2016四川大学电磁场与微波实验报告(模版二)

合集下载

微波实验报告

微波实验报告

实验题目:电磁场与微波实验仿真部分班级:姓名:学号:日期:目录实验一微带分支线匹配器 (1)一、实验目的 (1)二、实验原理 (1)1.支节匹配器 (1)2. 微带线 (1)三、实验内容 (2)四、实验步骤 (2)五、仿真过程 (2)1、单支节匹配 (2)2、双支节匹配 (5)3.思考题 (9)五、结论与思考 (10)实验二微带多节阻抗变换器 (12)一、实验目的 (12)二、实验原理 (12)三、实验内容 (13)四、实验步骤 (13)五、实验过程 (14)1、纯电阻负载 (14)五、结论与思考 (24)实验三微带功分器 (26)一、实验目的 (26)二、实验原理 (26)1、散射矩阵 (26)2、功分器 (27)三、实验内容 (28)四、实验步骤 (28)五、实验过程 (28)1、计算功分器参数 (28)2、确定微带线尺寸 (29)3、绘制原理图 (29)4、仿真输出 (30)五、结论与思考 (34)附录:心得体会 (35)实验一 微带分支线匹配器一、实验目的1. 熟悉支节匹配器的匹配原理;2. 了解微带线的基本概念和元件模型;3. 掌握Smith 图解法设计微带线匹配网络。

二、实验原理1.支节匹配器随着工作频率的提高及响应波长的减小,分立元件的寄生参数效应就变得更加明显,当波长变得明显小于典型的电路元件长度时,分布参数元件替代分立元件而得到广泛应用。

因此,在频率高达一定数值以上时,在负载和传输线之间并联或串联分支短截线,代替分立的电抗元件,实现阻抗匹配网络。

常用的匹配电路有:支节匹配器,四分之一波长阻抗变换器,指数线匹配器等。

支节匹配器分单支节、双支节和三支节匹配。

这类匹配器是在主传输线上并联适当的电纳(或串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的,此电纳(或)电抗元件常用一终端短路或开路段构成。

图1.1 支节匹配器原理单支节匹配的基本思想是选择支节到阻抗的距离d ,使其在距负载d 处向主线看去的导纳Y 是0Y jB +形式。

电磁场与微波测量实验报告

电磁场与微波测量实验报告

电磁场与微波测量实验报告学院:电子工程学院班级: 2011211207组员:王龙-2013210998刘炜伦-2013210999黄斌斌-2013211000实验一电磁波反射和折射实验一、实验目的1.熟悉S426型分光仪的使用方法2.掌握分光仪验证电磁波反射定律的方法3.掌握分光仪验证电磁波折射定律的方法二、实验设备与仪器S426型分光仪,金属板,玻璃板三、实验原理电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。

四、实验内容与步骤(一)金属板全反射实验1.熟悉分光仪的结构和调整方法。

2.连接仪器,调整系统。

图1 反射实验仪器的布置如图1所示,仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上,并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个角度后放下,即可压紧支座。

3.测量入射角和反射角反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻线一致。

而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属板平面一致的刻线与小平台上相应90度的一对刻线一致。

这是小平台上的0刻度就与金属板的法线方向一致。

转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角,然后转动活动臂在表头上找到一最大指示,此时活动臂上的指针所指的刻度就是反射角。

如果此时表头指示太大或太小,应调整衰减器或晶体检波器,使表头指示接近满量程。

做此项实验,入射角最好取30°至65°之间,因为入射角太大或太小接收喇叭有可能直接接收入射波。

做这项实验时应注意系统的调整和周围环境的影响(二)玻璃板上的反射和折射实验步骤1、2如金属板全反射实验步骤1、2所示3、(1)测总能量:将两喇叭口正对,通过可变衰减器调整微波幅度的大小(通过电流大小来反映),尽量使其接近满偏,读出电流表读数,记录下来(2)测玻璃板反射的能量:反射玻璃板放到支座上时,应使玻璃板平面与支座下面的小圆盘上的某一对刻线一致。

电磁场与微波技术实验报告.

电磁场与微波技术实验报告.

电磁场与微波技术实验报告班级:学号:姓名:目录目录 (2)实验2 微带分支线匹配器 (3)一、实验目的: (3)二、实验原理 (3)三、实验内容 (3)四、实验步骤 (3)实验三四分之一波长阻抗变换器 (15)实验目的 (15)实验原理 (15)单节4λ阻抗变换器 (16)多节4λ阻抗变换器 (16)实验内容 (17)实验步骤 (18)实验4 低通滤波器 (31)实验目的 (31)实验原理 (31)低通原型滤波电路 (32)Richards变换 (32)Kuroda变换 (33)实验内容 (33)实验步骤 (33)总结 (41)完成任务 (41)问题及解决 (41)心得与体会 (41)实验2 微带分支线匹配器一、实验目的:1.熟悉支节匹配器的匹配原理2. 了解微带线的工作原理和实际应用3.掌握Smith图解法设计微带线匹配网络二、实验原理支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。

单支节匹配器,调谐时主要有两个可调参量:距离d和由并联开路或短路短截线提供的电纳。

匹配的基本思想是选择d,使其在距离负载d处向主线看去的导纳Y是Y0+jB 形式。

然后,此短截线的电纳选择为-jB,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。

双支节匹配器,通过增加一支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。

三、实验内容已知:输入阻抗Zin=75欧负载阻抗Zl=(64+j35)欧特性阻抗Z0=75欧介质基片εr=2.55,H=1mm假定负载在2G赫兹时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离d1=四分之一波长,两分支线之间的距离为d2=八分之一波长。

画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz至2.2GHz 的变化四、实验步骤(一):单支节匹配在史密斯圆图上找到等反射系数圆和g=1圆的交点,有两个点与其匹配。

电磁场与微波测量实验报告 微波 实验六 用谐振腔微扰法测量介电常数

电磁场与微波测量实验报告 微波 实验六 用谐振腔微扰法测量介电常数

北京邮电大学电磁场与微波测量实验报告实验六用谐振腔微扰法测量介电常数微波技术中广泛使用各种微波材料,其中包括电介质和铁氧体材料。

微波介质材料的介电特性的测量,对于研究材料的微波特性和制作微波器件,获得材料的结构信息以促进新材料的研制,以及促进现代尖端技术(吸收材料和微波遥感)等都有重要意义。

一、 实验目的1. 了解谐振腔的基本知识。

2. 学习用谐振腔法测量介质特性的原理和方法二、 实验原理本实验是采用反射式矩形谐振腔来测量微波介质特性的。

反射式谐振腔是把一段标准矩形波导管的一端加上带有耦合孔的金属板,另一端加上封闭的金属板,构成谐振腔,具有储能、选频等特性。

谐振条件:谐振腔发生谐振时,腔长必须是半个波导波长的整数倍,此时,电磁波在腔内连续反射,产生驻波。

谐振腔的有载品质因数QL 由下式确定:210f f f Q L -=式中:f0为腔的谐振频率,f1,f2分别为半功率点频率。

谐振腔的Q 值越高,谐振曲线越窄,因此Q 值的高低除了表示谐振腔效率的高低之外,还表示频率选择性的好坏。

如果在矩形谐振腔内插入一样品棒,样品在腔中电场作用下就会极化,并在极化的过程中产生能量损失,因此,谐振腔的谐振频率和品质因数将会变化。

图1 反射式谐振腔谐振曲线 图2 微找法TE10n 模式矩形腔示意图电介质在交变电场下,其介电常数ε为复数,ε和介电损耗正切tan δ可由下列关系式表示:εεε''-'=j , εεδ'''=tan ,其中:ε,和ε,,分别表示ε的实部和虚部。

选择TE10n ,(n 为奇数)的谐振腔,将样品置于谐振腔内微波电场最强而磁场最弱处,即x =α/2,z =l /2处,且样品棒的轴向与y 轴平行,如图2所示。

假设:1.样品棒的横向尺寸d(圆形的直径或正方形的边长)与棒长九相比小得多(一般d /h<1/10),y 方向的退磁场可以忽略。

2.介质棒样品体积Vs 远小于谐振腔体积V0,则可以认为除样品所在处的电磁场发生变化外,其余部分的电磁场保持不变,因此可以把样品看成一个微扰,则样品中的电场与外电场相等。

电磁场与电磁波第二次实验报告

电磁场与电磁波第二次实验报告

北京邮电大学电磁场与微波测量学院:电子工程学院班级:2013211212姓名:学号:实验四迈克尔逊干涉实验一、实验目的1、通过实验观察迈克尔逊干涉现象。

2、掌握利用迈克尔逊干涉测量平面波长的方法。

二、实验设备DH926B型微波分光仪、三厘米固态振荡器、喇叭天线、可变衰减器、晶体检波器、反射板、半透射玻璃板三、实验原理如图5.1所示,在平面电磁波前进的方向放置一块与传播方向成450夹角的半透射板(实验中用玻璃板),由于该板的作用,将入射的电磁波分成为两束,一束穿透玻璃板继续前进,向反射板B方向传播,另外一束被玻璃板反射后,向反射板A方可移动反射板B的波,被反射板B反射后,又到达玻璃板,其中一部分被玻璃板反射后到达接收喇叭;而到达反射板A的波,被反射板A反射后,又到达玻璃板,其中一部分穿过玻璃板也到达接收喇叭,因此接收喇叭接收到的是这两束电磁波的和,当两束电磁波的传播路程相同,或相差波长的整数倍时,接收喇叭接收的信号最强,当他们传播的路程相差为半个波长的奇数倍时,接收喇叭接收到的信号最弱。

通过移动反射板B,可以改变这两束电磁波的传播路程,使得接收喇叭接收到的信号由弱变强,或由强变弱,测得两个相邻最强或最弱时反射板所移动的距离L,就可以得到电磁波的波长,即=2L。

实验中直接观察电压表的读数,为当表头指的距离,由此距示从一次极小变到又一次极小时,则B处的反射板就移动了2离就可求得平面波的波长。

四、实验内容及步骤1、如图5.2,连接仪器。

2、使两喇叭口面互成900。

3、半透射板与两喇叭轴线互成450。

4、将读数机构通过它本身上带有的两个螺钉旋入底座上,使其固定在底座上,再插上反射扳,使固定反射板的法线与接受喇叭的轴线一致,可移反射板的法钱与发射喇叭轴线一致。

5、按信号源操作规程接通电源,调节衰减器使信号电平读数指示合适值。

图5.2 迈克尔逊干涉实验系统6、将可移反射板移到读数机构的一端,在此附近测出一个极小的位置,然后旋转读数机构上的手柄使反射板移动,从表头上测出(n +1)个极小值,并同时从读数机构上得到相应的位移读数,从而求得可移反射板的移动距离L ,则波长nL2=λ。

电磁场与微波测量实验实验二

电磁场与微波测量实验实验二

电磁场与微波测量实验实验报告实验二单缝衍射实验专业:电子科学与技术班级:组成员:执笔人:实验二.单缝衍射实验一、 实验目的掌握电磁波的单缝衍射时衍射角对衍射波强度的影响二、 实验设备与仪器S426型分光仪三、 实验原理当一平面波入射到一宽度和波长可比拟的狭缝时,就要发生衍射的现象。

在缝后面出现的衍射波强度并不是均匀的,中央最强,同时也最宽。

在中央的两侧衍射波强度迅速减小,直至出现衍射波强度的最小值,即一级极小,此时衍射角为αλ1-=Sinφ ,其中λ是波长,a 是狭缝宽度。

两者取同一长度单位,然后,随着衍射角增大,衍射波强度又逐渐增大,直至出现一级极大值,角度为:⎪⎭⎫⎝⎛∙=-αλ231Sin φ (如左图所示)四、 实验内容与步骤仪器连接时,预先接需要调整单缝衍射板的缝宽,当该板放到支座上时,应使狭缝平面与支座下面的小圆盘上的某一对刻线一致,此刻线应与工作平台上的90刻度的一对线一致。

转动小平台使固定臂的指针在小平台的1800处,此时小平台的00就是狭缝平面的法线方向。

这时调整信号电平使表头指示接近满度。

然后从衍射角00开始,在单缝的两侧使衍射角每改变20读取一次表头读数,并记录下来,这时就可画出单缝衍射强度与衍射角的关系曲线,并根据微波波长和缝宽算出一级极小和一级极大的衍射角,并与实验曲线上求得的一级极小和极大的衍射角进行比较。

具体步骤:1、 连接好系统,开启信号源。

2、 将单缝衍射板的缝宽a 调整为70mm 左右,将其安放在支座上,衍射板的边线与刻度盘上两个90°对齐;转动小平台使固定臂的指针在小平台的1800处,此时小平台的00就是狭缝平面的法线方向。

这时调整信号电平使表头指示接近满度。

3、 依次微调发射喇叭、衍射板、接收喇叭,使衍射强度分布的中央极大位于0°;调节发射和接收衰减器,使中央极大值的信号电平处于80—90μΑ;在±500的范围内转动接收天线,观察衍射强度分布,认为分布合理后开始测量。

电磁场与微波实验实验

电磁场与微波实验实验

λg/mm
41.6
38.9
39.5
40
λg/mm 均值
40.0
λ0/mm
30.1
6. 用直接发测量计算电压驻波比(实际测量时,读取的是电压值)
1
2
3
4
Vmax/mV
210
208
200
200
Vmin/mV
50
48
50
40
ρ
2.09
7. 按照实验原理测量计算 lmin,并求出归一化阻抗值和实际阻抗值。
DT DA l������������������ 电长度
ρ
=
Emax ������min
=
√������������mmainx
在电压驻波系数1 < ρ < 1.5时,可以测量几个节点,取平均值。
ρ = √������m������amxi1n1++������m������maxin22++⋯⋯+������m������minanxn
当驻波系数1.5 < ρ < 5,直接读出������max和������min即可。 3. 测量阻抗
2. 预热信号源。设置信号源。载波设置:频率 10GHz,功率 15dBm;调制方式设置:AM,1KHz 方 波调制,调制深度>90%。
3. 预热选频放大器。
4. 插入驻波测量线探针,将探针移到两个波节点的中点,调节谐振回路使测量放大器指示最大。
5. 将波导测量线插入终端短路,用两点法测量导波波长
1
99.25 107.60 8.35 0.208
归一化阻抗
1.54 − 0.7i
实际阻抗
77 − 35i

电磁场与微波技术实验心得(优秀范文五篇)

电磁场与微波技术实验心得(优秀范文五篇)

电磁场与微波技术实验心得(优秀范文五篇)第一篇:电磁场与微波技术实验心得电磁场与微波技术实验报告我们班连续观摩了三个《电磁场与微波技术》课程的实验,通过观看视频,老师讲解和演示,以及自己的一些操作,使我们加深了对这三个实验的一些了解。

实验一、电磁波极化在这个实验我们主要了解电磁波极化、天线极化的概念;了解电磁波的分解与合成原理;了解圆极化波产生的基本原理。

这个实验主要用到的仪器是微波分光仪,里面包含支座、分度转台、喇叭天线、可变衰减器、晶体检波器、视频电缆及微安表、读书机构、栅网组件、三厘米信号源、分光介质板。

实验内容:首先连接好实验仪器,三厘米固态信号源工作在等幅状态,按下电压按键使三位半数字表显示电压的示数,信号源的输出端通过同轴线连接到微波分光仪,此时的电信号通过同轴转波导经过隔离器、可变衰减器到达辐射天线的辐射喇叭(Pr0),辐射喇叭辐射出的波经过栅网组件的反射和吸收到达接收喇叭(Pr3),经由晶体检波器,通过同轴线与微安表相连。

垂直栅网(Pr1)与辐射喇叭在同一条水平线上,通过长铝质支柱固定在基座上;水平栅网(Pr2)正对着辐射喇叭,并与垂直栅网成直角,通过读数机构和短铝质支柱固定在基座上。

接收喇叭与辐射喇叭成45º角。

然后开始实验,打开信号源开关,这时转动接收喇叭Pr3,当Pr3喇叭E面与垂直栅网平行时收到E⊥波,经几次调整辐射喇叭Pr0的转角使Pr3接收到的|E∥|=|E⊥|,实现圆极化的幅度相等要求。

然后接收喇叭Pr3在E∥和E⊥之间转动,将出现任意转角下的|Eα|≤|E∥|(或E⊥)。

这时改变Pr2水平栅网位置,使Pr3接收的波具有|Eα|=|E∥|=|E⊥|,从而实现了E∥和E⊥两个波的相位差为±90º,得到圆极化波。

实验心得:通过老师的细心讲解以及在老师的指导下,我们进行了一些简单的操作,熟悉了实验仪器的名称,以及一些仪器的作用以及工作原理,如三厘米信号源, 它是一种使用体效应管作振荡源的微波信号源,能输出等幅信号及方波调制信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

V2 = 9.325*43.65 = 4.07*10^8 > c
V3 = 9.175*44.38 = 4.12*10^8 >c
V 均大于 C,满足理论值
实验二:阻抗匹配
一、 实验目的
1.了解基本的阻抗匹配理论及阻抗变换器的设计方法。 2.利用实验模组实际测量以了解匹配电路的特性。 3.学会使用软件进行相关电路的设计和仿真,分析结果。
2)利用测量线和可变短路器来测量波长 A.实验系统连接如图二。 B.调节信号源到指定频率,调节调整 E-H 面阻抗调配器,使选频器输出最大。 C.移动测量线探针,同时适当调整放大器的增益避免在最大输出位置时使选频 放大器的表头指针打表。来回移动测量线的探针,观察传输在终端短路情况下 全反射的驻波分布情况。 用“平均法”找出两个相邻的最小点位置 D1 和 D2,即:移动探针在驻波最小 点左右找出两个具有相同幅度(由选频放大器读出)的位置 d1 和 d2,然后取 其平均值,即为所需的最小点位置 D1,用相同的方法找出相邻的最小点 D2.
二、 实验设备
项次
设备名称
数量
备注
1 MOTECH RF2000 测量仪
1 套 亦可用网络分析仪
2 阻抗交换器模组
1 组 RF2KM2-1A
(mod-2A,mod-2B)
3 50ΩBNC 连接线
2 条 CA-1、CA-2
4 1MΩ BNC 连接线
2 条 CA-3、CA-4
5 MICROWAVE 软件
D.求出最小点位置 D1 和 D2
D1=(d1+d2)/2 D2=(d3+d4)/2
相邻两个最小点的距离即为半个波导波长。D1 和 D2 的位置在测量线上通过标 尺读出,如要精确测量的话,同轴测量线可通过附件微测器,波导测量线可通 过附件千分表读出。
E.用可变短路器找出最小点位置 D1 和 D2
首先找出第一个最小点 D1 时,将选频放大器的增益放大,来回转动可变短路 器,记下最小点时在可变短路器上的刻度位置,然后改变短路器,找出另一个 相邻的最小点 D2,再记下可变短路器上的刻度位置,两个刻度数据之差即为 1/2 波长
六、实验记录及分析
刻度值 理论频率 频率
mm
GHz
GHz
2.49
8.8
8.985
3.25
9.29.3252.869.09.175
数据分析:
波节点位置
波导波长 平均值
L1 mm
L2 mm mm
mm
138.00
113.50 49.00
47.12
113.50
89.55 47.90
89.55
67.25 44.60
二、 实验原理
1.电磁波的频率和波长可由它在煤质中的传播速度联系起来: Fλ=V
式中 f 是频率,λ 是波长,而 V 是电磁波的传播速度。 2.试验系统的连接如图二所示,是用吸收式频率计作频率测量的实验
信号源
隔离器
选频放大
频率计
可变衰减器
三.实验仪器
1.YS1123 标准信号发生器 2.GX2C-1 功率计
1 套 微波设计软件
三、 理论分析
如图所示:输入信号经过传输以后,其输出功率与输入功率之间存在以下 关系,信号的输出功率直接决定于输入阻抗与输出阻抗之比。
Rs Vs
Vout RL
Pout
I2
RL

VS 2 (RS RL )2

RL
RL k RS
Pin

VS 2 RS

Pout

F.通过测量出的波导波长,也就可计算出频率和波长。
五、调试过程
经过老师的讲解和学习,学到以下知识:
1、三厘米波导测量线是探测三厘米波段的波导中驻波分布情况的仪器。它通常 用来测量波导元件、波导系统的驻波系数、阻抗,还可以测量波导波长、相移 等多种参数,是一种通用的微波测量仪器。 2、通过外壳上红线对应的刻度数即可读取波长值 3、隔离器在此用来保护电路 4、衰减器通过调整吸收率来控制信号的强弱 5、建波器,可以通过调整水平面及垂直面的位置,找到选频放大器指针反应最 灵敏的点 6、选频放大器可以通过“增益”及“分贝”来控制对检测结果的放大结果,例 如如果指针在最小值的值距离 0 刻度较远,可以提高分贝以及增益进行调节。
在完成信号源的重复频率和选频放大器频率保持一致的调节后,将选频放大 器接到晶体检波器的输出端,调节晶体检波器上三个调谐螺钉,使之指示最 大。然后用 PX16 频率计就可测出信号源的输出频率。
边旋转 PX16 频率计,边观察选频放大器的指示,当选频放大器指示最小 时,记录频率读书(两根红条间与竖线重合的标尺读数)。实验系统如图二。
实验课程: 电磁场与微波技术 实验题目:(一)频率和波长的测量
(二)阻抗匹配 功率衰减器 分支线型定向耦合器
小组成员:
班级: 通信 2 班 任课教师: 张弘 实验时间: 周六下午 实验地点: 基教 B522
实验一:频率和波长的测量
一、 实验目的:
1. 学会使用基本的测频仪器和信号发生器。 2.掌握基本的测量频率和波长的方法 3.利用波导测试系统,使用吸收式频率计作频率测量电磁波频率;使用测量 线来测量波长和频率。
测量线
可变电抗
3.YS3892 选频放大器 4.TC26A 三厘米波导测量线
四、实验内容
1)使用吸收式频率计作频率测量电磁波频率 系统的调试:将 YS1123 标准信号发生器(下称信号源)调到所需要的输出
频率,在测量线的输出端用功率计监视信号源的输出功率,一般约 5mW;仔细 调节 E、H 阻抗调配器,使指示功率达到最大;将信号源的工作方式置于“方 波”,重复频率置于 1000Hz,YS3892 选频放大器的放大选择置于 50dB 档, TC26A 测量线的输出端接上短路片(测量线附件)。然后来回移动测量线探头 的位置,观察选频放大器的指示情况。一旦选频放大器有指示,则再微调信号 源的重复频率或在选频放大器上进行频率微调,使选频放大器的指示为最大。
126.70
103.31 46.78
43.65
104.64
126.53 43.78
158.43
138.24 40.38
133.12 110.76 44.72
44.38
107.95
85.90 44.10
88.05
65.89 44.32
波导波长的计算λ = 2(L1-L2)
故波导速度 v = f*λ
V1 = 8.985*47.12 = 4.23*10^8 > c
相关文档
最新文档