正向冲击电流浪涌电流试验标准
浪涌与冲击电流

浪涌电流是surge current;而冲击电流是inrush current。
surge current是EMS的一个测试项目,即雷击试验,通过特定的装置通过感容打入一个超大的电流脉冲,电源需要经受得起这个脉冲而不损坏;而inrush current是一入市电,特别是90/-90度输入电压高端时的电流第一个脉冲值,不能超过规定值。
浪涌电流的规定为:IEC 61000-4-5;国标里面为:GB/T 17626.5 电磁兼容试验和测量浪涌(冲击)坑扰度试验。
请问一下关于冲击电流的标准是什么样的呢?对于电流的限值是怎么规定的呢??
浪涌电流指电源接通瞬间,流入电源设备的峰值电流。
由于输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。
电源应该限制AC开关、整流桥、保险丝、EMI滤波器件能承受的浪涌水平。
反复开关环路,AC输入电压不应损坏电源或者导致保险丝烧断。
浪涌电流同样也是指电网中出现的短时间象“浪”一样的高电压引起的大电流。
当某些大容量的电气设备接通或断开时间,由于电网中存在电感,将在电网产生“浪涌电压”,从而引发浪涌电流。
一般不管设备容量大小,都会存在浪涌电压,问题是小容量的设备产生的浪涌电压较小,不会产生多大的危害,因此常常被人们所忽略。
浪涌能力测试标准

浪涌能力测试标准
浪涌能力测试标准有很多,以下是部分标准和要求:
1. GB/T / IEC :2005两个标准规定了设备由开关和雷电瞬变过电压引起的单极性浪涌(冲击)的抗扰度要求,本部分的目的是建立一个共同的基准,以评价电气和电子设备在遭受浪涌(冲击)时的性能。
2. IEC 是国际电工委员会发布的有关电子设备电磁兼容性(EMC)的标准之一。
该标准详细规定了如何对电力系统的浪涌进行测试,以确保电力系统的安全稳定运行。
此标准适用于各种电力系统,包括住宅、商业和工业用途的电力系统等。
3. IEC 是国际电工委员会发布的另一个有关电子设备电磁兼容性(EMC)的标准。
该标准规定了如何对电力系统的过电压进行测试以确保电力系统的安全稳定运行。
此标准同样适用于各种电力系统。
4. GB/T 标准中规定,测试系统的测试精度为被测参数的±2%至±5%,且不应低于被测参数的读数误差。
5. 在浪涌测试中,测试步骤包括:准备工作、进行浪涌测试、数据分析等。
在测试过程中,需要根据测试对象的电路特性、负载情况等信息选择合适的测试方案,并按照测试方案进行浪涌测试,记录测试数据。
最后,对测试数据进行分析,确定测试结果是否合格。
如果测试结果不合格,需要对测试对象进行相应的改进和优化。
综上,进行浪涌能力测试时需要参照相应的标准和要求,以确保测试结果的准确性和可靠性。
浪涌测试的要求和方法

浪涌测试的要求和方法1 信号(通信)接口浪涌测试 1.1 测试目的和指标要求测试目的考察设备在实际使用过程中用户线接口受到浪涌电压冲击后,被测接口的损坏和设备性能下降的程度。
指标要求:对电话端口的浪涌测试分为类型A,和类型B两1 信号(通信)接口浪涌测试1.1 测试目的和指标要求测试目的考察设备在实际使用过程中用户线接口受到浪涌电压冲击后,被测接口的损坏和设备性能下降的程度。
指标要求:对电话端口的浪涌测试分为类型A,和类型B两种测试。
(1) 类型A(Class A)a) 波形。
差模干扰:电压波:10/560,电流波:10/560。
共模干扰:电压波:10/160,电流波:10/160。
b) 测试等级:差模:电压最小800V,电流最小100A。
共模:电压最小1500V,电流最小200Ac) 测试端口:差模:tip——ring ;tip-1 ——ring-1;对于单项通信的4线制电缆,tip——ring-1, ring——tip-1。
共模:tip-ring和tip-1——ring-1对地,或者对其他连接到未经认证的设备的线缆(拧到一起)。
d) 测试状态:设备的所有可能影响本标准要求的状态都要测试。
如果设备状态不能通过正常上电获得,需要通过人工干预获得;没有施加浪涌的端口(包括电话端口,辅助端口以及和未认证设备连接的端口),要用适当的方式端接并处于正常使用状态;如果设备的一次电源允许插拔,则设备带有电源线和断开电源线两种状态都要测试。
e) 判据允许起安全作用的电路出现开路,或者到地的短路,但在这种失效模式下,保证让用户不能使用设备,或设备具有明显失效指示(如告警),需要立即从网络上断开或需要维修。
对安全电路进行修复后,设备性能和功能恢复正常。
(2) 类型B (class B)a) 波形。
差模:电压波:9/720,电流波:5/320。
共模:电压波:9/720,电流波:5/320。
b) 测试等级:差模:电压最小1000V,电流最小25A。
华北电力大学科技学院浪涌(冲击)实验

华北电力大学科技学院电磁兼容实验报告班级:电信13K2姓名:张钦潘学号:131903020231电磁兼容浪涌(冲击)抗扰度试验一:实验内容1:浪涌的试验内容:雷电瞬变过电压引起的单极性浪涌雷电具有以下几个特点:冲击电流非常大,其电流高达几万至几十万安培。
持续时间短,一般雷击分为3个阶段,即先导放电、主放电和余光放电,整个过程一般不会超过60µs。
雷电流变化梯度大,有的可达10KA/µs。
冲击电压高,强大的电流产生交变磁场,其感应电压可高达上亿伏。
2:浪涌的目的目的是建立一个共同的基准,以评价电气和电子设备在遭受浪涌(冲击)时的性能。
3:试验设备高压源U;充电电阻Re;储能电容Cc;脉冲持续时间形成电阻Rs;阻抗匹配电阻Rm;上升时间形成电感Lr。
二:试验1:标准波形图:a)浪涌电压波形如下图所示:b)浪涌电流波形如下图所示:a:原理图开路电压原理图短路电流原理图b:结果图形1)开路电压波形5us时的波形:10us时的波形:100us时的波形:波前时间:T1=1.67*T=1.5*(1+30%)us半峰值时间:T2=45*(1+20%)us对比标准的参数表可知,基本符合标准的要求。
2)短路电流波形15us时的电流波形:30us时的电流波形:100us时的电流波形:波前时间:T1=1.25*T=8.7*(1+20%)us半峰值时间:T2=17*(1+20%)us对比标准的参数表可知,基本符合标准的要求。
3)开路电压峰值与短路电流峰值的关系由开路电压波形图和短路电流波形图可知,电压峰值约为9.3KV,短路电流为0.45KA,对比标准的开路电压峰值与短路电流峰值的关系可知,基本符合标准的要求。
三:浪涌的防护二极管模型的反串电压为10V浪涌的防护采用一个二极管并联在输入回路中的方式,二极管模型的电压为1KV,原理图与仿真波形图如下图所示:开路电压原理图:100ns时的原理图100ns时的波形图30ns时的波形图短路电流原理图:分析:根据所仿真出来的波形与上面做的仿真波形对比参照可知,做完防护后的开路电压变成155V左右,短路电流变为18A左右,效果还是可以的。
GBT 17626.5-2019浪涌(冲击)抗扰度试验培训

3 参考地
不受任何接地配置影响的、视为导电的大地的部分, 其电位约定为零。
4 上升时间 Tr
脉冲瞬时值首次从脉冲幅值的10%上升到90%所经 历的时间。
5 二次保护
对通过一次保护后的能量进行抑制的措施。 (可以是单独的装置,也可以是EUT本身的特性)
术语、定义、缩略语
1 浪涌(冲击)
沿线路或电路传播的电流、电压或功率的瞬态波, 其待征是先快速上升后缓慢下降。
2 电源端口(新增)
为设备或相关设备提供电源而使其正常工作的导 线或电缆的端口。
3 对称线
差模到共模转换损耗大于20 dB的平衡对线。
5 验证
用于检査试验设备系统(如试验发生器和互连电 缆),以证明测试系统正常工作的一整套操作。
4 瞬态
在两相邻稳定状态之间变化的物理量或物理现象, 其变化时间小于所关注的时间尺度。
• 规定了设备对由开关和雷电瞬变过电压引起的单极性浪涌(冲击)的抗扰度要求、试验方法和推荐的试验 等级范围,规定了不同环境和安装状态下的几个试验等级。本部分提出的要求适用于电气和电子设备。
• 目的是建立一个共同的基准,以评价电气和电子设备在遭受浪涌(冲击)时的性能。
• 本部分不对受试设备耐高压的绝缘能力进行试验。本部分不考虑直击雷的雷电流的直接注入。
电磁兼容试验和测量技术 浪涌(冲击)抗扰度试验
目录
CONTENTS
新旧对比 范围及瞬态概述 术语、定义、缩略语 实验等级 实验设备 实验配置 实验程序 仪器校准
新旧对比
• 增加3个新定义:耦合/去耦网络、波前时间、电源端口;修改了2个定义:持续时间、互连线 • 增加了缩略语(见3.2); • 增加了线-线与线-地的试验等级(见表1,); • 修改了对1.2/50μs-8/20μs波形参数的定义(见表2,2008版的表2); • 增加了对发生器特性的校准方法的描述(见6.2.3); • 删除了关于10/700μs组合波发生器的描述; • 修改了耦合/去耦网络的选择流程图; • 修改了对于用于交/直流电源的CDN的要求。 • 増加了关于CDN的EUT端口的开路电压峰值和短路电流峰值之间的关系。 • 增加了关于CDN的校准; • 删除了关于高速通信线的试验配置的描述;
电子元器件可靠性试验规范

PFD -Ⅲ型高温反偏试验台(直流):环境箱、控制系统箱、控制电源箱、老化电源箱、检查箱、控制板、烘箱、老化板。
四、操作规范:
要严格按照PFD -Ⅲ型高温反偏试验台“技术说明书”操作顺序操作。
五、试验条件及判据:
试验条件,适用范围
判据
1.TA = 125℃,VR = 50 ~ 80%PIV,22只,24~1000H , IR≤2倍规范值(在相应PIV值测),VF≤1.1倍规范值,根据国家标准和MIL-STD- 750D(1995)标准制定,根据用户要求选用VR,适合于所有品种,样品恢复到室温后, 24小时内测完。
②此试验温度高,时间长,要注意试验仪器的安全性;
③注意电压不能超过规范值;
④要经常注意接触是否可靠(整流二极管与插座);
⑤试验前后的参数和特性要详细记录。
4.2压力蒸煮试验
Preasure Cooker Test
一、工作原理:
将被试元器件放入密封高压釜中,釜中加入几个大气压的蒸汽强迫湿气进入元器件的封装层中,以此来评价元器件的防潮性能,使用这种方法与恒温、恒湿试样方法相比较,能在短得的多的时间内对元器件性能作出评价,使元器件的防潮性能在研制阶段便可清楚。
第14页
4.11弯曲试验
------------------------------------
第15页
4.12稳态湿热试验
------------------------------------
第18页
4.13变温变湿试验
------------------------------------
第20页
4.14正向冲击电流(浪涌电流)试验
--------------------------
浪涌能力测试标准

浪涌能力测试标准全文共四篇示例,供读者参考第一篇示例:浪涌能力测试标准是指对电子设备在发生浪涌电压或电流冲击时的抗干扰能力进行检测和评估的一套标准化方法和规范。
浪涌电压或电流是短时间内快速变化的电压或电流信号,通常由外部干扰或设备内部因素引起,可能会损坏设备的电气元件,导致设备故障,影响设备的正常运行。
对设备的浪涌能力进行测试是至关重要的。
浪涌能力测试标准主要包括IEC、ISO、IEEE等国际标准组织制定的相关标准,以及一些行业标准和企业标准。
这些标准通常会规定浪涌电压或电流的幅值、上升时间、波形等参数,以及测试设备和测试方法等具体要求,以确保测试的准确性和可靠性。
在浪涌能力测试中,常用的测试设备包括浪涌发生器、浪涌电压或电流传感器、示波器、数字电压表等。
通过对被测试设备施加特定的浪涌电压或电流冲击,然后观察被测试设备的响应情况,如电路是否烧毁、功能是否异常等,从而评估其浪涌抗干扰能力。
浪涌能力测试标准的制定和遵守对于保障设备的可靠性和稳定性具有重要意义。
在现代电子设备普及的背景下,各种电子设备在面临外部干扰时,容易受到浪涌电压或电流的影响,从而导致设备故障,给用户带来损失。
制定严格的浪涌能力测试标准,对于提高设备的品质和可靠性至关重要。
浪涌能力测试标准的制定应当考虑以下几个方面:第一,应合理确定浪涌电压或电流的参数。
浪涌电压或电流的幅值、上升时间、波形等参数对于评估设备的浪涌抗干扰能力至关重要,因此应根据实际情况进行合理确定。
第二,应明确测试设备和测试方法。
测试设备的选择和测试方法的确定直接影响浪涌能力测试的有效性和准确性,应明确规定相关要求,确保测试结果真实可靠。
应考虑不同设备的特殊要求。
不同类型的电子设备在面对浪涌电压或电流时可能存在不同的敏感度和抗干扰能力,因此在制定浪涌能力测试标准时应考虑到不同设备的特殊性,制定相应的测试要求。
第四,应强调标准的执行和监督。
制定了浪涌能力测试标准之后,需要加强对标准的执行和监督,确保各相关企业和机构遵守标准,提高设备的浪涌抗干扰能力。
浪涌电流和浪涌电压试验方法

浪涌电流和浪涌电压试验方法一、引言在现代电力系统中,浪涌电流和浪涌电压是常见的电力质量问题之一。
浪涌电流是指在电路中突然出现的瞬时大电流,而浪涌电压则是指在电路中突然出现的瞬时大电压。
这些突变的电流和电压可能对电力设备和系统造成严重的损坏,因此浪涌电流和浪涌电压试验方法的研究和应用变得非常重要。
二、浪涌电流测试方法1. 直流注入法直流注入法是一种常用的浪涌电流测试方法。
该方法是通过注入一个直流电流脉冲到被测试设备中,然后测量由此引起的电压响应来评估设备的耐受能力。
这种方法可以用于测试不同类型的设备,如电力变压器、电缆、发电机等。
2. 电压升降法电压升降法是另一种常用的浪涌电流测试方法。
该方法是通过升高或降低电压来产生浪涌电流,并测量设备的响应。
这种方法可以用于测试不同类型的设备,如开关、继电器、熔断器等。
3. 瞬态模拟法瞬态模拟法是一种模拟真实浪涌电流事件的测试方法。
该方法是通过使用特殊的电源和负载来模拟真实浪涌电流事件,并测量设备的响应。
这种方法可以提供更准确的测试结果,但需要更复杂的设备和技术。
三、浪涌电压测试方法1. 前后级测试法前后级测试法是一种常用的浪涌电压测试方法。
该方法是通过在被测试设备前后分别加入电压源和浪涌电流发生器来测试设备的耐受能力。
这种方法可以用于测试不同类型的设备,如电力变压器、电缆、发电机等。
2. 步进升降法步进升降法是另一种常用的浪涌电压测试方法。
该方法是通过逐步升高或降低电压来产生浪涌电压,并测量设备的响应。
这种方法可以用于测试不同类型的设备,如开关、继电器、熔断器等。
3. 模拟脉冲法模拟脉冲法是一种模拟真实浪涌电压事件的测试方法。
该方法是通过使用特殊的电源和负载来模拟真实浪涌电压事件,并测量设备的响应。
这种方法可以提供更准确的测试结果,但需要更复杂的设备和技术。
四、结论浪涌电流和浪涌电压试验方法是评估电力设备和系统抵御突发电流和电压冲击的重要手段。
通过选择合适的测试方法,可以有效地评估设备的抗浪涌能力,并采取相应的保护措施。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正向冲击电流(浪涌电流)试验标准
Forward Surge Test
一、目的:检验器件经正向大电流冲击而不失效的能力。
二、试验设备:浪涌电流测试仪(10~2000A)
三、环境试验条件及判据:
(1)标准状态
标准状态是指预处理, 后续处理及试验中的环境条件。
论述如下:
环境温度: 15~35℃
相对湿度: 45~75%
(2)判定状态
判定状态是指初测及终测时的环境条件。
论述如下:
环境温度: 25±3℃
相对湿度: 45~75%
四、操作规范:
4.1要严格按照PFD - Ⅲ型高温反偏试验台“技术说明书”操作顺序操作。
4.2常规产品规定每季度做一次周期试验,试验条件及判据采用或等效采
用产品标准;新产品、新工艺、用户特殊要求产品等按计划进行。
4.3采用LTPD的抽样方法,在第一次试验不合格时,可采用追加样品抽
样方法或采用筛选方法重新抽样,但无论何种方法只能重新抽样或追
加一次。
4.4若LTPD=10%,则抽22只,0收1退,追加抽样为38只,1收2退。
抽样必须在OQC检验合格成品中抽取。
五、操作规程:
1.整流二极管
1.1把被检测样品按二极管的极性正确地在夹具上固定好。
1.2测试台的黑色多路开关打在“0”位,切记不能打在“1~4”
档的任何一档。
2.整流桥堆
2.1 把被测样品整流桥堆放在夹具上夹好。
2.2 把多路黑色开关打向“1~4”任何一档,切记不能打在“0”档。
3.把充电/浪涌开关打在浪涌位置,浪涌/浪涌+反压大在浪涌位置,
反向电压调节旋钮反时针调到零。
4.启动电源,此时,IFSM、VFM、浪涌次数、10个数码管显示全为
零,10ms指示灯亮。
5.按一下薄膜面板上的SET键,此时,IFSM4个数码管闪烁,此时
您可根据要求设置浪涌电流值了,设置数0~9自左向右切换,F1为10ms,F2为8.3ms,如有误操作可用Del键修改,当数值确定后,按ENT键确定,IFSM显示设置的浪涌电流值。
注意:
1.在设置电流值时,最右边一位数码只有0、5有效,最左边一
位数码管只有0、1、2有效,其余数不认。
2.当设置错误时按ENT键无效、IFSM数码管闪烁。
3.只有在充电/浪涌开关打在浪涌时才可以设置,在充电时设置
无效。
6.把充电/浪涌开关打向充电,样品测试台中大接触器吸合,充电
电瓶表指示、当指示到40V左右时,充电指示发光管(绿色)闪
烁,此时就可以进行浪涌试验了,注意当充电电瓶未达到40V,
绿色二极管不闪烁或不亮时不允许把浪涌/充电开关打向浪涌。
7.把充电/浪涌开关打向浪涌,此时,IFSM、VFM显示的数值即为流
经样品的电压值,浪涌次数+1,按下薄膜面板上的“←”打印机
立即将IFSM、VFM的数值打印出来。
8.再把充电/浪涌开关打向充电,重复的操作。
9.按要求检查产品质量。
10.按停机按钮切断电源关机。
六、判据:
抽样22只,按本试验方法试验,试验条件为脉宽8.3ms或10ms ,IFSM参照本公司DATA BOOK,浪涌次数一次,按本“可靠性试验规范”可靠性试验判定标准判定,0收1退。
七、注意事项
1.在开机、关机时,充电/浪涌开关必须打向浪涌,浪涌/浪涌+反压必
须打在浪涌位置,反向电压调节旋钮必须反时针旋到底。
2.开机后,被测二极管两端具有反向或正向电压,在交流接触器线包上
有220V交流电压,不得用手触摸,务必不能掉下金属对象,以免发生意外事故。
3.当大电流高电压(大交流接触器)连续跳动时,必须立即切断电源,
此时,被测样品的内部以达到击穿的边缘,并存在内部跳火现象或者一起内部的固态继电器发生故障。
4.充电电瓶达不到40V时,为BDT65C短路(故障指示灯亮)或电源电
压低于220V,应立即切断电源。
5.不允许在被测样品开路时检测浪涌电流。
6.每次试验结束必须把电源插头拔下,以测安全。