苏州市2015届高三第一次模拟测试卷含答案

合集下载

2015届高三“一模”数学模拟试卷(1)(含答案)

2015届高三“一模”数学模拟试卷(1)(含答案)

2015届高三“一模”数学模拟试卷(1)(满分150分,考试时间120分钟)一、填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1.已知函数1()y f x -=是函数1()2(1)x f x x -=≥的反函数,则1()f x -= .2.若集合2214x A x y ⎧⎫⎪⎪=-=⎨⎬⎪⎪⎩⎭,{}1B x x =≥,则A B = . 3.函数lg 3y x =-的定义域是.4.已知行列式cos sin 21x x =-,(0,)2x π∈,则x = .5.已知等差数列{}n a 的前n 项和为n S ,若3050S =,5030S =,则80S = . 6.函数log (3)1a y x =+-(0a >且1)a ≠的图像恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 . 7.设等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若*2()31n n S n n N T n =∈+,则54a b = . 8.2310(133)x x x +++展开式中系数最大的项是 .9.电子钟一天显示的时间是从00:00到23:59,每一时刻都由4个数字组成,则一天中任一时刻显示的4个数字之和为23的概率为 .10.已知tan ,tan αβ是关于x 的方程2(23)(2)0mx m x m +-+-=(0)m ≠的两根,则tan()αβ+的最小值为.11.若不等式(0)x a ≥>的解集为[,]m n ,且2m n a -=,则a 的取值集合为 .12.如图,若从点O 所作的两条射线,OM ON 上分别有点12,M M 与点12,N N ,则三角形面积之比21212211ON ON OM OM S S N OM N OM ⋅=∆∆,若从点O 所作的不在同一平面内的三条射线,OP OQ 和OR 上, 分别有点12,P P ,点12,Q Q 和点12,R R ,则类似的结论 为 .13.圆锥的底面半径为cm 5 ,高为12cm ,则圆锥的内接圆柱全面积的最大值为 .14.已知2()(0)f x ax bx c a =++≠,且方程()f x x =无实根,现有四个命题: ① 方程[()]f f x x =也一定没有实数根;② 若0a >,则不等式[()]f f x x >对一切x R ∈恒成立; ③ 若0a <,则必存在实数0x 使不等式00[()]f f x x >成立; ④ 若0a b c ++=,则不等式[()]f f x x <对一切x R ∈成立; 其中是真命题的有 .二、选择题(本大题满分20分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的.15. “arcsin 1x ≥”是“arccos 1x ≤”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件16.248211111lim(1)(1)(1)(1)...(1)22222n n →∞+++++=( )A .1B .2C .3D .417.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=,若OP AB PA PB ⋅≥⋅,则实数λ的取值范围是( )A .112λ≤≤ B .112λ-≤≤C .1122λ≤≤+D .1122λ-≤≤+18.若对于满足13t -≤≤的一切实数t ,不等式222(3)(3)0x t t x t t -+-+->恒成立,则x 的取值范围为( ) A .(,2)(9,)-∞-+∞ B .(,2)(7,)-∞-+∞ C .(,4)(9,)-∞-+∞D .(,4)(7,)-∞-+∞三、解答题:(本大题满分74分)本大题共有5题,解答下列各题须在答题纸的规定区域内写出必要的步骤.19.(本题满分12分)本题共2小题,第1小题6分,第2小题6分.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+.(1)求函数()f x 的最小正周期和图像的对称轴方程;(2)求函数()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的值域.20.(本题满分12分)本题共2小题,第1小题6分,第2小题6分.设虚数12,z z 满足212z z =.(1)若12,z z 又是一个实系数一元二次方程的两个根,求12,z z ;(2)若11z mi =+(0,m i >为虚数单位),1z ≤23z ω=+,求ω的取值范围.21.(本题满分14分)本题共2小题,第1小题7分,第2小题7分.如图,在斜三棱柱111ABC A B C -中,已知AC BC =,D 为AB 的中点,平面111A B C ⊥平面11ABB A ,且异面直线1BC 与1AB 互相垂直. (1)求证:1AB ⊥平面1ACD ;(2)若1CC 与平面11ABB A 的距离为1,115AC AB =, 求三棱锥1A ACD -体积.7分.已知函数()f x 的图象在[,]a b 上连续不断,定义:若存在最小正整数k ,使 得()()f x k x a ≤-对任意[,]x a b ∈恒成立,则称函数()f x 为[,]a b 上的 “k 函数”. (1)已知函数()2f x x m =+是[1,2]上的“1函数”,求m 的取值范围; (2)已知函数()3f x x m =+是[1,2]上的“2函数”,求m 的取值范围;(3)已知函数221,[1,0)()1,[0,1),[1,4]x x f x x x x ⎧-∈-⎪=∈⎨⎪∈⎩,试判断()f x 是否为[1,4]-上的“k 函数”,若是,求出对应的k ; 若不是,请说明理由.8分.数列{},{}n n a b 满足:11,a a b b ==,且当2k ≥时,,k k a b 满足如下条件: 当1102k k a b --+≥时,111,2k k k k k a ba ab ---+==, 当1102k k a b --+<时,111,2k k k k k a ba b b ---+==。

2015年3月苏锡常镇高三语文一模试卷(解析版)

2015年3月苏锡常镇高三语文一模试卷(解析版)

2014~2015学年度苏锡常镇四市高三教学情况调研(一)语文(解析版)Ⅰ2015.3 [注]:以下考试解析中的数据均为市区(市直属、新区、园区)阅卷抽样数据,其中有缺考等特殊情况卷,所以整体均分因考生数据还未整理无法预估,待精准计算后发布。

1. 选择题1-7题21分,抽样平均约14分;作文均分约46.2分;附加卷多选题抽样均分约3.1分;2. 抽样检测三个考场(含文科附加部分),手工阅卷与网络阅卷基本一致(均为双评),个别试卷误差率在1-2%。

3.答题分析统稿老师是:总统稿人——苏州十中唐岚;8、9、11题文言文阅读、名句默写,苏州市工业园区西交大附属中学张富玉;10题诗歌阅读,江苏省苏州第十中学唐岚;12-15题文学作品阅读,江苏省苏州中学周黎;16-18题论说类文本阅读,苏州市第一中学魏群;19题作文分析,苏州市工业园区苏大附中严爱军,苏州市一中蒋涛老师提供自己的下水作文;20-25题,文科附加一、二,苏州市工业园区苏州大学附属中学宗敬青;26-28题,文科附加三,苏州市工业园区苏州大学附属中学董玉叶。

另有多位老师在辛苦阅卷之余撰写批阅小结及阅卷感受,在此一并感谢!特别感谢苏州十中提供的周到服务!1.依次填入下面各句空缺处的词语,最恰当的一组是(3分)(1)如果没有丰富的生活积累与深厚的艺术功底,没有较高的语言文字修养,是很难写出高▲的作品来的。

(2)在3D投影技术的帮助下,一代歌后▲,“邓丽君”不仅和周杰伦共同演绎其经典金曲《你怎么说》,更为周杰伦的《千里之外》献声,引发万人大合唱。

(3)准确优雅地使用本国语言文字,对于任何一个国家任何一个时代的大学生都很重要。

这种能力的习得,不是▲的事,也不是政治课或通识课所能取代。

A.品味栩栩如生一蹴而就B.品位栩栩如生一朝一夕C.品味惟妙惟肖一朝一夕D.品位惟妙惟肖一蹴而就1.B(品味:①品尝味道;②琢磨体会,玩味;③品质和风味。

品位:人或事物的品质、价值。

江苏苏州市2015届高三第一次模拟测试卷

江苏苏州市2015届高三第一次模拟测试卷

江苏苏州市2015届高三第一次模拟测试卷高三2013-10-20 22:18江苏苏州市2015届高三第一次模拟测试卷语文试题一、语言文字运用(15分)1.下列词语中加点的字,读音全都相同的一组是(3分)A.诋毁抵挡刨根问底砥柱中流B.藩篱蕃息幡然醒悟翻江倒海C.蓓蕾礌石雷霆万钧擂鼓助威D.奴婢裨益稗官野史髀肉复生答: A(3分)A dǐ B fān/fán/fān/fān C lěi/léi/léi/léi D bì/bì/bài/ bì2. 在下列句子的空缺处依次填入成语,最恰当的一组是(3分)(1)历史其实无处不在。

在你我生活的城市里,每一幢由逝去时代留下的老建筑都是一页的活的史书。

(2)以“侃”、“凑”、“加”为核心的剧本写作模式肯定会破坏故事的思想性和整体性,剧中人物的情感和生命轨迹的展现也很难做到。

(3)试想一下,如果不是马云拜访王林的一张照片,使王林重回公众视野,那么,会不会有欣京报的记者去采访,以及引发接下来令人的问题呢?A. 触手可及水到渠成眼花缭乱B. 唾手可得水到渠成眼花缭乱C. 触手可及一以贯之目不暇接D. 唾手可得一以贯之目不暇接答:C(3分)触手可及:近在手边,一伸手就可以接触到;唾手可得:动手就可以取得。

比喻极容易得到。

一以贯之:用一个根本性的事理贯通事情的始末或全部的道理;水到渠成:意指水流到之处便有渠道,比喻有条件之后,事情自然成功,即功到自然成。

目不暇接:形容东西多,来不及观看或看不过来;眼花缭乱:形容眼睛看见复杂纷繁的东西而感到迷乱。

3.概括下面一则消息的主要信息,不超过25字。

(4分)新修订的《居民身份证法》规定了公民申领、换领、补领居民身份证应当登记指纹信息。

居民身份证登记指纹信息,能进一步增强证件防伪性,同时社会用证单位能够快速、准确地进行人、证一致性认定,可以有效防止冒用他人身份证等违法犯罪行为的发生。

苏州市2015届高三语文第一次模拟测试试卷及答案

苏州市2015届高三语文第一次模拟测试试卷及答案
苏州市2015届高三语文第一次模拟测试试卷答案
1.B 2.B 3.A(B项“家父”用于自称,C项“寄 奉”谦敬不当,D项“贵校”称呼母校 不当)
4.C 5.C(从所给新闻信息中不能推断出载 人“磁悬浮魔毯”即将面世)
6.A(易,轻视,怠慢) 7.B(介词,在。A项,承接/并列;C 项,连词,来/介词,用;D项,取消 句子独立性/的)
7.B(介词,在。 A项,承接/并列; C项,连词,来/介词,用; D项,取消句子独立性/的)
8.(1)像(苏)季子遭到他嫂嫂的无礼对待, (朱)买臣被他的妻子离弃(一样)。 (3分,全句文意1分,“不礼”、“见弃”各1 分) (2)后来又在石碑上刻了诗,把它留(送)给 相州的人民。 (3分,全句文意1分,“既”、“遗”各1分) (3)他的丰功伟业,用来刻在钟鼎上,谱在乐 歌里的,都是国家的光荣,不单是乡里的荣耀啊! (4分,一句1分)
ቤተ መጻሕፍቲ ባይዱ
(2)同:都表现了和友人的深厚 情谊(或“依依惜别之情”)。 (2分) 异:前者突出与友人山川阻隔的离 愁,(2分)后者重在对友人的劝 慰,显得乐观开朗。(2分)
11.(1)凌万顷之茫然 (2)金就砺则利 (3)纫秋兰以为佩 (4)舞榭歌台 (5)白露未晞 (6)直挂云帆济沧海 (7)往者不可谏 (8)文章合为时而著
22.A
语文Ⅱ(附加题) 23.郭象见向秀注本未在世流传,便 窃为己用,仅自注《秋水》《至乐》, 改注《马蹄》,余篇修订文句。后来向 秀释义副本出现,所以两种注本内容基 本一致。(2分)
24.A一面向魏文帝曹丕称臣,被曹丕 拜为吴王。E泰戈尔是印度诗人。
不准夜聚饮博,趁着贾母、王夫人不在家,王熙 凤又在生病的机会,宝玉等人组织了一次自己的 庆宴;一起为庆祝宝玉生日;当时贾府还在鼎盛 时期,败像还没显现;这是大观园儿女最后一次 人数集中的夜宴;不分主仆尊卑,人人都尽兴。 (一点1分,答到四点即可) (2)觉新虽不赞成,但也认为祖父的命令应当遵 守。(1分)他求助于迷信希望能得到“不吉”的 回答,未能如愿,劝觉民答应婚事。(1分) 觉民反抗,认为亲事应当自己做主。(1分)他 求助大哥未果,与觉慧商量反抗,失败便逃走, 之后逃婚。(1分) 觉慧鼓舞、支持觉民,(1分)他要觉民开一个 例子,给他和兄弟们开辟一条新路,帮助觉民逃 婚。(1分)

苏州市2015届高三第一次调研测试数学试卷(精)

苏州市2015届高三第一次调研测试数学试卷(精)

苏州市 2015 届高三调研测试数学Ⅱ试题 2015.1 参考答案与评分标准21. A .解:设⊙O 半径为 r,由切割线定理得, 2 即 12 ,解得 r=9.2 (4)分 (7)分…………………………………………10 分连结 OA,则有,又 CD ,所以 OA∥CD.所以,即 C. OA PO 15 5.解:解:设,由得:,分,,.分 C .解:,圆的普通方程为:即, 24 …………………………………………………3 分…………………6 分直线的普通方程为:,又圆与直线相切,所以解得:..解:∵∴≥ ……………10 分………………………4 分……………………………7 分 18 y z ,当且仅当时取等号, 7 2 3 3 6 9 ∵,∴. 7 7 7 ∴的最小值为 18 3 6 9 ,此时.……………………………………10 分 7 7 7 7 高三数学答案第 5页,共 6 页22.解:(1)如图,以 CD , CB , CE 为正交基底建立空间直角坐标系,则 E (0,0,1 , D( 2,0,0 , B (0, 2,0 , uuu r uur uu u r F ( 2, 2,1 .( 2,0,1 .,∴分平面 ADF 的法向量,,设平面 DFB 法向量,则,∴.从而令,得,2 ,……………………………………………………………………4 分,显然二面角为锐角,故二面角的大小为 60 .………………………………………………6 分(2)由题意,设 P(a, a,0 (0≤a≤ 2 ,则,.∵PF 与 BC 所成的角为,,∴或(舍), 2 2 所以点 P 在线段 AC 的中点处.……………………………………………………10 分 23.解: (1依题意,X 的可能取值为 1,0,-1,………………………………………2 分 X 的分布列为解得-1 1 2 1 4 1 4 ………………………………4 分 1 11 …………………………………………………………………5 分. 3 4 4 (2设 Y 表示 10 万元投资乙项目的收益,则 Y 的分布列为:Y P 2 α -2 β ……………………8 分 E(Y=2α-2β=4α-2,依题意要求4α-2≥ 1 9 ,∴≤α≤1.………………… 10 分 4 16 高三数学答案第 6页,共 6 页。

2015年苏锡常镇高三一模考试卷物理含答案

2015年苏锡常镇高三一模考试卷物理含答案

2014-2015学年度苏锡常镇四市高三教学情况调研(一) 物理 2015.3注意事项:考生在答题前请认真阅读本注意事项1. 本试卷包含选择题和非选择题两部分.考生答题全部答在答题卡上,答在本试卷上无效.本次考试时间为100分钟,满分值为120分.2. 答题前,请务必将自己的姓名、准考证号(考试号)用书写黑色字迹的0.5毫米签字笔填写在答题卡上,并用2B 铅笔将对应的数字标号涂黑.3. 答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其它答案.答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置答题一律无效.一、单项选择题:本大题共5小题,每小题3分,共计15分.每小题只有一个....选项符合题意. 1.两根相互靠近的长直导线1、2中通有相同的电流,相互作用力为F .若在两根导线所 在空间内加一匀强磁场后,导线2所受安培力的合力恰好为零.则所加磁场的方向是(A )垂直纸面向里 (B )垂直纸面向外 (C )垂直导线向右 (D )垂直导线向左2.如图所示为空间站中模拟地球上重力的装置.环形实验装置的外侧壁相当于“地板” .让环形实验装置绕O 点旋转,能使“地板”上可视为质点的物体与在地球表面处有同样的“重力”,则旋转角速度应为(地球表面重力加速度为g ,装置的外半径为R ) (A )R g (B )gR (C )2R g (D )g R2 3.如图所示,边长为a 的导线框abcd 处于磁感应强度为B 0的匀强磁场中,bc 边与磁场右边界重合.现发生以下两个过程:一是仅让线框以垂直于边界的速度v 匀速向右运动;二是仅使磁感应强度随时间均匀变化.若导线框在上述两个过程中产生的感应电流大小相等,则磁感应强度随时间的变化率为 (A )a v B 02 (B )a v B 0 (C )avB 20 (D )a v B 04abdcOI I124.已知月球半径为R ,飞船在距月球表面高度为R 的圆轨道上飞行,周期为T .万有引力 常量为G ,下列说法正确的是(A )月球第一宇宙速度为4πRT (B )月球表面重力加速度为228πR T(C )月球密度为23πGT(D )月球质量为23232πR GT5.汽车从静止开始先做匀加速直线运动,然后做匀速运动.汽车所受阻力恒定,下列汽车功率P 与时间t 的关系图像中,能描述上述过程的是PPPPttttOOOO(A ) (B ) (C ) (D ) 二、多项选择题:本大题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得 4分,选对但不全的得 2 分,错选或不选的得 0 分.6.如图所示,轻质弹簧上端固定,下端系一物体.物体在A 处时,弹簧处于原长状态.现用手托住物体使它从A 处缓慢下降,到达B 处时,手和物体自然分开.此过程中,物体克服手的支持力所做的功为W .不考虑空气阻力.关于此过程,下列说法正确的有(A )物体重力势能减小量一定大于W (B )弹簧弹性势能增加量一定小于W (C )物体与弹簧组成的系统机械能增加量为W(D )若将物体从A 处由静止释放,则物体到达B 处时的动能为W 错误!链接无效。

2015年江苏高考数学模拟试卷(5套,含附加)有详细答案

2015年江苏高考数学模拟试卷(一)第Ⅰ卷 (必做题 分值160分)苏州市高中数学学科基地 苏州市高中数学命题研究与评价中心一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知全集{|0}U x x =∈>R ,集合{}2A x x =∈R ≥,则U A ð ▲ . 2.如图所示,在复平面内,点A 对应的复数为z ,则z 2的模为 ▲ . 3.抛物线22y x =-的焦点坐标是 ▲ .4.已知直线1:(2)10l ax a y +++=,2:20l ax y -+=.则“3-=a ”是“1l ∥2l ”的 ▲ 条件. 5.当向量(1,1)==-a c ,(1,0)=b 时,执行如图所示的程序框图,输出的i 值为 ▲ .6.为了解某年级女生五十米短跑情况,从该年级中随机抽取8名女生进行五十米跑测试,她们的测试成绩(单位:秒)的茎叶图(以整数部分为茎,小数部分为叶)如图所示.由此可估计该年级女生五十米跑成绩及格(及格成绩为9.4秒)的概率为 ▲ .7.定义在R 上的偶函数()f x x a x b =-+-(其中a b 、为常数)的最小值为2,则22=a b + ▲ .8.设不等式组2201010x y x y x y --⎧⎪+-⎨⎪-+⎩≤≥≥表示的平面区域为D ,()P x y ,是区域D 上任意一点,则2x y --的最小值是 ▲ .9.已知球与棱长均为2的三棱锥各条棱都相切,则该球的表面积为 ▲ . 10.已知)2,0(,1010)4cos(πθπθ∈=+,则sin(2)3πθ-= ▲ . 11.已知22:1O x y +=e ,若直线2y kx =+上总存在点P ,使得过点P 的O e 的两条切线互相垂直,则实数k 的取值范围是 ▲ .12.已知双曲线22221(0,0)x y a b a b-=>>的左右焦点分别为1F ,2F ,P 为双曲线右支上的任意一点,若7 88 6 1 8 9 1 5 7 8A 1-2Oyx212||||PF PF 的最小值为8a ,则双曲线离心率的取值范围是 ▲ .13.已知等差数列{}n a 的公差d 不为0,等比数列{}n b 的公比q 是小于1的正有理数.若1a d =,21b d =,且222123123a a ab b b ++++是正整数,则q 等于 ▲ . 14.在等腰三角形ABC 中,AB AC =,D 在线段AC 上,AD kAC =(k 为常数,且10<<k ),lBD =为定长,则ABC ∆的面积最大值为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)函数π()cos(π)(0)2f x x ϕϕ=+<<的部分图象如图所示. (1)写出ϕ及图中0x 的值;(2)求()f x 在区间11[,]23-上的最大值和最小值.16.(本小题满分14分)如图所示,在三棱柱111ABC A B C -中, 11AA B B 为正方形,11BB C C 是菱形,平面11AA B B ⊥平面11BB C C . (1)求证://BC 平面11AB C ; (2)求证:1B C ⊥1AC ;(3)设点,,,E F H G 分别是111111,,,B C AA A B B C 的中点,试判断,,,E F H G 四点是否共面,并说明理由.CBC 1B 1A 1A如图,两座建筑物CD AB ,的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9cm 和15cm ,从建筑物AB 的顶部A 看建筑物CD 的视角︒=∠45CAD . (1)求BC 的长度;(2)在线段BC 上取一点(P 点P 与点C B ,不重合),从点P 看这两座建筑物的视角分别为,,βα=∠=∠DPC APB 问点P 在何处时,βα+最小?18.(本小题满分16分)已知椭圆E :22221(0)x y a b a b+=>>且过点P .右焦点为F ,点N (2,0). (1)求椭圆E 的方程;(2)设动弦AB 与x 轴垂直,求证:直线AF 与直线BN 的交点M 仍在椭圆E 上.ABDCPβ α已知函数e ()xf x x=.(1)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值; (2)当0x >时,求证:()f x x >;(3)设函数()()F x f x bx =-,其中b 为实常数,试讨论函数()F x 的零点个数,并证明你的结论.20.(本小题满分16分)数列{}n a 的前n 项和为n S ,且满足11a =,122n n a a p +=+(p 为常数,1,2,3,n =L ). (1)若312S =,求n S ;(2)若数列{}n a 是等比数列,求实数p 的值. (3)是否存在实数p ,使得数列1{}na 满足:可以从中取出无限多项并按原来的先后次序排成一个等差数列?若存在,求出所有满足条件的p 的值;若不存在,说明理由.第II 卷 (附加题 分值40分)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,P 是O e 外一点,PD 为切线,割线PEF 经过圆心O ,若12PF =,43PD =,求EFD ∠的度数.B .选修4—2:矩阵与变换将曲线y =2sin4x 经矩阵M 变换后的曲线方程为y =sin x ,求变换矩阵M 的逆矩阵.C .选修4—4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线l 的参数方程为⎩⎨⎧=+=ααsin cos 1t y t x (t 为参数,πα<<0),曲线C 的极坐标方程为θθρcos 4sin 2=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A 、B 两点,当α变化时,求AB 的最小值.D .选修4—5:不等式选讲已知0a b >,且1a b +=,求证:212122a b +++≤.【必做题】第22题,第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,已知三棱柱ABC —A 1B 1C 1的侧棱与底面垂直,AA 1=AB =AC =1,AB ⊥AC ,M 、N 分别是CC 1、BC 的中点,点P 在直线A 1B 1上,且满足111B A P A λ=(∈λR ). (1)证明:PN ⊥AM ;(2)若平面PMN 与平面ABC 所成的角为45°,试确定点P 的位置.23.(本小题满分10分)已知数列{a n }满足:1*1122,1()n a n a a a a n -+=-=+∈N . (1)若1a =-,求数列{a n }的通项公式;(2)若3a =,试证明:对*n ∀∈N ,a n 是4的倍数.2015年江苏高考数学模拟试卷(一)第Ⅰ卷 参考答案与解析一、填空题:本大题共14小题,每小题5分,共70分.1.{|02}x x ∈<<R 2.5 3. 1(,0)2- 4.充分不必要 5.2 6.0.625 7.28.3- 9.2π 10.410- 11. (,1][1,)-∞-+∞U 12.(]1,3 13.12 14.)1(222k l -. 解析:2.2225z i z z =-+==, 4.1230l l a a ⇒=-=∥或,7.由题意()f x x a x b =-+-为偶函数,故0a b +=,又()f x 的最小值为2,所以2a b -=,所以221a b ==10.4cos(2)sin 225πθθ+=-=-,3cos()0,cos245πθθ+>∴=Q,故sin(2)3πθ-12.设2PF x =,2448a x a a x++≥,所以2x a c a =-≥,所以13e <≤13.2222221232222212349141a a a d d d b b b d d q d q q q ++++==++++++,令214=1t q q ++,t 为正整数,所以214+1=0q q t +-,解得q =8t 时,12q =14.如图,以B 为原点,BD 为x 轴建立直角坐标系xBy .设A (x ,y ),y >0.因AD =kAC =kAB ,故AD 2=k 2AB 2,于是(x -l )2+y 2=k 2(x 2+y 2).所以,22222(1)21k x lx l y k --+-=-=2222222(1)()111l k l k x k k k ---+---≤2222(1)k l k -,于是,max21kly k =-,2max 2()2(1)ABD kl S k ∆=-,2max max 21()()2(1)ABC ABD l S S k k ∆∆==-. 二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤. 15.解:(1)ϕ的值是π6.0x 的值是53. (2)由(1)可知:π()cos(π)3f x x =+.因为 11[,]23x ∈-,所以 ππππ362x -+≤≤. 所以 当ππ03x +=,即13x =-时,()f x 取得最大值1;当πππ62x +=,即13x =时,()f x 取得最小值0.16.证明:(1)在菱形11BB C C 中,BC ∥11B C .因为 BC Ë平面11AB C ,11B C Ì平面11AB C , 所以 //BC 平面11AB C .(2)连接1BC .在正方形11ABB A 中,1AB BB ^. 因为 平面11AA B B ⊥平面11BB C C ,平面11AA B B I 平面111BB C C BB =,AB Ì平面11ABB A , 所以 AB ^平面11BB C C .因为 1B C Ì平面11BB C C , 所以 1AB B C ^. 在菱形11BB C C 中,11BC B C ^.因为 1BC Ì平面1ABC ,AB Ì平面1ABC ,1BC AB B I =,所以 1B C ^平面1ABC . 因为 1AC Ì平面1ABC , 所以 1B C ⊥1AC . (3),,,E F H G 四点不共面. 理由如下:因为 ,E G 分别是111,B C B C 的中点, 所以 GE ∥1CC . 同理可证:GH ∥11C A .因为 GE Ì平面EHG ,GH Ì平面EHG ,GE GH G I =,1CC Ì平面11AAC C ,11A C Ì平面11AAC C ,所以 平面EHG ∥平面11AAC C . 因为 F ∈平面11AAC C ,所以 F ∉平面EHG ,即,,,E F H G 四点不共面.17.解:(1)作AE ⊥CD ,垂足为E ,则9CE =,6DE =,设BC x =,则tan tan tan tan()1tan tan CAE DAECAD CAE DAE CAE DAE ∠∠∠=∠∠=-∠⨯∠++961961x x x x==-⋅+, 化简得215540x x --=,解之得,18x =或3x =-(舍) 答:BC 的长度为18m .(2)设BP t =,则18(018)CP t t =-<<,CBC 1B 1A 1AH GFECBC 1B 1A 1A2291516266(27)18tan()9151813518135118t t t t t t t t t tαβ-===-----⋅-++++++.设227()18135tf t t t =--++,222542723()(18135)t t f t t t -⨯'=-++,令()0f t '=,因为018t <<,得27t =,当27)t ∈时,()0f t '<,()f t 是减函数;当27,18)t ∈时,()0f t '>,()f t 是增函数,所以,当27t =时,()f t 取得最小值,即tan()αβ+取得最小值,因为2181350t t --<+恒成立,所以()0f t <,所以tan()0αβ<+,(,)2αβπ∈π+, 因为tan y x =在(,)2ππ上是增函数,所以当27t =时,αβ+取得最小值. 答:当BP为27)m 时,αβ+取得最小值. 18.(1)解:因为2e =,所以a =,b =c , 即椭圆E 的方程可以设为222212x y b b+=.将点P 的坐标代入得:213144b =+=, 所以,椭圆E 的方程为2212x y +=. (2)证明:右焦点为F (1,0),设00(,)A x y ,由题意得00(,)B x y -.所以直线AF 的方程为:00(1)1y y x x =--, ① 直线BN 的方程为:00(2)2y y x x -=--, ② ①、 ②联立得,0000(1)(2)12y y x x x x --=---, 即003423x x x -=-,在代入②得,000034(1)123y x y x x -=---,即0023y y x =-.所以点M 的坐标为000034(,)2323x y x x ---.又因为2222220000200034(34)21()()2223232(23)M M x y x y x y x x x --++=+=--- ③将22012x y =-代入③得,2222202000222000(34)2(1)824182(23)2122(23)2(23)2(23)M M x x x x x x y x x x -+--+-+====---. 所以点M 在椭圆E 上.19.(1)解:2e e '()x xx f x x-=. 因为切线0ax y -=过原点(0,0), 所以 00000200e e e x x x x x x x -=,解得:02x =. (2)证明:设2()e ()(0)xf xg x x x x ==>,则24e (2)'()x x x g x x -=. 令24e (2)'()0x x x g x x -==,解得2x =. x 在(0,)+∞上变化时,'(),()g x g x 的变化情况如下表所以 当2x =时,()g x 取得最小值2e4. 所以 当0x >时,2e ()14g x ?,即()f x x >.(3)解:()0F x =等价于()0f x bx -=,等价于20xe b x-=.注意0x ≠.令2()x e H x b x =-,所以3(2)()(0)x e x H x x x -'=≠. (I )当0b ≤时, ()0H x >,所以()H x 无零点,即F(x)定义域内无零点.(II )当0b >时,(i )当0x <时,()0H x '>,()H x 单调递增;因为()H x 在(,0)-∞上单调递增,而11(H be b b -=-=⋅,又1>,所以(0H <.又因为1(n H nbe b b -=-=⋅,其中n N *∈,取13n b ⎡⎤=+⎢⎥⎣⎦,1b ⎡⎤⎢⎥⎣⎦表示1b的整数部分.所以1e <<,3n >,由此(0H >. 由零点存在定理知,()H x 在(,0)-∞上存在唯一零点. (ii )当02x <<时,()0H x '<,()H x 单调递减; 当2x >时,()0H x '>,()H x 单调递增.所以当2x =时,()H x 有极小值也是最小值,2(2)4e H b =-. ①当2(2)04e H b =->,即204e b <<时,()H x 在(0,)+∞上不存在零点; ②当2(2)04e H b =-=,即24e b =时,()H x 在(0,)+∞上存在惟一零点2;………12分 ③当2(2)04e H b =-<,即24e b >时,由1>有(1)0H b b =-=->,而(2)0H <,所以()H x 在(0,2)上存在惟一零点;又因为23b >,223224(2)44b b e e b H b b b b -=-=. 令31()2th t e t =-,其中22t b =>,23()2t h t e t '=-,()3t h t e t ''=-,()3t h t e '''=-, 所以2()30h t e '''>->,因此()h t ''在(2,)+∞上单调递增,从而2()(2)60h t h e ''>=->, 所以()h t '在(2,)+∞上单调递增,因此2()(2)60h t h e ''>=->, 故()h t 在(2,)+∞上单调递增,所以2()(2)40h t h e >=->.由上得(2)0H b >,由零点存在定理知,()H x 在(2,2)b 上存在惟一零点,即在(2,)+∞上存在唯一零点.综上所述:当0b ≤时,函数F(x)的零点个数为0;当2e 04b <<时,函数F(x)的零点个数为1;当2e 4b =时,函数F(x)的零点个数为2;当2e 4b >时,函数F(x)的零点个数为3.20.解:(1)因为 11a =,122n n a a p +=+,所以 21222a a p p =+=+,322222a a p p =+=+. 因为 312S =,所以 22226324p p p ++++=+=,即6p =. 所以 13(1,2,3,)n n a a n +-==L .所以 数列{}n a 是以1为首项,3为公差的等差数列.所以 2(1)31322n n n n nS n --=⨯+⨯=. (2)若数列{}n a 是等比数列,则2213a a a =.由(1)可得:2(1)1(1)2p p +=⨯+.解得:0p =. 当0p =时,由122n n a a p +=+得:11n n a a +===L . 显然,数列{}n a 是以1为首项,1为公比的等比数列. 所以 0p =.(3)当0p =时,由(2)知:1(1,2,3,)n a n ==L .所以11(1,2,3,)nn a ==L ,即数列1{}n a 就是一个无穷等差数列.所以 当0p =时,可以得到满足题意的等差数列. 当0p ≠时,因为 11a =,122n n a a p +=+,即12n n pa a +-=, 所以 数列{}n a 是以1为首项,2p为公差的等差数列. 所以 122n p p a n =+-. 下面用反证法证明:当0p ≠时,数列1{}na 中不能取出无限多项并按原来次序排列而成等差数列.假设存在00p ≠,从数列1{}na 中可以取得满足题意的无穷等差数列,不妨记为{}nb . 设数列{}n b 的公差为d .①当00p >时,0(1,2,3,)n a n >=L . 所以 数列{}n b 是各项均为正数的递减数列. 所以 0d <.因为 1(1)(1,2,3,)n b b n d n =+-=L , 所以 当11b n d >-时,111(1)(11)0n bb b n d b d d=+-<+--=,这与0n b >矛盾. ②当00p <时,令001022p pn +-<,解得:021n p >-.所以 当021n p >-时,0n a <恒成立. 所以 数列{}n b 必然是各项均为负数的递增数列. 所以 0d >.因为 1(1)(1,2,3,)n b b n d n =+-=L , 所以 当11b n d >-时,111(1)(11)0n bb b n d b d d=+->+--=,这与0n b <矛盾. 综上所述,0p =是唯一满足条件的p 的值.第II 卷 参考答案与解析21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲 解:连结DO ,Q PD 为切线,PEF 为割线,∴2PD PE PF =⋅,又Q PD =12PF =,∴24PD PE PF==,∴8EF PF PE =-=,4EO =,Q PD 为切线,D 为切点,∴OD PD ⊥在Rt PDO V 中,4OD =,8PO PE EO =+=,∴30DPO ∠=o ,60DOP ∠=o ,Q OD OF =,∴1302EFD DOP ∠=∠=o . B .选修4—2:矩阵与变换解:由条件知点(x ,y)在矩阵M 作用下变换为点⎝⎛⎭⎫4x ,y 2,即M ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤4x y 2, 所以M =⎣⎢⎢⎡⎦⎥⎥⎤40012,设M -1=⎣⎢⎡⎦⎥⎤a b c d ,于是有MM -1=⎣⎢⎢⎡⎦⎥⎥⎤40012 ⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001, 所以⎩⎪⎨⎪⎧4a =14b =0c 2=0d 2=1,解得⎩⎪⎨⎪⎧a =14b =0c =0d =2,所以M 的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤14002. C .选修4—4:坐标系与参数方程解:(1)由θθρcos 4sin 2=,得θρθρcos 4)sin (2=所以曲线C 的直角坐标方程为x y 42=.(2)将直线l 的参数方程代入x y 42=,得04cos 4sin 22=--ααt t .设A 、B 两点对应的参数分别为1t 、2t ,则=+21t t αα2sin cos 4,=21t t α2sin 4-, ∴=-+=-=21221214)(t t t t t t AB αααα2242sin 4sin 16sin cos 16=+,当2πα=时,AB 的最小值为4.D .选修4—5:不等式选讲解:()()()22221212121118a b a b +++++++=≤,∴212122a b +++≤.【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)证明:如图,以AB ,AC ,AA 1分别为x ,y ,z 轴,建立空间直角坐标系A -xyz .则P (λ,0,1),N (12,12,0),M (0,1,12),从而PN u u u r =(12-λ,12,-1),AM u u u u r =(0,1,12),PN AM ⋅u u u r u u u u r =(12-λ)×0+12×1-1×12=0,所以PN ⊥AM ;(2)平面ABC 的一个法向量为n =1AA u u u r=(0,0,1).设平面PMN 的一个法向量为m =(x ,y ,z ),由(1)得MP u u u r =(λ,-1,12).由⎪⎪⎩⎪⎪⎨⎧=+-=+--⎪⎩⎪⎨⎧=⋅=⋅.021,021)21(,0,0z y x z y x MP m NP m λλ得 解得))1(2,12,3(,3.3)1(2,312λλλλ-+==⎪⎪⎩⎪⎪⎨⎧-=+=m x x z x y 得令. ∵平面PMN 与平面ABC 所成的二面角为45°,∴|cos 〈m ,n 〉|=|m ·n |m |·|n ||=|2(1-λ)|9+(2λ+1)2+4(1-λ)2=22,解得λ=-12.故点P 在B 1A 1的延长线上,且|A 1P |=12.23.解:(1)当1a =-时,1114,(1)1n a n a a -+=-=-+.令1n n b a =-,则115,(1)n b n b b +=-=-. 因15b =-为奇数,n b 也是奇数且只能为1-, 所以,5,1,1,2,n n b n -=⎧=⎨-≥⎩即4,1,0, 2.n n a n -=⎧=⎨≥⎩(2)当3a =时,1114,31n a n a a -+==+.下面利用数学归纳法来证明:a n 是4的倍数. 当1n =时,1441a ==⨯,命题成立;设当*()n k k =∈N 时,命题成立,则存在t ∈N *,使得4k a t =,1414(1)1313127(41)1k a t t k a ---+∴=+=+=⋅-+27(41)14(277)m m =⋅++=+,其中,4(1)14544434(1)4(1)4(1)44C 4(1)C 4C 4t t r r t r t t t t m --------=-⋅++-⋅+-⋅L L ,m ∴∈Z ,∴当1n k =+时,命题成立.∴由数学归纳法原理知命题对*n ∀∈N 成立.2015年江苏高考数学模拟试卷(二)第Ⅰ卷 (必做题 分值160分)苏州市高中数学学科基地 苏州市高中数学命题研究与评价中心一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.函数2()log (21)f x x =-的定义域为 ▲ . 2.若复数iia ++2是实数(i 为虚数单位),则实数a 的值是 ▲ . 3.在大小相同的4个小球中,2个是红球,2个是白球,若从中随机抽取2个球,则所抽取的球中至少有一个红球的概率是 ▲ . 4.若()1cos 33πα-= ,则()sin 26πα-= ▲ . 5.如图所示的流程图,若输入x 的值为 5.5-,则输出的结果c = ▲ .6.已知实数x y ,满足约束条件 13230x x y x y ⎧⎪+⎨⎪--⎩≥≤≤ 若z ax y =+取得最小值时的最优解有无数个,则a = ▲ .7.给出下列命题:其中,所有真命题的序号为 ▲ .(1)若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;(2)若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; (3)若两条平行直线中的一条垂直于直线m ,那么另一条直线也与直线m 垂直;(4)若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中正确的是 ▲ .8.设斜率为22的直线l 与椭圆22221(0)x y a b a b+=>>交于不同的两点P 、Q ,若点P 、Q 在x 轴上的射影恰好为椭圆的两个焦点,则该椭圆的离心率为 ▲ .9.已知等比数列{}n a 各项都是正数,且42324,4a a a -==,则{}n a 前10项的和为 ▲ .10.在ABC ∆中,角A B C ,,所对的边分别是2222a b c a b c +=,,,,则角C 的取值范围是 ▲ . 11.如图,函数()()2sin (0,)2f x x πωϕωϕπ=+>≤≤的部分图象,其中A B ,分别是图中的最高点和最低点,且5AB =,那么ωϕ+的值为 ▲ . 12.若141m x x+-≥对任意的)1,0(∈x 恒成立,则m 的取值范围为 ▲ . 13.若正实数a ,b ,c 满足2223108a ab b c +-=,且a>b ,若不等式5a +6b ≥kc 恒成立,则实数k 的最大值为 ▲ .14.设三角形ABC 的内角A 、B 、C 所对边a 、b 、c 成等比数列,则sin cos tan sin cos tan A A CB B C++的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知向量a =sin θ)与b =(1,cos θ)互相平行,其中θ∈(0,2π). (1)求sin θ和cos θ的值;(2)求f (x )=sin(2x +θ)的最小正周期和单调增区间.16.(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,PA ⊥平面ABCD ,M 是AD 中点,N 是PC 中点, (1)求证://MN 面PAB ;(2)若面PMC ⊥面PAD ,求证:CM AD ⊥.BDA O BM C DEF N xy如图,某小区有一矩形地块OABC ,其中2=OC ,3=OA (单位百米).已知OEF 是一个游泳池,计划在地块OABC 内修一条与池边EF 相切于点M 的直路l (宽度不计),交线段OC 于点D ,交线段OA 于点N .现以点O 为坐标原点,线段OC 所在直线为x 轴,建立平面直角坐标系,若池边EF 满足函数()2202y x x =-+剟的图象.若点M 到y 轴距离记为t . (1)当32=t 时,求直路l 所在的直线方程; (2)当t 为何值时,地块OABC 在直路l 不含泳池那侧的面积取到最大,并求出最大值.18.(本小题满分16分)已知椭圆E 的中心在原点,焦点在x 2e =﹒ (1)求椭圆E 的方程;(2)过点()1,0作斜率为k 的直线l 交点B 是点A 关于x 求出定点坐标﹒在数列{a n }中,1n a n=(n ∈N *).从数列{a n }中选出k (k ≥3)项并按原顺序组成的新数列记为{b n },并称{b n }为数列{a n }的k 项之列.例如数列11112358,,,为{a n }的一个4项子列. (1)试写出数列{a n }的一个3项子列,并使其为等差数列;(2)如果{b n }为数列{a n }的一个5项子列,且{b n }为等差数列,证明:{b n }的公差d 满足108d -<< ; (3)如果{c n }为数列{a n }的一个m (m ≥3)项子列,且{c n }为等比数列,证明:c 1+c 2+c 3+……+c m ≤2-112m -.20.(本小题满分16分)已知函数xm x x x f --=ln )(. (1)若,2=m 求)(x f 的最值; (2)讨论)(x f 的单调性;(3)已知B A ,是)(x f 图像上的二个不同的极值点,设直线AB 的斜率为k . 求证: 1->k第II 卷 (附加题 分值40分)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,已知AB 是⊙O 的直径,AC 是⊙O 的弦,BAC ∠的平分线AD 交⊙O 于D ,过点D 作DE AC ⊥交AC 的延长线于点E ,OE 交AD 于点F .若35AC AB =,求FDAF的值.B .选修4—2:矩阵与变换已知矩阵⎥⎦⎤⎢⎣⎡=21c b M 有特征值11-=λ及对应的一个特征向量111⎡⎤=⎢⎥-⎣⎦e . (1)求矩阵M ;(2)求曲线148522=++y xy x 在M 的作用下的新曲线方程.C .选修4—4:坐标系与参数方程以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,求直线l 被圆C 截得的弦长.D .选修4—5:不等式选讲已知222+=x y ,且x y ≠,求()()2211++-x y x y 的最小值.ABCDEFO【必做题】第22题,第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,已知三棱锥ABC O -的侧棱OC OB OA ,,两两垂直,且2,1===OC OB OA ,E 是OC 的中点. (1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角C BE A --的正弦值.23.(本小题满分10分)设整数3n ≥,集合{1,2,,},,P n A B =L 是P 的两个非空子集.记n a 为所有满足A 中的最大数小于B 中的最小数的集合对(,)A B 的个数. (1)求3a ; (2)求n a .AECBO2015年江苏高考数学模拟试卷(二)第Ⅰ卷 参考答案与解析一、填空题:本大题共14小题,每小题5分,共70分.1.1(,)2+∞ 2.2 3.564.79- 5.1 6.-12 7.()1、()3、()4 89.1023 10.(0,]3π11.76π 12.1m ≥ 13. 14.解析:1.只要解不等式210x ->3.任意取两个球的种数有6种,取出两个都是白色的有2种, 116P =-6.直线y =-ax +z 与可行域(三角形)下边界x -2y -3=0重合时z 最小,a=-128.设点P 、Q 在x 轴上的射影分别为焦点F 1、F 2,|PF 1|=2c (其中c 为|OF 1|的长),从而|PF 2,所以2a =|PF 1|+|PF 2|=,得e . 9.由条件得11,2a q ==,则101023S =10.2222221cos 2442a b c a b ab C ab ab ab +-+===≥,又因为(0,)C π∈,得C ∈(0,]3π11. 23,6,2T T πω===得3πω=,又当0x =时,(0)1f =,得56πϕ=12.由题意可知0>m ,)1)(11(11x x x mx x m x -+-+=-+1111x mx m m x x-=+++++-≥∴14m ++,∴1m ≥13.由已知,2(4)(32)a b a b c +-=,40,320a b a b +>->,562(4)(32)a b a b a b +=++-≥min 56()a bk c+=≤14.sin cos tan sin cos tan A A C B B C ++=sin cos cos sin sin cos cos sin A C A C B C B C ++=sin()sin()A C B C ++=sin()sin()B A ππ--=sin sin B A =ba设a 、b 、c 的公比为q ,则b =aq ,c =aq 2,又 a 、b 、c 能构成三角形的三边,所以有222a aq aq aq aq a a aq aq ⎧+>⎪+>⎨⎪+>⎩,解得15151551q q q q R⎧-+<<⎪⎪⎪+-⎪<->⎨⎪∈⎪⎪⎪⎩或,即5151q -+<<. 二、解答题:本大题共6小题,共计90分.解答时应写出文字说明、证明过程或演算步骤. 15.解:(1)因为向量a 与b 平行,则sin θ=3cos θ,tan θ=3,又θ∈(0,2π), 所以θ=3π,所以sin θ=32,cos θ=12;(2)由f (x )=sin(2x +θ)=sin(2)3x π+,得最小正周期T π=,由22k ππ-≤23x π+≤22k ππ+,k Z ∈,解得512k ππ-≤x ≤12k ππ+,k Z ∈, 所以f (x )的单调增区间为5[,],1212k k k Z ππππ-+∈. 16.证明:(1)取PB 中点E ,连EA ,EN ,PBC ∆中,//EN BC 且12EN BC =, 又12AM AD =,//AD BC ,AD BC =得//EN =AM ,四边形ENMA 是平行四边形, 得//MN AE ,MN ⊄面PAB ,AE ⊂面PAB ,//MN ∴面PAB(2)过点A 作PM 的垂线,垂足为H ,Q 面PMC ⊥面PAD ,面PMC I 面PAD PM =,AH PM ⊥,AH ⊂面PADAH ∴⊥面PMC ,CM ⊂面PMC ,AH ∴⊥CMQ PA ⊥平面ABCD ,CM ⊂平面ABCD ,∴PA ⊥CM Q PA AH A =I ,PA 、AH ⊂面PAD ,CM ⊥面PAD ,AD ⊂Q 面PAD ,CM AD ∴⊥17.解:(1)由题意得()214,39M, 又因为2y x '=-,所以直线l 的斜率34-=k ,故直线l 的方程为()1442933y x -=--, 即92234+-=x y . (2)由(1)易知)(2)2(:2t x t t y l --=--,即222++-=t tx y .令0=y 得()122x t t=+,令0x =得22y t =+.由题意()2122,223t tt ⎧+⎪⎨⎪+⎩≤≤解得221t -≤≤. ()()2112222ODN S t t t ∆∴=⋅++()31444t t t=++.令()()31444g t t t t=++,则()()42222143443444t t g t t t t +-'=+-=()()2222324t t t +-=. 当6t =时,()60g '=;当()622,t ∈-时,()60g '<;∴所求面积的最大值为86918.解:(1)设椭圆E 的方程为22221x ya b +=,由已知得:2122a c c a⎧-=⎪⎨=⎪⎩21a c ⎧=⎪∴⎨=⎪⎩ 2221b a c ∴=-= ,∴椭圆E 的方程为2212x y += (2)设()11,A x y ,()11,B x y -,则11x ≠,直线AP :11(1)1y y x x =--,与椭圆方程2222x y +=联立, 得()1222111234340x x y x x x -++-=,得113423P x x x -=-,点P 在直线AP 上,则1123P y y x =-,直线BP 方程:1111()(2)y y y x x x +=---,化简得:11(2)(2)y y x x =---,则直线BP 过定点(2,0)19.解:(1)3项子列111,,236;(答案不唯一)(2)由题意,知1≥b 1>b 2>b 3>b 4>b 5>0,所以d =b 2-b 1<0.若b 1=1,若{b n }为{a n }的一个5项子列,得b 2≤12,所以d =b 2-b 1≤12-1=-12,又b 5=b 1+4d ,b 5>0,所以4d =b 5-b 1=b 5-1>-1,即d >-14,与d ≤-12矛盾,所以b 1≠1. 所以b 1≤12,因为b 5=b 1+4d ,b 5>0,所以4d =b 5-b 1≥b 5-12>-12,即d >-18, 所以108d -<<.(3)由题意,设{c n }的公比为q ,则:c 1+c 2+c 3+……+c m =c 1(1+q +q 2+……+q m -1),因为{c n }为{a n }的一个m 项子项,所以q 为正有理数,且q <1,c 1=1a≤1(a ∈N *), 设q =(,*KK L N L∈,且K ,L 互质,L ≥2), 当K =1时,因为q =1L ≤12,所以c 1+c 2+c 3+……+c m =c 1(1+q +q 2+……+q m -1)≤ 1+12+21()2+……+11()2m -=2-112m -; 当K ≠1时,因为c m =c 1qm -1=111m m K a L--⨯是{a n }的项,且K 、L 互质,所以a =K m -1×M (M ∈N*) 所以c 1+c 2+c 3+……+c m =c 1(1+q +q 2+……+q m -1)=1232111111()m m m m M K K L K L L----++++L 因为L ≥2,M ∈N *,所以c 1+c 2+c 3+……+c m ≤1+12+21()2+……+11()2m -=2-112m -; 综上,c 1+c 2+c 3+……+c m ≤2-112m -.20.解:(1)当2=m 时, 222(2)(2)(1)()0x x x x f x x x-----+'===,∴2=x ∴)(x f 在()2,0上单调递增,在()+∞,2上单调递减 ∴32ln )2()(max -==f x f(2)2221()()1m x x m f x x x x---'=-+= )0(>x i: 104m ∆-≤时,即≤时()0f x '≤,∴)(x f 在()+∞,0上单调递减.ii: ()0f x '=时24111m x +-=,24112mx ++=① 当041<<-m 时, 210x x << ∴)(x f 在⎪⎪⎭⎫⎝⎛+-2411,0m上单调递减,在1122⎛⎫ ⎪ ⎪⎝⎭,上单调递增,在⎪⎪⎭⎫⎝⎛+∞++,2411m 上单调递减. ② 当0m ≥时, 210x x <<∴)(x f 在⎪⎪⎭⎫ ⎝⎛++2411,0m 上单调递增,在⎪⎪⎭⎫⎝⎛+∞++,2411m 上单调递减. (3)设)(,(),(,(2211x f x B x f x A则21,x x 是方程02=--m x x 的二个根,且m x x -=⋅21,1021<<<x x∴212221112121)(ln ln )()(x x x m x x x m x x x x x f x f k ------=--=2121211ln ln x x m x x x x ⋅+---=2ln ln 2121---=x x x x令)10(ln )(<<-=x xx x g ,∴ 11()10xg x x x-'=-=>,∴)(x g 在()1,0上单调递增 Θ1021<<<x x ,∴ )()(21x g x g <即2211ln ln x x x x -<-∴2121ln ln x x x x -<-,∴ 1ln ln 2121>--x x x x∴ 1->k第II 卷 参考答案与解析21、【选做题】在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分. A .选修4—1:几何证明选讲解:连接OD ,BC ,设BC 交OD 于点M .因为OA=OD ,所以∠OAD=∠ODA ;又因为∠OAD=∠DAE ,所以∠ODA=∠DAE 所以OD//AE ;又 因为AC ⊥BC ,且DE ⊥AC ,所以BC//DE . 所以四边形CMDE 为平行四边形,所以CE=MD 由35AC AB =,设AC=3x ,AB=5x ,则OM=32x ,又OD=52x , 所以MD=52x -32x =x ,所以AE=AC+CE=4x ,因为OD//AE ,所以FD AF =48552AE x OD x ==.B .选修4—2:矩阵与变换 解:(1)由已知⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡111121c b ,即12,11=--=-c b , ∴3,2==c b ,所以⎥⎦⎤⎢⎣⎡=2331M ; (2)设曲线上任一点),(y x P ,P 在M 作用下对应点),(11'y x P ,则⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡y x y x 232111 即⎩⎨⎧+=+=y x y y x x 23211,解之得⎪⎪⎩⎪⎪⎨⎧-=-=4321111y x y x y x ,代入148522=++y xy x 得22121=+y x ,即曲线148522=++y xy x 在M 的作用下的新曲线的方程是222=+y x . C .选修4—4:坐标系与参数方程解:直线l 的参数方程⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数)化为直角坐标方程是y =x -4,圆C 的极坐标方程ρ=4cos θ化为直角坐标方程是x 2+y 2-4x =0. 圆C 的圆心(2,0)到直线x -y -4=0的距离为d =22=2.又圆C 的半径r =2, 因此直线l 被圆C 截得的弦长为2r 2-d 2=22.D .选修4—5:不等式选讲解:222x y +=Q ,()()224x y x y ∴++-= ,()()()2222114()()x y x y x y x y ⎛⎫++-+ ⎪+-⎝⎭Q≥,22111()()x y x y ∴++-≥, 当且仅当0x y ==,或0x ,y ==时2211()()x y x y ++-的最小值是1. 【必做题】第22题、第23题,每题10分,共计20分.22.解:(1)以O 为原点,分别以OB ,OC ,OA 为x ,y ,z 轴,建立直角坐标系A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0)(2,1,0),(0,2,1)EB AC =-=-u u u r u u u r 2cos ,5EB AC ∴<>=-u u u r u u u r异面直线BE 与AC 所成角的余弦值为25. (2)(2,0,1),(0,1,1)AB AE =-=-u u u r u u u r,设平面ABE 的法向量为1(,,)x y z =n ,则由11,AB AE ⊥⊥n n u u u r u u u r ,得120(1,2,2)0x z y z -=⎧=⎨-=⎩n 取平面BEC 的法向量为2(0,0,1)=n122cos ,3∴<>=n n , 二面角C BE A --. 23.解:(1)当n =3时,P ={1,2,3 },其非空子集为:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}, 则所有满足题意的集合对(A ,B )为:({1},{2}),({1},{3}),({2},{3}), ({1},{2,3}),({1,2},{3})共5对,所以a 35=;(2)设A 中的最大数为k ,其中11k n -≤≤,整数n ≥3,则A 中必含元素k ,另元素1,2,…,k 1-可在A 中,故A 的个数为:0111111C C C 2k k k k k -----++⋅⋅⋅+=, B 中必不含元素1,2,…,k ,另元素k +1,k +2,…,n 可在B 中,但不能都不在B 中,故B 的个数为:12C C C 21n k n kn k n k n k -----++⋅⋅⋅+=-, 从而集合对(A ,B )的个数为()1221k n k --⋅-=1122n k ---, 所以a n ()11111111222(1)2(2)2112n n n k n n k n n ------=-=-=-⋅-=-⋅+-∑.2015年江苏高考数学模拟试卷(三)第Ⅰ卷 (必做题 分值160分)苏州市高中数学学科基地 苏州市高中数学命题研究与评价中心一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合A ={1,2,3,4,5},集合B ={x |x <a },其中a Z ∈,若A I B={1,2},则a = ▲ . 2.若复数(1+i )z =3-4i (i 为虚数单位),则复数z 的模| z | = ▲ .3.右图是七位评委打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为 ▲ .4.右边是一个算法的伪代码,若输入x 的值为1,则输出的x 的值是 ▲ .5.有三张大小形状都相同的卡片,它们的正反面分别写有1和2、3和4、5和6,现将它们随机放在桌面上,则三张卡片上显示的数字之和大于10的概率是 ▲ .6.已知{}n a 为等差数列,其前n 项和为n S ,若371517233a a a a ++-=,则17S = ▲ .7.已知正四棱锥的底面边长是2,这个正四棱锥的侧面积为16,则该正四棱锥的体积为 ▲ .8.设()αβ∈0π,,,且5sin()13αβ+=, 1tan 22α=.则cos β的值为 ▲ . 9.已知x ,y 满足约束条件1,3,23,x x y y x ⎧⎪+⎨⎪-⎩≥≤≥则z =2x +y 的最小值为 ▲ .10.若2x ∀<,不等式()2620x a x a +-+≥恒成立,则实数a 的取值范围是 ▲ .11.椭圆C :22221(0)x y a b a b+=>>的左、右焦点分别是12,F F ,A 为椭圆上一点,120AF AF ⋅=u u u r u u u u r ,2AF 与y轴交与点M ,若254F M MA =u u u u u r u u u r,则椭圆离心率的值为 ▲ .12.已知二次函数232()(16)16f x ax a x a =+--(0a >)的图象与x 轴交于,A B 两点,则线段AB 长度的最小值 ▲ .13.如图,在正△ABC 中,点G 为边BC 上的中点,线段AB ,AC 上的动点D ,E分别满足AD AB λ=u u u r u u u r ,(12)AE AC λ=-u u u r u u u r()λ∈R ,设DE 中点为F ,记()FG R BCλ=u u u r u u u r ,则()R λ的取值范围为 ▲ . 14.设二次函数2()(21)2(0)f x ax b x a a =++--≠在区间[3,4]上至少有一个零点,则22a b +的最小值Read xIf x >3 then x ←x -3 Else x ←3-x EndIf Print x为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)三角形ABC 中,角A 、B 、C 所对边分别为a ,b ,c ,且222a cb ac +=+. (1)若cosA =13,求sinC 的值;(2)若b =7,a =3c ,求三角形ABC 的面积.16.(本小题满分14分)如图,已知四棱锥P ABCD -中,PA AD ⊥,底面ABCD 是菱形,45ABC ∠=︒, E 、F 分别是棱BC 、P A 上的点,EF //平面PCD ,PAE PAD ⊥平面平面. (1)求证:EF BC ⊥;(2)若AF FP λ=,求实数λ的值.如图,有一景区的平面图是一半圆形,其中AB 长为2km ,C 、D 两点在半圆弧上,满足BC =CD .设COB θ∠=.(1)现要在景区内铺设一条观光道路,由线段AB 、BC 、CD 和DA 组成,则当θ为何值时,观光道路的总长l 最长,并求l 的最大值.(2)若要在景区内种植鲜花,其中在AOD ∆和BOC ∆内种满鲜花,在扇形COD 内种一半面积的鲜花,则当θ为何值时,鲜花种植面积S 最大.18.(本小题满分16分)如图,设A 、B 分别为椭圆E :()222210x y a b a b+=>>的左、右顶点,P 是椭圆E 上不同于A 、B 的一动点,点F 是椭圆E 的右焦点,直线l 是椭圆E 的右准线.若直线AP 与直线:x a =和l 分别相交于C 、Q 两点,FQ 与直线BC 交于M . (1)求:BM MC 的值;(2)若椭圆E的离心率为2,直线PM 的方程为80x +-=,求椭圆E 的方程.已知数列{n a }、{n b }满足:1121141n n n n n b a a b b a +=+==-,,.(1)求1234,,,b b b b ;(2)证明:11n b ⎧⎫⎨⎬-⎩⎭是等差数列,并求数列{}n b 的通项公式;(3)设1223341...n n n S a a a a a a a a +=++++,求实数a 为何值时4n n aS b <恒成立.20.(本小题满分16分)已知函数()f x 满足2(2)()f x f x +=,当(02)x ∈,x ∈(0,2)时,1()ln ()2f x x ax a =+<-,当42x ∈--(,)时,()f x 的最大值为 - 4.(1)求实数a 的值; (2)设b ≠0,函数31()3g x bx bx =-,12x ∈(,).若对任意112x ∈(,),总存在212x ∈(,),使()()120f x g x -=,求实数b 的取值范围.第II 卷 (附加题 分值40分)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题......,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,P A 是圆O 的切线,切点为A ,PO 交圆O 于B ,C 两点,P A =3,PB =1,求∠ABC 的大小.B .选修4—2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤3 3c d ,若矩阵A 属于特征值6的一个特征向量为α1=⎣⎢⎡⎦⎥⎤11,属于特征值1的一个特征向量为α2=⎣⎢⎡⎦⎥⎤3-2.求矩阵A 和A 的逆矩阵.C .选修4—4:坐标系与参数方程已知直线l :cos sin x t y t αα⎧⎨⎩=+m =(t 为参数)恒经过椭圆C :⎩⎨⎧==ϕϕsin 3cos 5y x (ϕ为参数)的右焦点F . (1)求m 的值;(2)设直线l 与椭圆C 交于A ,B 两点,求|F A|·|FB|的最大值与最小值.D .选修4—5:不等式选讲已知实数a ,b ,c ,d 满足a +b +c +d =1,2a 2+3b 2+6c 2+d 2=25,求实数d 的取值范围.OCBPA【必做题】第22题,第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,正方体ABCD -A 1B 1C 1 D 1的所有棱长都为1,M 、N 分别为线段BD 和B 1C 上的两个动点.(1)求线段MN 长的最小值;(2)当线段MN 长最小时,求二面角B -MN -C 的大小.23.(本小题满分10分)设函数()213213x f x x ex x -=--()x ∈R . (1)求函数()y f x =的单调区间;(2)当()1,x ∈+∞时,用数学归纳法证明:*n ∀∈N ,1!nx x en ->.C 1AA2015年江苏高考数学模拟试卷(三)第Ⅰ卷 参考答案与解析一、填空题:本大题共14小题,每小题5分,共70分. 1.3 2.5223.1.04 4.2 5. 12 6. 10.2 7.3154 8.1665- 9.1 10. 2a ≥ 11.1012.12 13.17,2⎡⎤⎢⎥⎣⎦14.1100 解析:2.由|(1+i )z | =|3-4i |和|(1+i )z | =|1+i ||z | 可知|z |=522. 3.由题意知,只要求83,84,84,85,86的方差,得到2222221.40.40.40.6 1.6 1.045s ++++==.4.1<3,故x =3-1=2.5.1+3+5=9,1+3+6=10,1+4+5=10,1+4+6=11,2+3+5=10,2+3+6=11,2+4+5=11,2+4+6=12共8种其中和大于10的有4种,故概率为4182=. 6.由条件得953a =,故1791710.2S a ==9.作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由1,23,x y x =⎧⎨=-⎩得1,1,x y =⎧⎨=-⎩∴z min =2-1=1.11.设(0,)M m ,(,)A x y ,因为254F M MA =u u u u u r u u u r ,所以5(,)(,)4c m x y m -=-,解得49,55x c y m =-=,又因为120AF AF ⋅=u u u r u u u u r ,所以999(,)(,)05555c m c m ---=,解得229c m =,因为点A 在椭圆22221x y a b+=上,所以2222168112525c m a b +=,即222216912525c c a b +=,又即42241650250c a c a -+=,从而421650250e e -+=,解得10e =. 12.因式分解可得2()()(16)f x x a ax =-+,于是,A B 两点的坐标分别是216(,0),(,0)a a-,于是线段AB 的长度等于216a a +.记216()F a a a=+,322162(8)'()2a F a a a a -=-=,于是()F a 在(0,2)上单调递减,在(2,)+∞上单调递增,从而()F a 的最小值就是216(2)2122F =+=. 13.()12FG EC DB =+u u u r u u u r u u u r ,不妨设三角形边长为1,则12(1)2FG AC AB λλ=+-u u u r u u u r u u u r 231λ+=,又由。

江苏省苏州市2015届高三上学期调研测试物理试题Word版含答案

江苏省苏州市2015届高三上学期调研测试物理试题Word版含答案苏州市2015届高三调研测试物理注意事项:考生在答题前请认真阅读本注意事项1.本试卷包含选择题和非选择题两部分。

考生答题全部答在答题卡上,答在本试卷上无效。

本次考试时间为100分钟,满分值为120分。

2.答题前,请务必将自己的姓名、准考证号(考试号)用书写黑色字迹的0.5毫米签字笔填写在答题卡上,并用2B铅笔将对应的数字标号涂黑。

3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案。

答非选择题必须用书写黑色字迹的0.5毫米签字笔写在答题卡上的指定位置,在其它位置答题一律无效。

一、单项选择题:本题共7小题,每小题3分,共21分.每小题只有一个选项符合题意.1.下列关于物理学史和物理研究方法的叙述中正确的是()A.用点电荷来代替带电体的研究方法叫微元法B.利用v-t图像推导匀变速直线活动位移公式的办法是理想模型法C.XXX借助实验研究和逻辑推理得出了自由落体运动规律D.XXX发觉电流的磁效应与他深信电和磁之间一定存在联系的哲学思想是分不开的2.如图所示,一定质量的物体通太轻绳吊挂,结点为O.人沿水平偏向拉着OB绳,物体和人均处于静止状态.若人的拉力偏向不变,迟钝向左挪动一小段间隔,下列说法精确的选项是()A.OA绳中的拉力先减小后增大B.OB绳中的拉力不变C.人对地面的压力逐步减小D.地面给人的摩擦力逐渐增大3.如图所示,虚线是某静电场的一簇等势线,边上标有电势的值.一带电粒子只在电场力感化下恰能沿图中的实线从A经过B活动到C.下列判断精确的选项是()A.粒子一定带负电B.A处场强大于C处场强C.粒子在A处电势能大于在C处电势能D.粒子从A到B电场力所做的功大于从B到C电场力所做的功4.如图所示是质量为m的小球接近墙面竖直上抛的频闪照片,甲图是上升时的照片,乙图是降落时的照片,O是活动的最高点.假定小球所受阻力大小不变,重力加快度为g,据此预算小球受到的阻力大小为()A.mg2015.021mg21C.mg31D.mg10B.5.如图所示,一平行板电充电后与电源断开,负极板接地,正极板与静电计相连,两板间有一个正检验电荷牢固在P点.以C透露表现电的电容、E透露表现两板间的场强、φ透露表现P点的电势,W透露表现正检验电荷在P点的电势能.若正极板保持不动,将负极板迟钝向右平移一小段间隔l 的过程中,各物理量与负极板挪动间隔x的干系图像中精确的选项是()6.一个物体静止在质量均匀的星球表面的“赤道”上.已知引力常量G,星球密度ρ.若由于星球自转使物体对星球表面的压力恰好为零,则该星球自转的角速度为()A.4343C.G D.G B.3G3G7.用两根足够长的粗糙金属条折成“「”型导轨,右端水平,左端竖直,与导轨等宽的粗糙金属细杆ab、cd和导轨垂直且接触良好.已知ab、cd杆的质量、电阻值均相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场中.当ab杆在水平拉力F作用下沿导轨向右匀速运动时,cd杆沿轨道向下运动,以下说法正确的是()A.cd杆一定向下做匀速直线运动B.cd杆一定向下做匀加速直线运动C.F做的功即是回路中产生的焦耳热与ab杆克服磨擦做功之和D.F的功率等于ab杆上的焦耳热功率与摩擦热功率之和二、多项选择题:本题共6小题,每题4分,共24分,每题有多个选项吻合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得分.8.如图甲所示的电路中,理想变压器原、副线圈的匝数比为4:1,电压表和电流表均为理想电表,R1是用氧化锰等金属氧化物烧结而成的热敏电阻,R为定值电阻.原线圈接如图乙所示的正弦交流电,下列说法正确的是()A.交流电压u的表达式u=362sin100πt(V)B.变压器原、副线圈中的电流之比为1:4C.变压器输入、输出功率之比为1:4D.当R1温度升高时,电压表和电流表的读数均变大9.如图所示,小球B放在真空正方体A内,球B的直径恰好等于A的内边长,现将它们以初速度v竖直向上抛出,下列说法中正确的是()A.若不计空气阻力,下跌过程中,B对A没有弹力B.若考虑空气阻力,上升过程中,A对B的弹力向下C.若考虑空气阻力,下跌过程中,B对A的弹力向上D.若不计空气阻力,上升过程中,A对B有向上的弹力10.如图所示是研究通电自感实验的电路图,A1A2是两个规格相同的小灯泡,闭合开关调节电阻R,使两灯泡的亮度相同.调节可变电阻Rl使它们都正常发光,然后断开开关S.从头闭合开关S,则() A.闭合瞬间,Al立即变亮,A2逐渐变亮B.闭合瞬间,A2立刻变亮,Al逐突变亮C.稳定后,L和R两端电势差一定相同D.不乱后,A1。

江苏省苏州市张家港市梁丰高级中学2015届高三模拟数学试卷(04)

江苏省苏州市张家港市梁丰高级中学2015届高考数学模拟试卷(04)一、填空题(本大题共14小题,每小题5分,共计70分).1.若复数(1﹣i)(2i+m)是纯虚数,则实数m的值为__________.2.已△知△ABC三边长分别为a,b,c且a2+b2﹣c2=ab,则∠C=__________3.设函数f(x)=x3cosx+1,若f(a)=11,则f(﹣a)=__________.4.若不等式成立的一个充分非必要条件是,则实数m的取值范围是__________.5.定义运算a b=ab2+a2b,则sin15°cos15°的值是__________.6.若f(x)=是R上的单调函数,则实数a的取值范围为__________.7.已知△ABC中,∠C=90°,CA=3,CB=4,D、E分别为边CA、CB上的点,且•=6,•=8,则•=__________.8.已知曲线S:y=3x﹣x3及点P(2,2),则过点P可向曲线S引切线,其切线共有__________条.9.已知函数y=tanωx在(﹣π,π)内是减函数,则实数ω的范围是__________.10.已知f(x)=log2(x﹣2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值是__________.11.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数f(x)在[0,6]上有__________个零点.12.已知实数x、y满足,若不等式a(x2+y2)≥(x+y)2恒成立,则实数a的最小值是__________.13.定义在R上的函数f (x)的图象关于点(﹣,0)对称,且满足f (x)=﹣f (x+),f (1)=1,f (0)=﹣2,则f (1)+f (2)+f (3)+…+f 的值为=__________.14.设首项不为零的等差数列{a n}前n项之和是S n,若不等式对任意a n和正整数n恒成立,则实数λ的最大值为__________.二、解答题.15.已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若A⊆∁R B,求实数m的取值范围.16.在锐角△ABC中,已知内角A、B、C的对边分别为a、b、c.向量,,且向量、共线.(1)求角B的大小;(2)如果b=1,求△ABC的面积S△ABC的最大值.17.已知向量(1)求的最大值(2)若,且,求cosβ的值.18.经销商用一辆J型卡车将某种水果从果园运送(满载)到相距400km的水果批发市场.据测算,J型卡车满载行驶时,每100km所消耗的燃油量u(单位:L)与速度v(单位:km/h)的关系近似地满足u=除燃油费外,人工工资、车损等其他费用平均每小时300元.已知燃油价格为每升(L)7.5元.(1)设运送这车水果的费用为y(元)(不计返程费用),将y表示成速度v的函数关系式;(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?19.(16分)如图,平面直角坐标系中,射线y=x(x≥0)和y=0(x≥0)上分别依次有点A1、A 2,…,A n,…,和点B1,B2,…,B n…,其中,,.且,(n=2,3,4…).(1)用n表示|OA n|及点A n的坐标;(2)用n表示|B n B n+1|及点B n的坐标;(3)写出四边形A n A n+1B n+1B n的面积关于n的表达式S(n),并求S(n)的最大值.20.(16分)已知函数f(x)=ax3+|x﹣a|,a∈R.(1)若a=﹣1,求函数y=f(x)(x∈[0,+∞)的图象在x=1处的切线方程;(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;(3)当a>0时,若对于任意的x1∈[a,a+2],都存在x2∈[a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.三、附加卷21.变换T1是逆时针旋转的旋转变换,对应的变换矩阵是M1;变换T2对应用的变换矩阵是.(Ⅰ)求点P(2,1)在T1作用下的点P′的坐标;(Ⅱ)求函数y=x2的图象依次在T1,T2变换的作用下所得曲线的方程.22.[选做题]已知圆C的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t是参数).若直线l与圆C相切,求实数m的值.23.在一次电视节目的抢答中,题型为判断题,只有“对”和“错”两种结果,其中某明星判断正确的概率为p,判断错误的概率为q,若判断正确则加1分,判断错误则减1分,现记“该明星答完n题后总得分为S n”.(1)当时,记ξ=|S3|,求ξ的分布列及数学期望及方差;(2)当时,求S8=2且S i≥0(i=1,2,3,4)的概率.24.设r,s,t为整数,集合{a|a=2r+2s+2t,0≤t<s<r}中的数由小到大组成数列{a n}.(1)写出数列{a n}的前三项;(2)求a36.江苏省苏州市张家港市梁丰高级中学2015届高考数学模拟试卷(04)一、填空题(本大题共14小题,每小题5分,共计70分).1.若复数(1﹣i)(2i+m)是纯虚数,则实数m的值为﹣2.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数运算法则、纯虚数的定义即可得出.解答:解:∵复数(1﹣i)(2i+m)=m+2+(m﹣2)i是纯虚数,∴,解得m=﹣2.故答案为:﹣2.点评:本题考查了复数运算法则、纯虚数的定义,属于基础题.2.已△知△ABC三边长分别为a,b,c且a2+b2﹣c2=ab,则∠C=60°考点:余弦定理.专题:计算题.分析:利用a2+b2﹣c2=ab,代入到余弦定理中求得cosC的值,进而求得C解答:解:∵a2+b2﹣c2=ab,∴cosC==∴C=60°故答案为60°点评:本题主要考查了余弦定理的应用.属基础题.3.设函数f(x)=x3cosx+1,若f(a)=11,则f(﹣a)=﹣9.考点:函数奇偶性的性质.专题:函数的性质及应用.分析:由于函数f(x)=x3cosx+1,是一个非奇非偶函数,故无法直接应用函数奇偶性的性质进行解答,故可构造函数g(x)=f(x)﹣1=x3cosx,然后利用g(x)为奇函数,进行解答.解答:解:令g(x)=f(x)﹣1=x3cosx则g(x)为奇函数,又∵f(a)=11,∴g(a)=f(a)﹣1=11﹣1=10∴g(﹣a)=﹣10=f(﹣a)﹣1∴f(﹣a)=﹣9故答案为:﹣9点评:本题考查的知识点是函数奇偶性的性质,其中构造出奇函数g(x)=f(x)﹣1=x3cosx,是解答本题的关键.4.若不等式成立的一个充分非必要条件是,则实数m的取值范围是.考点:必要条件、充分条件与充要条件的判断.专题:计算题.分析:由已知中不等式<0成立的一个充分非必要条件是<x<,我们分别讨论2m=m﹣1时,2m<m﹣1时,2m>m﹣1时满足条件的实数m的取值范围,最后综合讨论结果,即可得到答案解答:解:∵设不等式<0的解集为A∵不等式<0成立的一个充分非必要条件是<x<,则(,)⊊A①当2m=m﹣1时,A=∅,不成立;②当2m<m﹣1,即m<﹣1时,不等式解为A=(2m,m﹣1),不符合条件,舍去;③当2m>m﹣1时,不等式解为A=(m﹣1,2m),则m﹣1≤且2m≥,解得≤m≤,即m取值范围是≤m≤.故答案为:≤m≤点评:本题考查的知识点是必要条件,充分条件与充要条件的判断,不等式的基本性质,其中根据已知条件分讨论,并在每种情况下构造关于m的不等式组,是解答本题的关键5.定义运算a b=ab2+a2b,则sin15°cos15°的值是.考点:同角三角函数基本关系的运用.专题:新定义.分析:先根据题中的运算定义表示出sin15°cos15°,然后利用二倍角公式及两角和的正弦函数公式化简,再利用特殊角的三角函数值得到即可.解答:解析:依题意,可知sin15°cos15°=sin15°cos215°+sin215°cos15°=sin15°cos15°(cos15°+sin15°)=×2sin15°cos15°(sin45°cos15°+cos45°sin15°)=sin30°sin(15°+45°)=.故答案为点评:考查学生会利用题中规定的新运算法则进行化简求值,会利用二倍角公式及两角和的正弦函数公式进行化简,会利用特殊角的三角函数值进行求值.学生做题时会变换角是解题的关键.6.若f(x)=是R上的单调函数,则实数a的取值范围为[,+∞).考点:函数单调性的性质.专题:函数的性质及应用.分析:若f(x)=是R上的单调函数,根据第二段函数为减函数,故第一段也应该为减函数,且x=1时,第二段的函数值不小于第一段的函数值,进而构造关于a 的不等式组,解不等式组可得实数a的取值范围.解答:解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)点评:本题考查的知识点是分段函数的单调性,其中根据已知构造关于a的不等式组,是解答的关键.7.已知△ABC中,∠C=90°,CA=3,CB=4,D、E分别为边CA、CB上的点,且•=6,•=8,则•=﹣14.考点:平面向量数量积的运算.专题:平面向量及应用.分析:如图所示,通过向量的坐标运算、数量积运算即可得出.解答:解:如图所示,C(0,0),A(3,0),B(0,4),设D(x,0),E(0,y).则=(x,﹣4),=(3,0),=(﹣3,y),=(0,4).∵•=6,•=8,∴3x=6,4y=8,解得x=2,y=2.则•=(﹣3,2)•(2,﹣4)=﹣6﹣8=﹣14.故答案为:﹣14.点评:本题考查了向量的坐标运算、数量积运算,属于基础题.8.已知曲线S:y=3x﹣x3及点P(2,2),则过点P可向曲线S引切线,其切线共有3条.考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:求函数的导数,设切点为M(a,b),利用导数的几何意义,求切线方程,利用点P (2,2)在切线上,求出切线条数即可.解答:解:∵y=3x﹣x3,∴y'=f'(x)=3﹣3x2,∵P(2,2)不在曲线S上,∴设切点为M(a,b),则b=3a﹣a3,f'(a)=3﹣3a2则切线方程为y﹣(3a﹣a3)=(3﹣3a2)(x﹣a),∵P(2,2)在切线上,∴2﹣(3a﹣a3)=(3﹣3a2)(2﹣a),即2a3﹣6a2+4=0,∴a3﹣3a2+2=0,即a3﹣a2﹣2a2+2=0,∴(a﹣1)(a2﹣2a﹣2)=0,解得a=1或a=1,∴切线的条数为3条,故答案为:3.点评:本题主要考查导数的几何意义,以及导数的基本运算,考查学生的运算能力.注意点P不在曲线上,所以必须单独设出切点.9.已知函数y=tanωx在(﹣π,π)内是减函数,则实数ω的范围是.考点:三角函数的最值.专题:计算题;三角函数的图像与性质.分析:根据正切型函数的图象,要使函数y=tanωx在(﹣π,π)内是减函数,则ω<0且函数y=tanωx的周期T≥2π.解答:解:∵函数y=tanωx在(﹣π,π)内是减函数,∴ω<0,||≥2π解得:.故答案为:.点评:本题考查了正切型函数的图象与性质,解题时要根据函数在(﹣π,π)内是减函数,先判断ω的正负,再利用周期求ω的范围.10.已知f(x)=log2(x﹣2),若实数m,n满足f(m)+f(2n)=3,则m+n的最小值是7.考点:基本不等式;对数的运算性质.专题:计算题.分析:由题意得m>2,n>1,(m﹣2)(n﹣1)=4,再由基本不等式得=2≤=,变形可得m+n的最小值.解答:解:∵f(x)=log2(x﹣2),若实数m,n满足f(m)+f(2n)=3,m>2,n>1,∴log2(m﹣2)+log2(2n﹣2)=3,log2(m﹣2)2(n﹣1)=3,(m﹣2)2(n﹣1)=8,(m﹣2)(n﹣1)=4,∴=2≤=(当且仅当m﹣2=n﹣1=2时,取等号),∴m+n﹣3≥4,m+n≥7.故答案为:7.点评:本题考查对数的运算性质,基本不等式的应用.考查计算能力.11.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3﹣x,则函数f(x)在[0,6]上有7个零点.考点:根的存在性及根的个数判断.专题:探究型.分析:先求出方程f(x)=0在区间[0,2)上的根的个数,再利用其周期为2的条件即f(x+2)=f(x),即可判断出所有根的个数.解答:解:当0≤x<2时,令f(x)=x3﹣x=0,则x(x﹣1)(x+1)=0,解得x=0,或1;已知f(x)是R上最小正周期为2的周期函数,∴f(0)=f(2)=f(4)=f(6)=0,f(1)=f(3)=f(5)=0,故在区间[0,6]上,方程f(x)=0共有7个根,∴函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为7.故答案为7.点评:正确求出一个周期内的根的个数和理解周期性是解题的关键.12.已知实数x、y满足,若不等式a(x2+y2)≥(x+y)2恒成立,则实数a的最小值是.考点:简单线性规划;函数恒成立问题.专题:综合题.分析:确定约束条件的平面区域,求得与原点连线的斜率的范围,再分离参数,利用函数的单调性,确定函数的最值,即可得到结论.解答:解:实数x、y满足的可行域是一个三角形,三角形的三个顶点分别为(1,4),(2,4),与原点连线的斜率分别为4,2,∴a(x2+y2)≥(x+y)2等价于a≥1+∵∈[2,4]∴≤+≤4+=∴a≥1+=∴实数a的最小值是故答案为:点评:平面区域的最值问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.13.定义在R上的函数f (x)的图象关于点(﹣,0)对称,且满足f (x)=﹣f (x+),f (1)=1,f (0)=﹣2,则f (1)+f (2)+f (3)+…+f 的值为=0.考点:函数的周期性;奇偶函数图象的对称性;函数的值.专题:证明题.分析:根据题意得f (x+3)=f[(x+)+]=﹣f (x+)=f (x)即函数的周期为3.由函数f (x)的图象关于点(﹣,0)对称得到f (﹣﹣x)=f (x+),所以可得函数f (x)是偶函数.结合奇偶性、周期性可得答案.解答:解:由f (x)=﹣f (x+)得f (x+3)=f[(x+)+]=﹣f (x+)=f (x)所以可得f (x)是最小正周期T=3的周期函数;由f (x)的图象关于点(,0)对称,知(x,y)的对称点是(﹣﹣x,﹣y).即若y=f (x),则必﹣y=f (﹣﹣x),或y=﹣f (﹣﹣x).而已知f (x)=﹣f (x+),故f (﹣﹣x)=f (x+),今以x代x+,得f (﹣x)=f (x),故知f (x)又是R上的偶函数.于是有:f (1)=f (﹣1)=1;f (2)=f (2﹣3)=f (﹣1)=1;f (3)=f (0+3)=f (0)=﹣2;∴f (1)+f (2)+f (3)=0,以下每连续3项之和为0.而2010=3×670,于是f =0;故答案为0.点评:解决此类问题的关键是周期利用函数的对称性与周期性得到函数是偶函数,再结合着函数的三个性质求解问题,2015届高考经常考查这种周期性、单调性、奇偶性、对称性相结合的综合问题.14.设首项不为零的等差数列{a n}前n项之和是S n,若不等式对任意a n和正整数n恒成立,则实数λ的最大值为.考点:数列与不等式的综合.专题:计算题.分析:等差数列{a n}中,首项不为零,前n项和S n=;由不等式,得a n2+≥λa12,整理得++≥λ;若设t=,求函数y=t2+t+的最小值,得λ的最大值.解答:解:在等差数列{a n}中,首项不为零,即a1≠0;则数列的前n项之和为S n=;由不等式,得a n2+≥λa12,∴a n2+a1a n+a12≥λa12,即++≥λ;设t=,则y=t2+t+=+≥,∴λ≤,即λ的最大值为;故答案为.点评:本题考查了数列与不等式的综合应用,其中用到换元法求得二次函数的最值,应属于考查计算能力的基础题目.二、解答题.15.已知集合A={x|x2﹣2x﹣3≤0,x∈R},B={x|x2﹣2mx+m2﹣4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若A⊆∁R B,求实数m的取值范围.考点:交、并、补集的混合运算.分析:(1)根据一元二次不等式的解法,对A,B集合中的不等式进行因式分解,从而解出集合A,B,再根据A∩B=[0,3],求出实数m的值;(2)由(1)解出的集合A,B,因为A⊆C R B,根据子集的定义和补集的定义,列出等式进行求解.解答:解:由已知得:A={x|﹣1≤x≤3},B={x|m﹣2≤x≤m+2}.(1)∵A∩B=[0,3]∴∴,∴m=2;(2)C R B={x|x<m﹣2,或x>m+2}∵A⊆C R B,∴m﹣2>3,或m+2<﹣1,∴m>5,或m<﹣3.点评:此题主要考查集合的定义及集合的交集及补集运算,一元二次不等式的解法及集合间的交、并、补运算是2015届高考中的常考内容,要认真掌握.16.在锐角△ABC中,已知内角A、B、C的对边分别为a、b、c.向量,,且向量、共线.(1)求角B的大小;(2)如果b=1,求△ABC的面积S△ABC的最大值.考点:解三角形;数量积的坐标表达式;三角函数中的恒等变换应用.专题:计算题.分析:(1)由两向量共线,得到向量的坐标表示列出一个关系式,根据三角形的内角和定理得到A+C=π﹣B,利用诱导公式化简这个关系式后,再利用二倍角的正弦、余弦函数公式及同角三角函数间的基本关系化简,得到tan2B的值,又三角形为锐角三角形,由B的范围求出2B的范围,利用特殊角的三角函数值即可求出B的度数;(2)根据余弦定理表示出b2=a2+c2﹣2accosB,把(1)求出的B的度数与b的值代入得到一个关于a与c的式子,变形后,根据基本不等式即可求出ac的最大值,然后利用三角形的面积公式,由ac的最大值及sinB的值,表示出三角形ABC的面积,即为三角形面积的最大值.解答:解:(1)∵向量、共线,∴2sin(A+C)(2﹣1)﹣cos2B=0,又A+C=π﹣B,∴2sinBcosB﹣cos2B,即sin2B=cos2B,∴tan2B=,又锐角△ABC,得到B∈(0,),∴2B∈(0,π),∴2B=,故B=;(2)由(1)知:B=,且b=1,根据余弦定理b2=a2+c2﹣2accosB得:a2+c2﹣ac=1,∴1+ac=a2+c2≥2ac,即(2﹣)ac≤1,ac≤=2+,∴S△ABC=acsinB=ac≤,当且仅当a=c=时取等号,∴△ABC的面积最大值为.点评:此题考查了平面向量的数量积的坐标表示,三角函数的恒等变形,余弦定理及三角形的面积公式.学生作第二问时注意利用基本不等式求出ac的最大值是解本题的关键.17.已知向量(1)求的最大值(2)若,且,求cosβ的值.考点:数量积判断两个平面向量的垂直关系;向量的模.专题:计算题.分析:(1)利用向量的运算法则求出,利用向量模的平方等于向量的平方求出的平方,利用三角函数的平方关系将其化简,利用三角函数的有界性求出最值.(2)利用向量垂直的充要条件列出方程,利用两角差的余弦公式化简得到的等式,求出值.解答:解:(1)=(cosβ﹣1,sinβ),则||2=(cosβ﹣1)2+sin2β=2(1﹣cosβ).∵﹣1≤cosβ≤1,∴0≤||2≤4,即0≤||≤2.当cosβ=﹣1时,有||=2,所以向量的长度的最大值为2.(2)由(1)可得=(cosβ﹣1,sinβ),•()=cosαcosβ+sinαsinβ﹣cosα=cos(α﹣β)﹣cosα.∵⊥(),∴•()=0,即cos(α﹣β)=cosα.由,得,即.∴,于是.….点评:本题考查向量模的性质:向量模的平方等于向量的平方、向量垂直的充要条件;三角函数的平方关系、三角函数的有界性、两角差的余弦公式.考查计算能力.18.经销商用一辆J型卡车将某种水果从果园运送(满载)到相距400km的水果批发市场.据测算,J型卡车满载行驶时,每100km所消耗的燃油量u(单位:L)与速度v(单位:km/h)的关系近似地满足u=除燃油费外,人工工资、车损等其他费用平均每小时300元.已知燃油价格为每升(L)7.5元.(1)设运送这车水果的费用为y(元)(不计返程费用),将y表示成速度v的函数关系式;(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?考点:利用导数求闭区间上函数的最值;分段函数的应用;函数模型的选择与应用.专题:综合题.分析:(1)由题意,当0<v≤50时,y==,当v>50时,=,由此能将y表示成速度v的函数关系式.(2)当0<v≤50时,是单调减函数,故v=50时,y取得最小值,当v>50时,,由导数求得当v=100时,y取得最小值+600=2400,由于3150>2400,知当卡车以100km/h的速度行驶时,运送这车水果的费用最少.解答:解:(1)由题意,当0<v≤50时,y==30•=,当v>50时,==,∴.(2)当0<v≤50时,是单调减函数,故v=50时,y取得最小值,当v>50时,,由==0,得v=100.当50<v<100时,y′<0,函数单调递增,∴当v=100时,y取得最小值+600=2400,由于3150>2400,所以,当v=100时,y取得最小值.答:当卡车以100km/h的速度行驶时,运送这车水果的费用最少.点评:本题考查利用导数求闭区间上函数的最值的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,有一定的探索性,对数学思维能力要求较高,是2015届高考的重点.解题时要认真审题,仔细解答.19.(16分)如图,平面直角坐标系中,射线y=x(x≥0)和y=0(x≥0)上分别依次有点A1、A 2,…,A n,…,和点B1,B2,…,B n…,其中,,.且,(n=2,3,4…).(1)用n表示|OA n|及点A n的坐标;(2)用n表示|B n B n+1|及点B n的坐标;(3)写出四边形A n A n+1B n+1B n的面积关于n的表达式S(n),并求S(n)的最大值.考点:数列与解析几何的综合;数列递推式.专题:计算题.分析:(1)由,能求出.(2)由,知,由此能用n表示|B n B n+1|及点B n的坐标.(3)由,写出四边形A n A n+1B n+1B n的面积关于n的表达式S(n),并求出S(n)的最大值.解答:解:(1)∵…∴…(2)…,∴…(3),∴…∵,∴n≥4时,S(n)单调递减.又,.∴n=2或3时,S(n)取得最大值…(18分)点评:本题考查数列与解析几何的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是2015届高考的重点.解题时要认真审题,仔细解答.20.(16分)已知函数f(x)=ax3+|x﹣a|,a∈R.(1)若a=﹣1,求函数y=f(x)(x∈[0,+∞)的图象在x=1处的切线方程;(2)若g(x)=x4,试讨论方程f(x)=g(x)的实数解的个数;(3)当a>0时,若对于任意的x1∈[a,a+2],都存在x2∈[a+2,+∞),使得f(x1)f(x2)=1024,求满足条件的正整数a的取值的集合.考点:利用导数研究曲线上某点切线方程;根的存在性及根的个数判断;利用导数研究函数的单调性.专题:综合题;导数的综合应用.分析:(1)利用导数的几何意义,求出切线的斜率,即可求出图象在x=1处的切线方程;(2)若g(x)=x4,方程等价于x=a或或,分类讨论,即可讨论方程f(x)=g(x)的实数解的个数;(3)确定函数f(x)在(a,+∞)上是增函数,且f(x)>f(a)=a4>0,对任意的x1∈[a,a+2],都存在x2∈[a+2,+∞),使得f(x1)f(x2)=1024,所以[,]⊆[f(a+2),+∞),即可得出结论.解答:解:(1)当a=﹣1,x∈[0,+∞)时,f(x)=﹣x3+x+1,从而f′(x)=﹣3x2+1.当x=1时,f(1)=1,f′(1)=﹣2,所以函数y=f(x)(x∈[0,+∞))的图象在x=1处的切线方程为y﹣1=﹣2(x﹣1),即2x+y﹣3=0.…(2)f(x)=g(x)即为ax3+|x﹣a|=x4.所以x4﹣ax3=|x﹣a|,从而x3(x﹣a)=|x﹣a|.此方程等价于x=a或或…所以当a≥1时,方程f(x)=g(x)有两个不同的解a,﹣1;当﹣1<a<1时,方程f(x)=g(x)有三个不同的解a,﹣1,1;当a≤﹣1时,方程f(x)=g(x)有两个不同的解a,1.…(3)当a>0,x∈(a,+∞)时,f(x)=ax3+x﹣a,f′(x)=3ax2+1>0,所以函数f(x)在(a,+∞)上是增函数,且f(x)>f(a)=a4>0.所以当x∈[a,a+2]时,f(x)∈[f(a),f(a+2)],∈[,],当x∈[a+2,+∞)时,f(x)∈[f(a+2),+∞).…因为对任意的x1∈[a,a+2],都存在x2∈[a+2,+∞),使得f(x1)f(x2)=1024,所以[,]⊆[f(a+2),+∞).…从而≥f(a+2).所以f 2(a+2)≤1024,即f(a+2)≤32,也即a(a+2)3+2≤32.因为a>0,显然a=1满足,而a≥2时,均不满足.所以满足条件的正整数a的取值的集合为{1}.…(16分)点评:本题考查利用导数研究曲线上某点切线方程,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.三、附加卷21.变换T1是逆时针旋转的旋转变换,对应的变换矩阵是M1;变换T2对应用的变换矩阵是.(Ⅰ)求点P(2,1)在T1作用下的点P′的坐标;(Ⅱ)求函数y=x2的图象依次在T1,T2变换的作用下所得曲线的方程.考点:逆变换与逆矩阵;逆矩阵的简单性质(唯一性等).专题:计算题.分析:(Ⅰ)先写出时针旋转的旋转变换矩阵M1,再利用矩阵的乘法,求出点P'的坐标;(Ⅱ)先求M=M2M1,再求点的变换,从而利用函数y=x2求出变换的作用下所得曲线的方程解答:解:(Ⅰ),所以点P(2,1)在T1作用下的点P'的坐标是P'(﹣1,2).…(Ⅱ),设是变换后图象上任一点,与之对应的变换前的点是,则,也就是{,,即,所以,所求曲线的方程是y﹣x=y2点评:本题以变换为载体,考查矩阵的乘法,考查点在变换下点的坐标的求法,属于中档题22.[选做题]已知圆C的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t是参数).若直线l与圆C相切,求实数m的值.考点:简单曲线的极坐标方程;直线与圆的位置关系;直线的参数方程.专题:计算题;压轴题.分析:将圆C的极坐标方程化为直角坐标方程,直线的参数方程化为普通方程,再根据直线l与圆C相切,利用圆心到直线的距离等于半径,即可求实数m的值解答:解:由ρ=4cosθ,得ρ2=4ρcosθ,∴x2+y2=4x,即圆C的方程为(x﹣2)2+y2=4,∴圆的圆心坐标为(2,0),半径为2又由消t,得x﹣y﹣m=0,∵直线l与圆C相切,∴圆心到直线的距离等于半径∴,解得.点评:本题重点考查方程的互化,考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离等于半径,研究直线与圆相切.23.在一次电视节目的抢答中,题型为判断题,只有“对”和“错”两种结果,其中某明星判断正确的概率为p,判断错误的概率为q,若判断正确则加1分,判断错误则减1分,现记“该明星答完n题后总得分为S n”.(1)当时,记ξ=|S3|,求ξ的分布列及数学期望及方差;(2)当时,求S8=2且S i≥0(i=1,2,3,4)的概率.考点:离散型随机变量的期望与方差;n次独立重复试验中恰好发生k次的概率.专题:计算题.分析:(1)由题意知变量的可能取值是1,3,结合变量对应的事件和独立重复试验的概率公式写出变量对应的概率和分布列,做出期望和方差.(2)本题要求的概率是答完8题后,回答正确的题数为5题,回答错误的题数是3题,包括若第一题和第二题回答正确,则其余6题可任意答对3题;和若第一题正确和第二题回答错误,第三题回答正确,则后5题可任意答对3题,两种情况,写出概率.解答:解:(1)∵ξ=|S3|的取值为1,3,又;∴,.∴ξ的分布列为:∴Eξ=1×+3×=;Dξ==(2)当S 8=2时,即答完8题后,回答正确的题数为5题,回答错误的题数是3题,又已知S i≥0(i=1,2,3,4),若第一题和第二题回答正确,则其余6题可任意答对3题;若第一题正确,第二题回答错误,第三题回答正确,则后5题可任意答对3题.此时的概率为.点评:本题考查离散型随机变量的分布列和期望,这种类型是近几年2015届高考题中经常出现的,考查离散型随机变量的分布列和期望,大型考试中理科考试必出的一道问题.24.设r,s,t为整数,集合{a|a=2r+2s+2t,0≤t<s<r}中的数由小到大组成数列{a n}.(1)写出数列{a n}的前三项;(2)求a36.考点:组合及组合数公式;有理数指数幂的运算性质;数列的概念及简单表示法.专题:计算题.分析:(1)由于r,s,t为整数,且0≤t<s<r,下面对r进行分类讨论:r最小取2时,符合条件的数a有一个,当r=3时,符合条件有的数a有3个,由此求得数列{a n}的前三项.(2)同理可得r=4时,r=6时,r=7时,分别算出符合条件的数a的个数,最后利用加法原理计算即得.解答:解:(1)∵r、s、t为整数且0≤t<s<r,∴r最小取2,此时符合条件的数a有=1;…当r=3时,s,t 可在0,1,2中取,符合条件有的数a有=3;…故数列{a n}的前三项为:20+21+22=7,20+21+23=11,20+22+23=13.(2)同理,r=4时,符合条件有的数a有=6;…r=5时,符合条件有的数a有=10;…r=6时,符合条件有的数a有=15;…r=7时,符合条件有的数a有=21;…因此,a36是r=7中的最小值,即a36=20+21+27=131.…点评:本题主要考查两个基本计数原理及数列的通项公式等基本概念,既要会合理分类,又要会合理分步,一般是先分类,后分步.。

江苏省四市2015届高三第一次调研考试(一模)数学试题及答案

徐州、淮安、宿迁、连云港四市2015届高三第一次模拟考试数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.不需写出解题过程,请把答案直接填写在答题卡相应位置上,1.己知集合{}{}0,1,2,3,2,3,4,5A B ==,则AB 中元素的个数为_______.2.设复数z 满足(4)32i z i -=+(i 是虚数单位),则z 的虚部为_______.3.如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为_______.4.某用人单位从甲、乙、丙、丁4名应聘者中招聘2人,若每名应聘者被录用的机会均等,则甲、乙2人中至少有1入被录用的概率为_______.5.如图是一个算法的流程图,若输入x 的值为2,则输出y 的值为_____.6. 已知圆锥的轴截面是边长为2的正三角形,则该圆锥的体积为______. 7. 已知()f x 是定义在R 上的奇函数,当0x <时,2()log (2)f x x =-,则(0)(2)f f +的值为_____. 8. 在等差数列{}n a 中,已知2811a a +=,则3113a a +的值为______. 9. 若实数,x y 满足40x y +-³,则226210z x y x y =++-+的最小值为_____. 10. 已知椭圆22221(0)x y a b a b +=>>,点12,,,A B B F 依次为其左顶点、下顶点、上顶点和右焦点,若直线2AB 与直线1B F 的交点恰在椭圆的右准线上,则椭圆的离心率为______. 11.将函数2sin()(0)4y x pw w =->的图象分别向左、向右各平移4p个单位长度后,所得的两个图象对称轴重合,则w 的最小值为______.12.己知a ,b 为正数,且直线60ax by +-=与直线2(3)50x b y +-+=互相平行,则2a +3b 的最小值为________. 13.已知函数22,0,()2,0x x f x x x x +ì-³ï=í<ïî,则不等式(())3f f x £的解集为______. 14.在△ABC 中,己知中,己知 3,45AC A =Ð=,点D 满足满足 2CD BD =,且,且 13AD =,则BC 的长为_______ .二、解答题:本大题共6小题.15~17每小题14分,18~20每小题16分,共计90分.请在答题卡指定的区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)分) 己知向量(1,(1,2sin 2sin ),(sin(),1)3a b p q q ==+,R q Î.(1)若a b ^,求tan q 的值:的值:(2)若//a b ,且(0,)2p qÎ,求q 的值.的值.16.(本小题满分14分)分)如图,在三棱锥P - ABC 中,已知平面PBC ^平面ABC . (1)若AB ^BC ,CD ^PB ,求证:CP ^P A :(2)若过点A 作直线上平面ABC ,求证:,求证: //平面PBC .17.(本小题满分14分) 在平面直角坐标系xOy 中,己知点(3,4),(9,0)A B -,C ,D 分别为线段OA ,OB 上的动点,且满足AC =BD . (1)若AC =4,求直线CD 的方程; (2)证明:D OCD 的外接圈恒过定点(异于原点O ). 18.(本小题满分16分) 如图,有一个长方形地块ABCD ,边AB 为2km ,AD 为4 4 km.km.,地块的一角是湿地(图中阴影部分),其边缘线AC 是以直线AD 为对称轴,以A 为顶点的抛物线的一部分.现要铺设一条过边缘线AC 上一点P 的直线型隔离带EF ,E ,F 分别在边AB ,BC 上(隔离带不能穿越湿地,且占地面积忽略不计).设点P 到边AD 的距离为t (单位:km),△BEF 的面积为S (单位: 2km ). (I)求S 关于t 的函数解析式,并指出该函数的定义域; (2)是否存在点P ,使隔离出的△BEF 面积S 超过32km ?并说明理由. 19.(本小题满分16分) 在数列{}na中,已知12211,2,nn n a a aaa n N l *++==+=+Î,l 为常数. (1)证明: 14,5,a a a 成等差数列; (2)设22n na a n c +-=,求数列,求数列 的前n 项和项和 n S ;(3)当0l ¹时,数列数列 {}1n a -中是否存在三项1111,1,1s t p a a a +++---成等比数列,且,,s t p 也成等比数列若存在,求出,,s t p 的值;若不存在,说明理由. 20.(本小题满分16分) 己知函数21()ln ,2f x x ax x a R =-+Î(1)若(1)0f =,求函数,求函数 ()f x 的单调递减区间; (2)若关于x 的不等式()1f x ax £-恒成立,求整数恒成立,求整数 a 的最小值: (3)若 2a =-,正实数,正实数 12,x x 满足满足 1212()()0f x f x x x ++=,证明: 12512x x -+³附加题部分21.【选做题】本题包括A, B, C, D 四小题,请选定其中两题,并在相应的答题区域内作答.解答时应写出文字说明、证明过程或演算步骤.A 选修4-1:几何证明选讲(本小题满分10分) 如图,O 是△ABC 的外接圆,AB = A C AC ,延长BC 到点D ,使得CD = AC ,连结AD 交O 于点E .求证:BE 平分ÐABC .B.选修4-2:矩阵与变换(本小题满分10分) 已知,a b R Î,矩阵1 3a A b -éù=êúëû所对应的变换A T 将直线将直线 10x y --=变换为自身,求a ,b 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市2015届高三第一次模拟测试卷2014.9一、语言文字运用(15分)1.在下面一段话的空缺处依次填入词语,最恰当的一组是(3分)独自坐在火炉旁边,静静地凝视面前的火焰,细听炉里呼呼的声音,心中是不专注在任何事物上面的,只是痴痴地望着炉火,说是怀一种惘怅的情绪,可以,说是感到了所有的希望全已幻灭,因而反现出的心境,亦无不可。

A. 变幻莫测当然安之若素B. 瞬息万变固然恬然自安C. 千变万化自然安贫乐道D. 光怪陆离必然恬然自得2.在下面一段文字横线处填入语句,衔接最恰当的一项是(3分)要成为一个创作的艺术家,除了要知道吸收许多知识之外,也要懂得排拒许多知识才行的啊!①因为不尽相同,所以艺术品才会有这样多不同的面貌。

②创作本身原来具有一种非常强烈的排他性。

③在艺术的领域里,我们要找到自己的极致,就需要先明白自己的极限,需要先明白自己和别人不尽相同的那一点。

④一个优秀的艺术家就是在某一方面的表现能够达到极致的人。

⑤而因为要走向极致,所以就不可能完全跟着别人的脚步去走,更不可能在自己的一生里走完所有别人曾经走过的路。

A. ①④⑤②③B. ②④⑤③①C. ②③①⑤④D. ①②④⑤③3. 下面是日常生活中的四个交际情景,其中语言表达得体的一项是(3分)A.主持人介绍来校讲学的专家:王元教授是我校杰出校友,他长期从事天文学研究工作,取得丰硕成果,去年当选为中国科学院院士。

B. 张老师给原来同事打电话:王老师,昨天在书店里遇到了您的家父,几年不见他还是精神矍铄。

C. 某读者在收到作家的著作后回信:老师,您寄奉的新作已经收到,拜读之后受益匪浅,感激之情,无以言表。

D. 校庆前夕某校友发给联络办老师的短信:因近日事务繁忙,恐难以按时到达贵校参加庆典,对此深表歉意!4. 下列诗句中对仗最工整的一项是(3分)A. 日暮北风吹雨去,数峰清瘦出云来。

B. 露侵驼褐晓寒轻,星斗阑干分外明。

C. 佳节久从愁里过,壮心偶傍醉中来。

D. 沉吟日落寒鸦起,却望柴荆独自回。

5.下面各项根据新闻拟写的标题,不恰当的一项是(3分)A. 欧元集团东山再起——欧元集团经济于2014年再次出现正增长,尤其是德法两国,经济增长好于预期,就是希腊也放慢了衰退的步伐。

这是令人高兴的信号,表明欧元集团正在摆脱债务危机的阴影。

B. 中国订单拯救英国生猪业——境外媒体称,中国人对猪蹄的喜爱拯救了英国的生猪产业。

因为来自中国的大量订单,英国养猪业再度进入了繁荣时期,出口量上升了九成,其中绝大部分增加来自对华食品出口。

C. 载人“磁悬浮魔毯”即将面世——很多人可能会梦想像阿拉丁一样坐上飞毯,如今瑞士家具商的一项发明或许能帮助这一梦想实现。

他们发明的“神奇磁悬浮魔毯”,利用磁力可载着重2.4公斤的小狗原地升起7厘米。

D. 英国出租司机痛恨打车软件——在中国受到追捧的打车软件在英国却遭到非议。

伦敦的出租车司机们正在策划一次大型抗议活动,抵制打车软件Uber 帮助一种当地人常用的私人车揽活。

二、文言文阅读(19分)阅读下面的文言文,完成6—9题。

相州昼锦堂记欧阳修仕宦而至将相,富贵而归故乡,此人情之所荣,而今昔之所同也。

盖士方穷时,困厄闾里,庸人孺子皆得易.而侮之。

若季子不礼于其嫂,买臣见弃于其妻。

一旦高车驷马,旗旄导前而骑卒拥后,夹道之人,相与骈肩累迹,瞻望咨嗟,而所谓庸夫愚妇者,奔走骇汗,羞愧俯伏,以自悔罪于车尘马足之间。

此一介之士得志于当时,而意气之盛,昔人比之衣锦之荣者也。

惟大丞相魏国公则不然。

公,相人也。

世有令.德,为时名卿。

自公少时,已擢.高科、登显仕,海内之士闻下风而望馀光者,盖亦有年矣。

所谓将相而富贵,皆公所宜素有,非如穷厄之人,侥幸得志于一时,出于庸夫愚妇之不意,以惊骇而夸耀之也。

然则高牙大纛①不足为公荣;桓圭衮冕②不足为公贵;惟德被生民而功施社稷,勒.之金石,播之声诗,以耀后世而垂无穷。

此公之志,而士亦以此望于公也。

岂止夸一时而荣一乡哉!公在至和中,尝以武康之节来治于相,乃作昼锦之堂于后圃。

既,又刻诗于石,以遗相人。

其言以快恩仇、矜名誉为可薄,盖不以昔人所夸者为荣,而以为戒。

于此见公之视富贵为何如,而其志岂易量哉!故能出入将相,勤劳王家,而夷险一节。

至于临大事、决大议,垂绅正笏,不动声色而措天下于泰山之安,可谓社稷之臣矣!其丰功盛烈,所以铭彝鼎而被弦歌者,乃邦家之光,非闾里之荣也。

余虽不获登公之堂,幸尝窃诵公之诗,乐公之志有成,而喜为天下道也。

于是乎书。

(选自《欧阳文忠公集》,有删节)注:①高牙大纛:指旗杆上装饰象牙的大将牙旗,亦代指高位者的仪仗。

②桓圭衮冕:桓圭,古代公爵所执的玉制礼器。

衮冕,古代帝王及诸侯大夫的礼服和礼帽。

6.对下列加点词的解释,不正确的一项是(3分)A.庸人孺子皆得易.而侮之易:轻率B.世有令.德,为时名卿令:美好C.已擢.高科、登显仕擢:选拔D.勒.之金石,播之声诗勒:雕刻7.下列各组句子中,加点词的意义和用法相同的一项是(3分)A.富贵而.归故乡/惟德被生民而.功施社稷B. 此一介之士得志于.当时/乃作昼锦之堂于.后圃C. 以.耀后世而垂无穷/尝以.武康之节来治于相D. 于此见公之.视富贵为何如/可谓社稷之.臣矣8.把文中画线的句子翻译成现代汉语。

(10分)(1)若季子不礼于其嫂,买臣见弃于其妻。

(3分)(2)既,又刻诗于石,以遗相人。

(3分)(3)其丰功盛烈,所以铭彝鼎而被弦歌者,乃邦家之光,非闾里之荣也。

(4分)9.作者认为魏国公并非“昔人比之衣锦之荣者”的原因是什么?请用自己的话简要概括。

(3分)三、古诗词鉴赏(10分)10.阅读下面两首唐诗,回答问题。

送李侍郎赴常州贾至雪晴云散北风寒,楚水吴山道路难。

今日送君须尽醉,明朝相忆路漫漫。

送柴侍御王昌龄流水通波接武冈,送君不觉有离伤。

青山一道同云雨,明月何曾是两乡。

(1)请分别赏析两首诗首句的表达效果。

(4 分)(2)两首诗抒发的感情有何异同?请简要分析。

(6分)四、名句名篇默写(8分)11.补写出下列名句名篇中的空缺部分。

(1)纵一苇之所如,▲。

(苏轼《赤壁赋》)(2)故木受绳则直,▲。

(《荀子·劝学》)(3)扈江离与辟芷兮,▲。

(屈原《离骚》)(4)▲,风流总被,雨打风吹去。

(辛弃疾《永遇乐·京口北固亭怀古》)(5)蒹葭萋萋,▲。

(《诗经·蒹葭》)(6)长风破浪会有时,▲。

(李白《行路难》)(7)▲,来者犹可追。

(《论语•微子》)(8)▲,歌诗合为事而作。

(白居易《与元九书》)五、现代文阅读(一)(20分)阅读下面的作品,完成12—15题。

预演(前苏联)杜姆巴泽我们是老同学,当时我们俩并排坐在最后一排课桌。

当老师转身在黑板上写字的时候,我们常一起冲着老师的后背做鬼脸儿。

我们还一起参加期末补考。

那是十五年前的事了。

十五年来我们一直没有见过面。

今天,我终于怀着激动的心情登上了四层楼……不知道他是否还能认出我来?我毅然按了一下电铃。

‚不怕烂掉你的臭爪子,可恶的东西!震得整个房子嗡嗡响。

什么时候你才能改掉这个坏习惯?‛里面传出一阵叫骂。

我羞得满面通红,连忙把手塞进口袋。

前来开门的是一个淡黄头发的女孩,看上去约摸有八九岁。

‚努格扎尔〃阿马纳季泽在这儿住吗?‛‚他是我爸爸。

‛‚你好,小姑娘,我是绍塔叔叔,是你爸爸的老同学。

‛‚噢,您请进来吧!……玛穆卡!爸爸的同学绍塔叔叔来了。

‛女孩朝里边喊了一声,领着我向屋子里走去。

迎面冲出一个六岁左右的小男孩,浑身是墨水污迹。

‚你们的爸爸妈妈在家吗?‛‚不在。

他们很快就会回来的。

‛‚你俩在做什么呢?‛我问。

‚我们在玩‘爸爸和妈妈游戏’。

我当爸爸,姆济娅当妈妈。

‛玛穆卡对我说。

‚你们玩吧,我不妨碍你们。

‛我一面点着烟,坐在沙发上。

‚不知道努格扎尔过得怎么样,‛我寻思着,‚生活安排得好不好,是不是幸福?‛孩子们尖利的喊叫声把我从遐想中唤醒过来。

‚喂,孩子他妈!今天做了什么好吃的?‛玛穆卡问道,显然是模仿某个人的。

‚吃个屁!我倒要问问你,我拿什么来做饭?家里啥也没有!‛‚你的嘴可真厉害!‛‚昨天夜里你跑哪儿逛去了?说!‛姆济娅握着两个小拳头,叉腰站着。

‚你管不着!‛‚什么,我管不着?好吧,我叫你出去鬼混!‛‚你疯啦?‛‚我受够了!够了!今天我就回娘家去,孩子统统带走!‛‚不准动孩子,你自己爱上哪儿就上哪儿!‛‚没那么简单!‛‚把儿子给我留下!‛‚不行,我已经说了!‛姆济娅高声叫道。

‚你听着:把儿子留下!要不然……‛玛穆卡抱起枕头,一下子砸在姆济娅身上。

‚好哇,你敢打人?畜生!‛姆济娅抡起洋娃娃,狠狠地打在弟弟头上。

她打得那样厉害,玛穆卡的两眼当即闪出了泪花。

我跳起来把他们拉开。

‚孩子,真不知道害臊。

这是什么游戏哟!‛‚放开我,尼娜!‛姆济娅突然朝我喊道。

‚你们这些邻居不知道他是什么玩意儿!我整天受他的气,没法跟他过下去了,我的血全被他吸干了,可恶的东西! 你们瞧,我瘦成了什么样子!‛姆济娅用纤细的指头戳了戳她那玫瑰色的脸蛋儿。

‚别信这个妖婆的鬼话!‛玛穆卡冲我说。

‚不要吵了!‛我实在控制不住,向他们大吼了一声。

孩子们恐惧地盯着我。

我喘过一口气,勒令两个孩子向我发誓,保证往后不再扮演他们的爸爸妈妈,然后便步履蹒跚地离开了这个家。

‚看来,我的朋友生活得蛮‘快活’的!‛我一路上想着姆济娅和玛穆卡,他们表演了一幕未来家庭生活的丑剧。

(有删改)12.小说开篇写“十五年前的事”,有什么作用?请作具体说明。

(4分)13.请结合小说中“我”拜访“老同学”的这段经历,简要分析“我”的心理变化过程。

(4分)14.试分析小说结尾画线句的含意和作用。

(6分)15.小说中“老同学”并未出场,而是重点描写了两个孩子的游戏,请结合全文探究这样安排的好处。

(6分)`六、现代文阅读(二)(18分)骑马王了一①大家都知道,古代的英雄是怎样爱他们所骑的马。

楚霸王的乌骓和虞姬并重,或者可说比虞姬更为重要,因为等到‚骓不逝‛的时候,虞姬只能陪着他徒唤‚奈何‛。

名将有了良马,然后相得益彰。

直到现代,我还觉得一位军长骑上马就格外显得威风凛凛。

那种‚逸势凌蛟虬‛的神气决不是任何机械所能代替。

②还会联想到西洋古代的‚骑士‛。

只有那种任侠仗义扶弱锄强的人,才不辱没了名马。

依照传说,中古时代只有‚骑士‛能有骑马的权利,而‚骑士‛又都是忠勇的人。

不管它是不是事实,只这忠勇和马的搭配就够有趣的。

咱们可以说,马就是忠勇的象征。

③文人的骑马,一般说起来,却是最可鄙的。

‚春风得意马蹄疾,一日看尽长安花‛,我们读到这一类的诗句的时候,眼睛里活现出戏台上状元游街的景象:一个弱不禁风的瘦书生拿着鞭子像挥扇般地摇了又摇。

这和骏马的神态形成一种极端的矛盾。

马者,怒也,武也。

多数书生非但不能武,连怒也不过五分钟,如果他们要骑马的话,最好择一些‚驾骀‛给他们骑。

相关文档
最新文档