的抽象或模仿;②它是由那些与分析的问题有关的因素构成; ③它表明了有关因素间的相互关系。

模型是描述现实世界的一个抽象。

在构造模型时,要兼顾到它的现实性和易处理性。

考虑到现实性,模型必须包含现实系统中的主要因素。

考虑到易处理性,模型要采取一些理想化的办法,即去掉一些外在的影响并对一些过程作合理的简化。

二、模型化的本质、作用及地位模型化就是为描述系统的构成和行为,对实体系统的各种因素进行适当筛选后,用一定方式(数学、图象等)表达系统实体的方法。

简言之就是构模的过程。

1 本质:利用模型与原型之间某方面的相似关系,在研究过程中用模型来代替原型,通过对于模型的研究得到关于原型的一些信息。

这里的相似关系是指两事物不论其自身结构如何不同,其某些属性是相似的。

2 作用:①模型本身是人们对客体系统一定程度研究结果的表达。

这种表达是简洁的、形式化的。

②模型提供了脱离具体内容的逻辑演绎和计算的基础,这会导致对科学规律、理论、原理的发现。

③利用模型可以进行“思想”试验。

3 地位:模型的本质决定了它的作用的局限性。

它不能代替对客观系统内容的研究,只有在和对客体系统内容研究相配合时,模型的作用才能充分发挥。

模型是对客体的抽象,由它得到的结果,必须再回到现实中去检验。

系统模型(化)的作用与地位如图4-1所示。

图4-1 模型的作用与地位三、模型的分类一般说来,模型可按图4-2所示进行分类。

概念模型是通过人们的经验、知识和直觉形成的。

符号模型用符号来代表系统的各种因素和它们间的相互关系。

这种模型是抽象模型。

它通常采用图示或数学形式,一般分为结构模型和数学模型。

05第二章系统可靠性模型03

05第二章系统可靠性模型03
第 二 章 系统可靠性模型
1
内容提要
§ 2—3 串联系统的可靠性模型 一、定义和特点 二、可靠性框图 三、数学模型 四、提高串联系统可靠性的措施
§2—4 并联系统的可靠性模型 一. 定义和特点 二、可靠性框图 三、数学模型 四、提高并联系统可靠性的措施
§2-5 混联系统的可靠性模型 一、 串并联系统(附加单元系统) 二、并串联系统(附加通路系统) 三、较复杂的混联系统
一、 串并联系统(附加单元系统),图2—20。 27
20
上图串联了n个组成单元,而每个组 成单元由m个基本单元并联。
28
设每个组成单元的可靠度为Ri(t),则 RS1(t):
n
Rs1(t) 1 (1 Ri (t))m (2-18) i1
(括号里为每个并联系统的可靠性)
二、并串联系统(附加通路系统),图2-21
17
求: (1) 滤网堵塞时的可靠度、失效率、
21
平均寿命;
(2) 滤网破损时的可靠度、失效率、 平均寿命。
解 :(1 ) 滤网堵塞时系统的可靠性框图2-18, 为串联系统。
18
由于 λ = 常数,所以其为指数分布。
22
故有:
2
s i 5105 1105 i1
6 10 5 h-1
RS (1000) est e61051000 e0.06 0.94176
1 2 1 2
1 5 105
1 1105
1 (5 1) 105
10333.3h
25
S
(t)
e1t 1
e2t 2
e1t e2t
(1 2 )e(12 )t
e(12 )t
5105
e51051000 1105 e11051000 (5 1) 105 e e e 51051000 11051000 61051000

第二章2系统分析—需求分析.

第二章2系统分析—需求分析.

(3)确定调研方案

调研方式
主导型
用户经验不足,认识不清晰,需要调研人员整理需 求概要内容,提交给用户进行分析和初步确认,最 终由用户和调研实施人员对需求内容进行细化、确 认的过程。 对调研人员要求较高; 与用户真实意图可能存在偏差。

(3)确定调研方案

调研方式
引导型
用户有较为完整、系统的知识、经验积累,调研人 员引导用户将需求阐述完整、清晰,最终由用户对 需求进行确认的过程称之为引导型调研。 用户和调研实施人员相互配合程度高 ; 此种调研方式的进度和质量风险最小 。


……
需求工程的主要阶段
需求工程 需求开发 需求管理
需 求 获 取
需 求 分 析
需 求 规 约
需 求 验 证
变 更 控 制
版 本 控 制
需 求 跟 踪
需 求 状 态 跟 踪
需求规格说明书
需求开发
需求验证 —— 帮 助确定实现了正确 的需求 需求获取 —— 搜集 与探索需求的过程
需求开发 过程
组织机构或用户对系统的高层次目标要求用户使用系统必须要完成的任务必须要实现的软件功能内容层次常见非功能需求可用性计划开机时长平均故障时间间隔mtbf等高效性系统如何高效利用处理器磁盘空间通讯带宽灵活性向产品中加入其它功能需要多大劤力完整性阻止未经授权的访问修改互操作性与其他系统交换数据或服务可靠性无错误的软件执行稳健性系统遭遇无效数据或其他干扰时继续正常运作的程度易用性用户友好易于使用符合人机工程维护性是否易于修正一个缺陷或改劢软件移植性把软件从一个操作系统移植到另一个所需的劤力支持平台数重用性为某个应用所设计的模块能被其他应用重复所用的程度测试软件模块或者所整合产品的难易度量化需求需求类型测量范例观感接受率易用性错误率性能与速度响应时间可靠性停工时间移植性平台数稳健性致命非致命错误比例维护性修改所需的时间和工作量大小源代码行数sourcelinescodesloc认证所符合的诸标准需求的来源调研前活动调研前活动调研实施调研实施识别调研范围组建调研团队确定调研方案调研准备前期沟通识别调研范围组建调研团队确定调研方案调研准备前期沟通决定了需求调研对象调研参与人员和调研周期的长短

控制系统中的系统建模与分析

控制系统中的系统建模与分析

控制系统中的系统建模与分析在控制系统中,建模分析是十分重要的一环。

通过对系统进行精细的建模,可以实现对系统的深刻理解,为控制系统的设计提供支持和依据。

本文将介绍控制系统中的系统建模与分析,帮助读者更好地理解和应用控制系统。

一、控制系统简介控制系统是一个涉及工程、数学、物理、计算机等多个学科的复杂系统,它的作用是在符合一定性能指标的前提下,使系统达到一定的预定目标。

常见的控制系统包括飞行器控制系统、汽车自动驾驶系统、机器人控制系统等。

二、系统建模1. 建模方式在控制系统中,系统建模有两种主要方式:基于物理方程(物理建模)和基于实验数据(数据建模)。

物理建模是通过物理学、力学、电学等学科,建立控制对象的系统模型,包括状态空间模型、传递函数模型等。

物理建模效果较好,其模型能够准确地反映控制对象的物理特性。

但是物理建模需要精通相关物理学原理和数学知识,建模难度较大。

数据建模是通过采集已知控制对象的实验数据,利用机器学习等方法,建立控制对象的模型。

数据建模对专业知识的要求相对较低,但是数据采集和处理需要耗费时间和精力,并且在建立模型中可能存在误差。

2. 建模过程系统建模的目的是利用数学模型描述和分析实际系统,从而实现对系统的控制。

建模过程可以分为以下几步:(1)收集系统信息:了解控制对象的系统结构、工作原理、性能指标等相关信息。

(2)选择建模方法:选择合适的建模方法,根据具体情况进行物理建模或数据建模。

(3)建立模型:针对控制对象的工作原理和性能指标,建立相应的数学模型。

(4)验证模型:对建立的模型进行测试和验证,检验其准确性和可靠性。

(5)优化模型:根据验证结果对模型进行调整和优化,实现对模型的完善和精细化。

三、系统分析1. 稳定性分析稳定性是控制系统中最基本的性质之一。

稳定性分析可分为稳定性判据和稳定性分析两方面。

稳定性判据是建立在数学理论基础上,针对控制系统建立一系列的稳定性判定定理,如Routh-Hurwitz准则、Nyquist准则等,根据这些判据来判断控制系统的稳定性。

系统分析与设计第2章

系统分析与设计第2章
窗口
计算机
菜单
显示器
CPU
列表框
按钮
内存
键盘
§2.3.2 对象和类的提取和确定
三、类之间的关系 4.接口和实现关系 接口:也是一个类,接口用于描述类或组件必 须实现的契约。 实现关系:一个类元描述了另一个类元保证实 现的契约。
<<interface>> Interface Interface
§2.3.2 对象和类的提取和确定
三、类之间的关系 3.关联关系:关联是一种结构关系,代表类的 对象(实例)之间的一组连接(链)。 (1)关联的属性 ①名称 ②角色:
人员
雇用
公司
§2.3.2 对象和类的提取和确定
三、类之间的关系 ③多重性:通常需要说明一个关联实例中有多少 个相互连接的对象,这就是关联的多重性。
§
2.3.1 对象图、类图
二、对象图 对象图(Object Diagram) 是显示了一组对象和 他们之间的关系。对象图可以看作是类图的一个 实例。 1.对象图的定义 对象图中通常含有:对象和连接。对象图也可 以像其他的图一样,包含注解、约束、包或子系 统。 2.理解对象图的方法 (1) 识别出对象图中所有的类。 (2) 了解每个对象的语义及对象之间连接含 义。
§2.3.2 对象和类的提取和确定
三、类之间的关系 1.泛化(继承)关系 泛化关系指类之间的“一般与特殊关系”。 通常称一般元素为父类,称特殊元素为子类。 子类继承父类的特性(属性、操作、关联等), 同时可以有自己的特性。 单继承 多继承 继承有传递性
客户 学生
个人客户
团体客户
大学生
中学生
§2.1.3加速系统分析法
加速系统分析法强调构造原型,以便更快速地

生态系统模型与分析方法

生态系统模型与分析方法

生态系统模型与分析方法生态系统是指由生物群落、非生物环境和它们之间的相互作用构成的一个复杂的系统。

为了更好地理解生态系统的结构和功能,生态学家们提出了各种生态系统模型和分析方法。

本文将介绍几种常用的生态系统模型和分析方法。

一、营养链模型营养链是指生物之间由食物转化而成的能量关系。

营养链模型可以帮助我们理解生态系统中的能量流动以及物种之间的相互关系。

在营养链模型中,每个物种被划分为一个营养等级,即它在食物链中所处的位置。

能量从一个营养等级流向下一个营养等级,直至最后得到生态系统中的所有生物的总产量。

营养链模型还可以被用来预测生态系统的稳定性。

例如,如果某个物种在营养链中被消除,会对生态系统产生何种影响。

营养链模型已经被广泛应用于生态学研究中。

二、物种多样性模型物种多样性是指生态系统中不同物种的数量和比例。

物种多样性模型可以帮助我们理解生态系统中不同物种之间的相互作用,以及它们对整个生态系统的影响。

物种多样性模型可以通过测量生态系统中的物种数量、物种丰富度和物种均匀度来确定。

物种多样性模型还可以帮助我们评估生态系统受到干扰的程度。

例如,在一个受到人类活动影响的区域中,物种多样性可能会下降,导致生态系统的不稳定性。

因此,了解生态系统中物种多样性的变化情况,可以帮助我们更好地保护生态系统。

三、生境模型生境是指生物栖息的地方,包括自然生境和人工生境。

生境模型可以帮助我们理解生态系统中生物所处的不同生境类型,并可以帮助我们评估生物在这些不同生境中的适应性和竞争力。

生境模型还可以帮助我们预测生物受到环境变化的影响。

例如,在全球气候变化的背景下,生境模型可以帮助我们预测不同生物的分布范围和种群数量的变化。

四、生态经济模型生态经济模型是指将生态系统看作一种经济系统,分析其中的生产、消费和交换行为。

生态经济模型可以帮助我们理解生态系统中不同物种之间的经济相互作用,以及如何最大限度地利用生态系统资源。

生态经济模型还可以帮助我们评估各种利益相关者对生态系统的影响。

2.4第二章 系统的数学模型--第四节 系统的微分方程及线性化

2.4第二章 系统的数学模型--第四节 系统的微分方程及线性化

四、电气系统中的元件复阻抗
2、电容
i(t)
C
u(t)
u (t )

1 C

i(t
)dt

u(t)

1 C
i(t)
sU (s) 1 I (s) U (s) 1 I (s)
C
Cs
零初始状态下
四、电气系统中的元件复阻抗 3、电感 i(t) L
u(t)
u(t) L di(t) dt
U (s) Ls I (s) 零初始状态下
R
ui
C
uo
3、列出如图电气系统的微分方程。
解:物理规律: 基尔霍夫原理 输 入: 电压 ui(t) 输 出: 电压 uo(t)
设:电路电流为 i(t)
i
ui
R
C
uo
ui (t)

uo (t)

R i
1 C
(t) 1 C
i(t)d t
i(t
)d
t

iu(it()t
五、微分方程建立示例
2、列出如图机械系统的微分方程。
解:物理规律: 达朗贝尔原理 输 入: 力矩 τ(t) 输 出: 位移 θ(t)
τ
ห้องสมุดไป่ตู้
kJ
θ(t)
J
t kJ t cJ wt J t t kJ t cJt Jt Jt cJt kJ t t
线性系统的特点:可以运用叠加原理。
2、非线性系统 必须用非线性微分方程描述
的系统。 不能使用叠加原理
y(t) x2 (t) 对于非线性问题通常采用如下的处理途径 线 性 化 处 理:在工作点附近将非线性函数用泰勒级
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章系统模型与系统分析
一、系统模型
系统模型是指对一个系统进行抽象和描述,用以揭示其内部结构、运行规律和相互关系的方法和工具。

系统模型是系统分析的基础,通过构建系统模型可以更好地理解和分析系统的特性和问题。

1.系统模型的分类
系统模型可以分为静态模型和动态模型两类。

静态模型描述了系统的结构和组成部分,包括系统的元素、关系和属性。

常用的静态模型方法有系统框图、数据流图和实体关系图等。

动态模型描述了系统的行为和变化过程,主要包括状态转换和信息流动。

常用的动态模型方法有状态转换图、时序图和活动图等。

2.系统模型的构建方法
构建系统模型的方法有多种,常用的方法有层次分析法和系统动力学方法。

层次分析法是一种定性和定量相结合的分析方法,通过对系统进行层次划分,分析各层次元素的相互关系和影响程度,从而得出系统的总体性能。

系统动力学方法是一种动态系统建模和仿真的方法,通过建立差分方程或微分方程来描述系统的演化过程,在不同的时间段内模拟系统的运行过程和结果。

二、系统分析
系统分析是指对一个系统进行全面深入地研究和分析,以了解其内部机制、运行规律和问题点,为系统的优化改进提供依据。

1.系统分析的步骤
系统分析通常包括问题定义、数据收集、系统描述、模型建立、模型验证和模型求解等步骤。

问题定义阶段需要明确研究的目标和内容,确定问题的范围和界限。

数据收集阶段需要收集系统运行所需的数据和信息,包括实际运行数据和用户需求等。

系统描述阶段需要对系统进行全面的描述和分析,包括系统的功能、结构和性能等。

模型建立阶段需要根据系统描述构建数学模型,用以描述系统的运行过程和规律。

模型验证阶段需要对建立的模型进行验证和评估,确保模型的有效性和准确性。

模型求解阶段需要利用建立的模型进行仿真和优化,找出系统的优化方案和改进措施。

2.系统分析的工具和技术
系统分析常用的工具和技术包括面向对象分析、数据流图、系统动力学、Petri网等。

面向对象分析是一种以对象和类为核心的分析方法,通过建立对象模型和类模型来描述系统的结构和行为,强调系统的模块化和可重用性。

数据流图是一种图形化的工具,用来表示系统中信息的流动和处理过程,通过数据流和处理器之间的关系来描述系统的功能和结构。

系统动力学是一种描述和分析系统变化和行为的工具,通过建立微分方程来描述系统的演化过程,分析系统的稳定性和可行性。

Petri网是一种描述系统并发和同步的工具,通过描述系统中各个部分的状态和变迁之间的关系来描述系统的行为和运行过程。

总结:系统模型和系统分析是系统工程中重要的一环,通过构建系统模型和进行系统分析可以更好地理解和解决问题,为系统的优化和改进提供依据和方法。

在实际应用中,可以根据具体的需要选择合适的方法和工具进行系统模型的构建和系统分析的实施。

相关文档
最新文档