哈工大 微波技术实验报告
微波技术实验报告

微波技术实验报告一、实验目的1.了解微波技术的基本原理;2.掌握微波技术的实验操作方法;3.学习使用微波仪器对电磁波进行测量和分析。
二、实验器材与材料1.微波台;2.微波发射源;3.微波接收天线;4.微波功率计;5.微波衰减器;6.信号发生器;7.示波器。
三、实验原理微波技术是指在频率范围为3x10^9Hz至3x10^11Hz的电磁波中进行的技术应用。
在实验中,我们将使用微波发射源和接收天线来产生和接收微波信号,使用微波功率计来测量微波的功率,同时利用微波衰减器来调整微波的功率级别。
信号发生器用于产生不同频率的信号,并通过示波器来观察和记录波形。
四、实验步骤与结果1.首先接通微波台的电源,并调节微波发射源的频率和功率级别;2.将接收天线与发射源对准,调整天线角度,使得信号强度最大;3.使用微波功率计测量微波的功率,并记录结果;4.调整微波衰减器的衰减值,观察微波发射源输出功率的变化,并记录衰减值和功率值的对应关系;5.使用信号发生器产生不同频率的信号,并通过示波器观察和记录波形。
实验结果如下:1.频率为2.4GHz时,微波发射源的功率为6dBm;2.衰减值为20dB时,微波功率为0dBm;3.衰减值为30dB时,微波功率为-10dBm;4.信号发生器产生的频率为2.5GHz时,示波器上显示的波形为正弦波。
五、实验分析与讨论实验结果表明,微波功率与衰减值存在线性关系,当衰减值增大时,微波功率随之减小。
这是因为微波衰减器通过在传输线中引入衰减器元件,使微波信号的幅度减小。
当信号发生器产生的频率与微波发射源的频率接近时,示波器上观察到的波形为正弦波,说明微波信号正常传输。
六、实验结论通过本次实验,我们了解了微波技术的基本原理,掌握了微波技术的实验操作方法,并学会了使用微波仪器对电磁波进行测量和分析。
实验结果验证了微波功率与衰减值的线性关系,同时观察到了信号发生器产生的频率与微波发射源频率接近时的正弦波形。
哈尔滨工业大学(威海)微波技术实验报告

《微波技术》实验班级学号姓名实验一ANSOFT HFSS软件的使用与魔T的仿真一、实验内容1.下载并且安装ANSOFT HFSS软件10.0版本2.学习使用该软件3.仿真魔T4.写出仿真使用后的报告二、验收方式1.提交使用报告(封皮班级学号装订成册)2.用电脑对进行实际的演示和操作三、实验步骤注:首先根据实验Word文档设置仿真环境变量以保证魔T仿真能正确进行。
1、建立工程文件在Tool>Options>HFSS Options中讲Duplicate Boundaries with geometry复选框选中这样使得在复制模型时,所设置的边界一起复制。
2、设置求解类型3、设置模型单位将创建模型中的单位设置为毫米。
4、设置模型的默认材料在工具栏中设置模型的默认材料为真空(Vacuum)。
5、创建魔T(1) 创建arm_1利用Draw>Box创建。
(2) 设置激励端口注意:在哪一个端口设置激励,就先画哪一个端口,并将端口命名为P1。
(3) 创建其他臂利用旋转复制的方式创建arm_2,arm_3,arm_4。
(4) 组合模型利用布尔运算将所有的arm组合成为一个模型,即魔T创建完成。
6、设置求解频率即扫频范围(1) 设置求解频率。
解设置窗口中做以下设置:Solution Frequency :4GHz;Maximum Number of Passes:5;Maximum Delta S per Pass :0.02。
(2) 设置扫频。
在扫频窗口中做以下设置:Sweep Type:Fast;Frequency Setup Type:Linear Count;Start :3.4GHz;Stop:4GHz;Count:1001;将Save Field复选框选中。
实验仿真图如下:图1 电场E分布说明:图1以正z轴方向为激励端口1,负y轴端口2,正x轴端口3,正y轴端口4。
可知:(1)端口1作为激励端口,端口2和端口4有等幅反向波输出。
微波测量技术实验报告

一、实验目的1. 理解微波测量技术的基本原理和实验方法;2. 掌握微波测量仪器的操作技能;3. 学会使用微波测量技术对微波元件的参数进行测试;4. 分析实验数据,得出实验结论。
二、实验原理微波测量技术是研究微波频率范围内的电磁场特性及其与微波元件相互作用的技术。
实验中,我们主要使用矢量网络分析仪(VNA)进行微波参数的测量。
矢量网络分析仪是一种高性能的微波测量仪器,能够测量微波元件的散射参数(S参数)、阻抗、导纳等参数。
其基本原理是:通过测量微波信号在两个端口之间的相互作用,得到微波元件的散射参数,进而分析出微波元件的特性。
三、实验仪器与设备1. 矢量网络分析仪(VNA)2. 微波元件(如微带传输线、微波谐振器等)3. 测试平台(如测试夹具、测试架等)4. 连接电缆四、实验步骤1. 连接测试平台,将微波元件放置在测试平台上;2. 连接VNA与测试平台,进行系统校准;3. 设置VNA的测量参数,如频率范围、扫描步进等;4. 启动VNA,进行微波参数测量;5. 记录实验数据;6. 分析实验数据,得出实验结论。
五、实验数据与分析1. 实验数据(1)微波谐振器的Q值测量:通过扫频功率传输法,测量微波谐振器的Q值,得到谐振频率、品质因数等参数;(2)微波定向耦合器的特性参数测量:通过测量输入至主线的功率与副线中正方向传输的功率之比,得到耦合度;通过测量副线中正方向传输的功率与反方向传输的功率之比,得到方向性;(3)微波功率分配器的传输特性测量:通过测量输入至主线的功率与输出至副线的功率之比,得到传输损耗。
2. 实验数据分析(1)根据微波谐振器的Q值测量结果,分析谐振器的频率选择性和能量损耗程度;(2)根据微波定向耦合器的特性参数测量结果,分析耦合器的性能指标,如耦合度、方向性等;(3)根据微波功率分配器的传输特性测量结果,分析功率分配器的传输损耗。
六、实验结论1. 通过实验,掌握了微波测量技术的基本原理和实验方法;2. 熟练掌握了矢量网络分析仪的操作技能;3. 通过实验数据,分析了微波元件的特性,为微波电路设计和优化提供了依据。
微波实验报告

微波实验报告微波实验报告引言:微波是一种电磁波,波长在1mm到1m之间,频率范围为300MHz到300GHz。
微波在通信、雷达、医学、食品加热等领域有着广泛的应用。
本实验旨在通过实际操作和观察,了解微波的特性和应用。
实验一:微波传播特性实验目的:观察微波在不同介质中的传播特性。
实验器材:微波发生器、微波接收器、不同介质样品(如玻璃、木头、金属等)。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将不同介质样品放置在微波传播路径上,观察微波的传播情况。
实验结果:观察到微波在不同介质中的传播情况不同。
在玻璃中,微波能够较好地传播,而在金属中,微波会被完全反射或吸收。
实验二:微波反射和折射实验目的:观察微波在不同介质间的反射和折射现象。
实验器材:微波发生器、微波接收器、反射板、折射板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将反射板放置在微波传播路径上,观察微波的反射情况。
3. 将折射板放置在微波传播路径上,观察微波的折射情况。
实验结果:观察到微波在反射板上会发生反射,反射角等于入射角。
在折射板上,微波会发生折射,根据折射定律,入射角和折射角之间存在一定的关系。
实验三:微波干涉实验目的:观察微波的干涉现象。
实验器材:微波发生器、微波接收器、干涉板。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将干涉板放置在微波传播路径上,观察微波的干涉情况。
实验结果:观察到微波在干涉板上会出现明暗相间的干涉条纹。
根据干涉现象的特点,可以推测微波是一种具有波动性质的电磁波。
实验四:微波加热实验目的:观察微波对物体的加热效果。
实验器材:微波发生器、微波接收器、食物样品。
实验步骤:1. 将微波发生器和接收器连接好,并设置合适的频率和功率。
2. 将食物样品放置在微波传播路径上,观察微波对食物的加热效果。
实验结果:观察到微波对食物样品有较好的加热效果,食物在微波的作用下能够迅速加热。
微波技术基础实验报告

微波技术基础实验报告一、实验目的1.掌握微波信号的基本特性和参数的测量方法;2.了解微波器件的性能指标和测试方法;3.加深对微波传输线和网络理论的理解和实践。
二、实验设备和原理实验设备:微波信号源、功率计、波导固有模发生器、波间仪、反射器等。
实验原理:微波技术是指在高频范围内进行电磁波的传输、控制和处理的一套技术体系,其频率范围通常为0.3GHz至300GHz。
微波技术具有频率高、信息容量大和传输距离远等优点,广泛应用于通信、雷达、航空航天等领域。
三、实验步骤和内容1.根据实验要求,搭建实验电路;2.测量微波信号源输出功率,通过功率计测量微波信号源输出功率;3.测量波导波导的传输特性,通过波间仪测量微波信号通过波导时的传输特性;4.测量波导器件的特性,通过波间仪测量波导器件的特性;5.测量波导管中的固有模,通过固有模发生器和反射器测量波导管中的固有模。
四、实验结果和数据分析1.根据实验条件,测量到微波信号源输出功率为10dBm;2.根据测量结果,绘制出波导波导的传输特性曲线,分析其传输性能;3.根据实验条件,测量到波导器件的插入损耗为3dB;4.根据实验条件和测量数据,计算出波导管中的固有模的频率范围和衰减值,并进行数据分析。
五、实验结论1.微波信号源输出功率为10dBm;2.波导波导的传输特性曲线显示了其良好的传输性能;3.波导器件的插入损耗为3dB,插入损耗越小,器件性能越好;4.波导管中的固有模的频率范围为0.3GHz至3GHz,衰减值为-10dB。
六、实验总结通过本次实验,我深入理解了微波技术的基本特性和参数的测量方法,掌握了微波器件的性能指标和测试方法,并加深了对微波传输线和网络理论的理解和实践。
通过实验数据的测量和分析,我对微波技术的应用和性能有了更深入的认识,实验收获颇丰。
微波技术实验指导_报告2017

微波技术实验指导_报告2017Harbin Institute of Technology微波技术实验报告院系:班级:姓名:学号:同组成员:指导⽼师:实验时间:哈尔滨⼯业⼤学实验⼀短路线、开路线、匹配负载S 参量的测量⼀、实验⽬的1、通过对短路线、开路线的S 参量S11的测量,了解传输线开路、短路的特性。
2、通过对匹配负载的S 参量S11及S21的测量,了解微带线的特性。
S11⼆、实验原理(⼀)基本传输线理论在⼀传输线上传输波的电压、电流信号会是时间及传递距离的函数。
⼀条单位长度传输线之等效电路可由R 、L 、G 、C 等四个元件来组成,如图1-1(a )所⽰。
假设波传输播的⽅向为+Z 轴的⽅向,则由基尔霍夫电压及电流定律可得下列⼆个传输线⽅程式。
其中假设电压及电流是时间变量t 的正弦函数,此时的电压和电流可⽤⾓频率ω的变数表⽰。
亦即是⽽两个⽅程式的解可写成z z e V e V z V γγ--++=)( (1-1) z z e I e I z I γγ--+-=)((1-2)其中V +,V -,I +,I -分别是波信号的电压及电流振幅常数,⽽+、-则分别表⽰+Z,-Z 的传输⽅向。
γ则是[传输系数](propagation coefficient ),其定义如下。
))((C j G L j R ωωγ++= (1-3)⽽波在z 上任⼀点的总电压及电流的关系则可由下列⽅程式表⽰。
I L j R dzdV ?+-=)(ωV C j G dz dI+-=)(ω (1-4)将式(1-1)及(1-2)代⼊式(1-3)可得C j G I V ωγ+=++tj e z V t z v ω)(),(=tj e z I t z i ω)(),(=⼀般将上式定义为传输线的[特性阻抗](Characteristic Impedance ),Z O 。
Cj G L j R C j G I V I V Z O ωωωγ++=+===--++当R=G=0时,传输线没有损耗(Lossless or Loss-free )。
哈工大电磁场与电磁波实验报告

哈⼯⼤电磁场与电磁波实验报告电磁场与电磁波实验报告班级:学号:姓名:同组⼈:实验⼀电磁波的反射实验1.实验⽬的:任何波动现象(⽆论是机械波、光波、⽆线电波),在波前进的过程中如遇到障碍物,波就要发⽣反射。
本实验就是要研究微波在⾦属平板上发⽣反射时所遵守的波的反射定律。
2.实验原理:电磁波从某⼀⼊射⾓i射到两种不同介质的分界⾯上时,其反射波总是按照反射⾓等于⼊射⾓的规律反射回来。
如图(1-2)所⽰,微波由发射喇叭发出,以⼊射⾓i设到⾦属板MM',在反射⽅向的位置上,置⼀接收喇叭B,只有当B处在反射⾓i'约等于⼊射⾓i时,接收到的微波功率最⼤,这就证明了反射定律的正确性。
3.实验仪器:本实验仪器包括三厘⽶固态信号发⽣器,微波分度计,反射⾦属铝制平板,微安表头。
4.实验步骤:1)将发射喇叭的衰减器沿顺时针⽅向旋转,使它处于最⼤衰减位置;2)打开信号源的开关,⼯作状态置于“等幅”旋转衰减器看微安表是否有显⽰,若有显⽰,则有微波发射;3)将⾦属反射板置于分度计的⽔平台上,开始它的平⾯是与两喇叭的平⾯平⾏。
4)旋转分度计上的⼩平台,使⾦属反射板的法线⽅向与发射喇叭成任意⾓度i,然后将接收喇叭转到反射⾓等于⼊射⾓的位置,缓慢的调节衰减器,使微µ)。
安表显⽰有⾜够⼤的⽰数(50A5)熟悉⼊射⾓与反射⾓的读取⽅法,然后分别以⼊射⾓等于30、40、50、60、70度,测得相应的反射⾓的⼤⼩。
6)在反射板的另⼀侧,测出相应的反射⾓。
5.数据的记录预处理记下相应的反射⾓,并取平均值,平均值为最后的结果。
5.实验结论:?的平均值与⼊射⾓0?⼤致相等,⼊射⾓等于反射⾓,验证了波的反射定律的成⽴。
6.问题讨论:1.为什么要在反射板的左右两侧进⾏测量然后⽤其相应的反射⾓来求平均值?答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。
微波技术实验报告

微波技术实验报告 Prepared on 22 November 2020微波技术实验指导书目录实验一微波测量仪器认识及功率测量实验目的(1)熟悉基本微波测量仪器;(2)了解各种常用微波元器件;(3)学会功率的测量。
实验内容一、基本微波测量仪器微波测量技术是通信系统测试的重要分支,也是射频工程中必备的测试技术。
它主要包括微波信号特性测量和微波网络参数测量。
微波信号特性参量主要包括:微波信号的频率与波长、电平与功率、波形与频谱等。
微波网络参数包括反射参量(如反射系数、驻波比)和传输参量(如[S]参数)。
测量的方法有:点频测量、扫频测量和时域测量三大类。
所谓点频测量是信号只能工作在单一频点逐一进行测量;扫频测量是在较宽的频带内测得被测量的频响特性,如加上自动网络分析仪,则可实现微波参数的自动测量与分析;时域测量是利用超高速脉冲发生器、采样示波器、时域自动网络分析仪等在时域进行测量,从而得到瞬态电磁特性。
图1-1 是典型的微波测量系统。
它由微波信号源、隔离器或衰减器、定向耦合器、波长/频率计、测量线、终端负载、选频放大器及小功率计等组成。
图 1-1 微波测量系统二、常用微波元器件简介微波元器件的种类很多,下面主要介绍实验室里常见的几种元器件:(1)检波器(2)E-T接头(3)H-T接头(4)双T接头(5)波导弯曲(6)波导开关(7)可变短路器(8)匹配负载(9)吸收式衰减器(10)定向耦合器(11)隔离器三、功率测量在终端处接上微波小功率计探头,调整衰减器,观察微波功率计指示并作相应记录。
微波元器件的认识螺钉调配器E-T分支与匹配双T波导扭转匹配负载波导扭转实验总结:在实验中我们认识了各种的微波元器件,让我们更好的理解课本上的知识,更是为了以后的实验做了准备。
实验二测量线的调整与晶体检波器校准实验目的(1)学会微波测量线的调整;(2)学会校准晶体检波器特性的方法;(3)学会测量微波波导波长和信号源频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H a r b i n I n s t i t u t e o f T e c h n o l o g y微波技术实验报告院系:电子与信息工程学院班级:姓名:学号:同组成员:指导老师:实验时间:2014年12月18日哈尔滨工业大学目录实验一短路线、开路线、匹配负载S参量的测量------------------------------3 实验二定向耦合器特性的测量------------------------------------------------------6 实验三功率衰减器特性的测量-----------------------------------------------------11 实验四功率分配器特性的测量-----------------------------------------------------14 附录一RF2000操作指南-------------------------------------------------------------19 附录二射频电路基本常用单位------------------------------------------------------23 实验总结------------------------------------------------------------------------------------24实验一 短路线、开路线、匹配负载S 参量的测量一、实验目的1、通过对短路线、开路线的S 参量S11的测量,了解传输线开路、短路的特性。
2、通过对匹配负载的S 参量S11及S21的测量,了解微带线的特性。
二、实验原理S 参量网络参量有多种,如阻抗参量[Z],导纳参量[Y],散射参量[S]等。
微波频段通常采用[S]参量,因为它不仅容易测量,而且通过计算可以转换成其他参量,例如[Y]、[Z]图1-1一个二端口微波元件用二端口网络来表示,如图1-1所示。
图中,a1,a2分别为网络端口“1”和端口“2”的向内的入射波;b1,b2分别为端口“1”和端口“2”向外的反射波。
对于线性网络,可用线性代数方程表示:b1=S11a1+S12a2b2=S21a1+S22a2 (1-1)写成矩阵形式:⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡a a S S S S b b 212212211121 (1-2) 式中S11,S12,S21,S22组成[S]参量,它们的物理意义分别为S11=11a b 02=a “2”端口外接匹配负载时,“1”端口的反射系数S21=12a b 02=a “2”端口外接匹配负载时,“1”端口至“2”端口的传输系数S12=21a b 01=a “1”端口外接匹配负载时,“2”端口至“1”端口的传输系数S22=22a b 01=a “2”端口外接匹配负载时,“1”端口的反射系数对于多端口网络,[S]参量可按上述方法同样定义,对于互易二端口网络,S12=S21,则仅有三个独立参量。
三、实验仪器及装置图1模组编号:RF2KM1-1A (OPTN/SHORT/THRU CAL KIT) 2模组内容:代号 名称 说明 适用频率范围 主要特性MOD-1A OPEN 开路传输线 50-500MHz Return Loss ≥-1dbMOD-1B SHORT 短路传输线 50-500MHz Return Loss ≥-1dbMOD-1C THRU 50Ω微带线 50-500MHz Return Loss ≥-15db Insertion Loss ≥-0.5db3 RF2000测量主机:一台4 PC 机一台,BNC 连接线若干四、实验内容及步骤(一)开路线(MOD-1A )的S11测量(1)将RF2000与PC机通过RS232连接,接好RF2000电源,开机。
启动SCOPE2000软件,软件界面如图所示。
(2)将模块RF2KM1-1A的开路端口,即P1端口,与RF2000主机的SWEEP/CW1 OUT端口通过连接线连在一起。
模块接好以后,在RF2000主机的面板上找到“BAND”键,按“BAND”把频段选到299-540MHz的频段(BAND 3 频率范围为300-500MHz),按REM键进行连接,当RF2000的LCD画面第一行显示为“SWEEP MHz”,第二行显示为“---db 299-540”时,此时软件界面显示的为开路状态下300MHz-500MHz时的S11曲线图(如果此时软件界面显示的为S21曲线图,可通过软件界面下方的S11/S21按键进行选择)软件显示如图:(3)在曲线图中任意选取九个点,记录下每个点的频率和它所对应的S11的dB值,并在坐标纸上利用所取的点大致画出S11曲线图(在软件界面用鼠标左键单击即可完成取点)。
(二)短路线(MOD-1B)的S11测量(1)将RF2KM1-1A模块的短路端口,即P2通过BNC连接线与RF2000的SWEEP/CW1 OUT端子相连,频率的频段选择不变。
(2)此时软件界面显示的为短路状态下300MHz-500MHz时S11的曲线图同样,若此时软件显示为S21,可通过S11/S21进行选择。
(3)在曲线图中任意选取九个点,记录下每个点的频率和它所对应的S11的dB值,并在坐标纸上利用所取的点大致画出S11曲线图(在软件界面用鼠标左键单击即可完成取点)。
(三)匹配负载(MOD-1C)的S11及S22的测量(1)将模块RF2KM1-1A的P3端子通过BNC连接线与RF2000主机的SWEEP/CW1 OUT端子连接,将模块的P4端子与RF2000主机的RF-IN端子连接,频段仍为BAND3(300MHz-500MHz)。
(2)此时软件界面显示的是匹配负载状态下300MHz-500MHz时的S11的曲线图,如图所示。
按S11/S21可以切换S11/S21曲线图。
(3)在S11和S21曲线图中分别任意选取九个点,分别记录下每个点的频率和它所对应的S11和S21的db值,并在坐标纸上利用所取的点分别大致画出S11和S21的曲线图(在软件界面用鼠标左键单击即可完成取点)。
注:在测试过程中,DOD-1A,MOD-1B的S11范围为0±5db,MOD-1C的S11≤-8db,S21=0±2db五、实验结果及分析(一)在传输线理论中,开路、短路、匹配有哪些特性?答:开路和短路的阻抗为纯阻抗,值在0~±∞之间,且线中传输的是驻波。
开路反射系数为1,短路反射系数为-1;匹配负载值等于传输线特性阻抗,线中传输的是行波,无反射波。
反射系数为0(二)理想情况下,开路线、短路线、匹配负载测得值是多少?答:开路线:S11 = 1;短路线:S11=-1;匹配负载:S11=0,S21=1.实验二定向耦合器特性的测量一、实验目的1、通过对MOD-5A:叉路型定向耦合器的方向性,隔离度的测量,了解叉路型定向耦合器的特性。
2、通过对MOD-5B:平行线型定向耦合器的方向性,隔离度的测量,了解平行线型定向耦合器电路的特性。
二、实验原理1、定向耦合器是微波测量和其他微波系统中的常用元件,更是近代扫频反射计的核心部件,因此,熟悉定向耦合器的特性,掌握其测量方法很重要。
定向耦合器是一种有方向性的微波功率分配器件,通常有波导、同轴线、带状线及微带线几种类型,定向耦合器包含主线和副线两部分,在主线中传播的微波功率通过小孔或间隙等耦合元件,将一部分功率耦合到副线中的一个方向传输(称“耦合输出”),而在另一个方向几乎没有(或极小)功率传输(称“隔离输出”)。
2、在本实验中,定向耦合器是个四端口网络结构(4-port network ),如图3-1所示。
若信号输入端(Port-1,Input Port )的功率为P1,信号传输端(Port-2,Transmission Port )的功率为P2,信号耦合端(Port-3,Coupling Port )的功率为P3,而信号隔离端(Port-4,Isolation Port )的功率为P4。
若P1、P2、P3、P4皆用毫瓦(mW )来表示,定向耦合器的四大参数,则可定义为:传输系数:()10log 2/1Transmission T dB P P ==-⋅ 耦合系数:()10log 3/1Coupling C dB P P ==-⋅ 隔离度:()10log 4/1Isolation I dB P P ==-⋅ 方向性:()()()Directivity D dB I dB C dB ==-常见的定向耦合器可分成支线型和平行线型两种。
3、主要技术参数:(1)隔离度 定向耦合器的隔离度定义为输入功率P 入与隔离臂输出功率P 隔之比的分贝数,记以KI ,即 KI=10lg P P隔入=10lg 2421b a =20lg S 141式中S14=S41为网络的互易性,S14代表波由1口向4口的传输系数。
本实验中的功率的单位为dBm ,所以隔离度的值为输入端(或传输端)与隔离端测得的功率的差值。
(2)方向性 方向性的定义是副通道中耦合臂和隔离臂输出功率之比的分贝数,记以KD ,即KD=10lg PP隔耦=20lg S 13 -20lg S 14本实验中测功率的单位均dBm,所以方向性的值为耦合端与隔离端测得的功率的差值。
由定义知道,耦合到副通道中隔离臂的功率愈小,则方向性愈高。
通常希望定向耦合器的方向性愈高愈好。
理想定向耦合器的方向性和隔离度均为无穷大(因P隔=0)。
三、实验仪器及装置1、模组编号:RF2KM5-1A (L-C BRANCH LINE COUPLER)RF2KM5-2A (PARALLEL LINE COUPLER)2、模组内容:3、RF2000测量主机:一台4、PC机:一台5、连接线若干,50Ω匹配端子2个四、实验内容及步骤注:在以下实验中,信号从P1端输入,P2为传输端,P3为耦合端,P4为隔离端(一)MOD-5A的P1端子的S11的测量1、将RF2000主机通过RS232与PC机相联接,接好RF2000电源,开机,并启动SCOPE2000软件。
2、将模块MOD-5A的P1端口与RF2000主机的SWEEP/CW1 OUT端口通过连接线连在一起,将P2,P3,P4端口分别与50Ω匹配端子相连。
模块接好以后,在RF2000主机的面板上找到“BAND”键,按“BAND”把频段选到299-540MHz 的频段(BAND3,频率范围为300-500MHz),按REM键进行连接,当RF2000的LCD画面第一行显示为“SWEEP MHz”,第二行显示为“---db 299-540”时,此时软件界面显示的为叉路型定向耦合器在300MHz-500MHz的S11曲线图(如果此时软件界面显示的为S21曲线图,可通过软件界面下方的S11/S21按键进行选择)。