浪涌与冲击电流
变压器浪涌电流产生的原因

变压器浪涌电流产生的原因
什么是浪涌电流?
变压器在通电瞬间会产生一个很大的电流尖峰叫浪涌电流
浪涌电压/电流产生的原因:
由于电压突变引起的当变压器合闸时正是电源正弦波的波形进入零的位置时,变压器会产生很大的冲击电流,甚至会造成变压器保护动作跳闸。
不过这种概率很低,所以平时变压器合闸时,其冲击电流都很小,变压器在空载合闸时会出现激磁涌流。
其大小可达稳态激磁电流的80-100倍,或额定电流的6-8倍。
涌流对变压器本身不会造成大的危害,但在某些情况下能造成电波动,如不采取相应措施,可能使变压器过电流或差动继电保护误动作。
变压器励磁涌流是变压器全电压充电时在其绕组中产生的暂态电流.变压器投入前铁芯中的剩余磁通与变压器投入时工作电压产生的磁通方向相同时,其总磁通远远超过铁芯的饱和磁通量,因此产生较大的涌流,其中最大峰值可达到变压器额定电流的6-8倍.励磁涌流与变压器投入时系统电压的相角,变压器铁芯的剩余磁通和电源系统阻抗等因素有关.
最大涌流出现在变压器投入时电压经过零点的瞬间(该时磁通为峰值).变压器涌流中含有直流分量和高次谐波分量,随时间衰减,其衰减时间取决于回路电阻和电抗,一般大容量变压器约5-10S,小容量变压器约为0.2S左右一般在工厂生产检验时在电源输入处串接
设定电流的保护开关(如常用的DZ47-63 C20)开机时不发生跳闸就说明激磁涌流小于该保护开关的额定电流当然要多开关几次测试实际的激磁涌流可以用用示波器,在输入电源串接一小无感电阻,用示波器监测开机瞬时的涌浪电流的峰值但变压器浪涌电流最大是在开机时刚好在电源正弦波的波形进入零的位置时。
人工开机时间是随机的在最大值的机率很小要用专用罗氏线圈来测量。
浪涌电流的概念

浪涌电流的概念浪涌电流是指电力系统中突然出现的一股瞬态电流,通常发生在电力系统中断电后或由于突然的电力负荷变化引起。
浪涌电流的持续时间很短,通常在几微秒到几毫秒之间,但其峰值电流却可能非常大,甚至超过额定电流的数倍。
浪涌电流是由于电力系统中断电后,残余能量或磁场的突然失去而引起的。
当电源断开时,电力系统中的电感元件(如电感线圈、变压器等)会产生反向电动势,导致突然的电流增加。
这就是浪涌电流。
此外,在电力系统中,设备的突然启动、停止或切换负载导致电流突变也会产生浪涌电流。
浪涌电流对电力系统及设备产生了很大的破坏性。
当浪涌电流通过电力设备时,会产生高电压冲击,导致设备内部绝缘体击穿,甚至损坏设备。
浪涌电流对电力系统的配电设备、电力线路、电力变压器等都会产生不可忽视的危害。
为了防止浪涌电流对电力系统造成损害,必须采取一系列的保护措施。
其中之一是使用浪涌保护器。
浪涌保护器能够限制浪涌电流的传播,降低电力设备的电压冲击,保护电力设备。
浪涌保护器通常包括电阻、电容、电感等元件,通过管理和分散浪涌电流,防止其对设备及线路产生过大的影响。
此外,通过合理的电力系统设计和设备维护也能有效减少浪涌电流对设备的损害。
例如,在电力系统设计中,可以采用适当的电源和负载匹配,降低设备启停产生的电流突变;合理设计电力线路,减少电流传输的路径和幅度变动;加装电力变压器中的变压器保护装置,等等。
总之,浪涌电流是一种在电力系统中常见的瞬态电流,其峰值电流非常大,对电力设备产生巨大的破坏性。
为了保护电力设备免受浪涌电流的影响,必须采取一系列的保护措施,如使用浪涌保护器、合理设计电力系统和设备维护等。
只有这样,才能确保电力系统的安全运行,并延长电力设备的使用寿命。
正向冲击电流浪涌电流试验标准

正向冲击电流(浪涌电流)试验标准Forward Surge Test一、目的:检验器件经正向大电流冲击而不失效的能力。
二、试验设备:浪涌电流测试仪(10~2000A)三、环境试验条件及判据:(1)标准状态标准状态是指预处理, 后续处理及试验中的环境条件。
论述如下:环境温度: 15~35℃相对湿度: 45~75%(2)判定状态判定状态是指初测及终测时的环境条件。
论述如下:环境温度: 25±3℃相对湿度: 45~75%四、操作规范:4.1要严格按照PFD - Ⅲ型高温反偏试验台“技术说明书”操作顺序操作。
4.2常规产品规定每季度做一次周期试验,试验条件及判据采用或等效采用产品标准;新产品、新工艺、用户特殊要求产品等按计划进行。
4.3采用LTPD的抽样方法,在第一次试验不合格时,可采用追加样品抽样方法或采用筛选方法重新抽样,但无论何种方法只能重新抽样或追加一次。
4.4若LTPD=10%,则抽22只,0收1退,追加抽样为38只,1收2退。
抽样必须在OQC检验合格成品中抽取。
五、操作规程:1.整流二极管1.1把被检测样品按二极管的极性正确地在夹具上固定好。
1.2测试台的黑色多路开关打在“0”位,切记不能打在“1~4”档的任何一档。
2.整流桥堆2.1 把被测样品整流桥堆放在夹具上夹好。
2.2 把多路黑色开关打向“1~4”任何一档,切记不能打在“0”档。
3.把充电/浪涌开关打在浪涌位置,浪涌/浪涌+反压大在浪涌位置,反向电压调节旋钮反时针调到零。
4.启动电源,此时,IFSM、VFM、浪涌次数、10个数码管显示全为零,10ms指示灯亮。
5.按一下薄膜面板上的SET键,此时,IFSM4个数码管闪烁,此时您可根据要求设置浪涌电流值了,设置数0~9自左向右切换,F1为10ms,F2为8.3ms,如有误操作可用Del键修改,当数值确定后,按ENT键确定,IFSM显示设置的浪涌电流值。
注意:1.在设置电流值时,最右边一位数码只有0、5有效,最左边一位数码管只有0、1、2有效,其余数不认。
浪涌电流文档

浪涌电流1. 简介浪涌电流(Surge Current)是指在电路中突然出现的瞬时电流过大的现象,通常是由于电源的非正常情况、电源开关操作或外界干扰等原因引起的。
浪涌电流的产生会对电子设备和系统的正常运行产生不良影响,甚至导致设备损坏或系统故障。
2. 浪涌电流的原因浪涌电流的产生原因有多种,下面将介绍几个常见的原因:2.1 电源开关操作在电源开关操作时,由于电源电压的突然变化,会引起瞬时电流的变化,从而产生浪涌电流。
尤其是在大功率设备(如空调、电冰箱等)的启动过程中,由于启动电流较大,往往会引起较为明显的浪涌电流。
2.2 外界干扰外界干扰也是浪涌电流产生的一种常见原因。
例如,当闪电击中电力线路或电信线路时,会产生高电压脉冲,导致线路电流瞬时增大,形成浪涌电流。
2.3 电源噪声电源噪声是指电源输出中含有的高频噪声信号。
当这些噪声信号通过电缆或线路传输时,会导致电流波动,进而产生浪涌电流。
电源噪声的大小与其频率和大小有关,通常会使用滤波器等装置来抑制电源噪声。
3. 浪涌电流的危害浪涌电流对电子设备和系统的正常运行产生不良影响,具体危害表现如下:3.1 设备损坏浪涌电流的过大电流会对设备的电子元器件产生较大的瞬时冲击,可能导致元器件的故障或损坏。
尤其是对于一些灵敏的电子元器件,如芯片、保护器件等,更容易受到浪涌电流的影响。
3.2 系统故障浪涌电流也会导致系统的故障。
当浪涌电流通过线路传播时,会产生电压波动,进而导致系统电压异常,使系统的稳定性降低。
在一些对电压稳定要求较高的设备和系统中,浪涌电流可能会直接影响其正常运行,甚至导致系统崩溃。
3.3 安全隐患浪涌电流还会引发一些安全隐患。
例如,在瞬时电流较大的情况下,电线和插座会产生较大的瞬时热量,有可能引发火灾的隐患。
此外,浪涌电流也会对人身安全造成威胁,例如触电等。
4. 浪涌电流的防护措施为了保护设备和系统免受浪涌电流的危害,可以采取以下防护措施:4.1 使用浪涌保护器件浪涌保护器件可以有效地降低浪涌电流对设备和系统的影响。
华北电力大学科技学院浪涌(冲击)实验

华北电力大学科技学院电磁兼容实验报告班级:电信13K2姓名:张钦潘学号:131903020231电磁兼容浪涌(冲击)抗扰度试验一:实验内容1:浪涌的试验内容:雷电瞬变过电压引起的单极性浪涌雷电具有以下几个特点:冲击电流非常大,其电流高达几万至几十万安培。
持续时间短,一般雷击分为3个阶段,即先导放电、主放电和余光放电,整个过程一般不会超过60µs。
雷电流变化梯度大,有的可达10KA/µs。
冲击电压高,强大的电流产生交变磁场,其感应电压可高达上亿伏。
2:浪涌的目的目的是建立一个共同的基准,以评价电气和电子设备在遭受浪涌(冲击)时的性能。
3:试验设备高压源U;充电电阻Re;储能电容Cc;脉冲持续时间形成电阻Rs;阻抗匹配电阻Rm;上升时间形成电感Lr。
二:试验1:标准波形图:a)浪涌电压波形如下图所示:b)浪涌电流波形如下图所示:a:原理图开路电压原理图短路电流原理图b:结果图形1)开路电压波形5us时的波形:10us时的波形:100us时的波形:波前时间:T1=1.67*T=1.5*(1+30%)us半峰值时间:T2=45*(1+20%)us对比标准的参数表可知,基本符合标准的要求。
2)短路电流波形15us时的电流波形:30us时的电流波形:100us时的电流波形:波前时间:T1=1.25*T=8.7*(1+20%)us半峰值时间:T2=17*(1+20%)us对比标准的参数表可知,基本符合标准的要求。
3)开路电压峰值与短路电流峰值的关系由开路电压波形图和短路电流波形图可知,电压峰值约为9.3KV,短路电流为0.45KA,对比标准的开路电压峰值与短路电流峰值的关系可知,基本符合标准的要求。
三:浪涌的防护二极管模型的反串电压为10V浪涌的防护采用一个二极管并联在输入回路中的方式,二极管模型的电压为1KV,原理图与仿真波形图如下图所示:开路电压原理图:100ns时的原理图100ns时的波形图30ns时的波形图短路电流原理图:分析:根据所仿真出来的波形与上面做的仿真波形对比参照可知,做完防护后的开路电压变成155V左右,短路电流变为18A左右,效果还是可以的。
浪涌冲击抗扰试验

浪涌冲击抗扰试验
浪涌冲击抗扰试验是指在电子设备的使用过程中,如雷击、电涌等高电压瞬变事件出现时,设备自身或与其它设备之间可能会产生的电路冲击环境下,评估设备的抗扰性能的测试。
浪涌冲击试验属于EMC(电磁兼容性)测试的一种,目的是为了验证设备在受到电磁干扰时,能否正常工作,保证设备安全、稳定地运行。
这种测试用于电力、照明、工业自动化、电气控制和通信等领域的设备,如家用电器、电脑、数据中心、汽车电子设备等。
该测试模拟电子设备在连接或断开电源时可能出现的电涌和浪涌现象。
电流的瞬时高峰值很高,可能会烧坏设备。
经过此测试,设备能够达到一定的电磁兼容性标准,并测量其鲁棒性和过渡反应。
测试方法包括浪涌测试和冲击测试,前者模拟设备在连接电源时可能出现的电流增加;冲击测试模拟为在电流较大的情况下,设备停止工作时突然切换的变化。
在进行浪涌和冲击测试时,需要使用精密测试仪器进行测试。
这些测试仪器可以检测到浪涌电流和冲击电压的幅值、上升时间和持续时间等参数。
测试过程中需要重新连接电源,以会产生浪涌和冲击电压,测试仪器记录这些数据并进行数据分析,以确定设备的抗浪涌和抗冲击能力。
总之,浪涌冲击抗扰试验具有极高的测试精度和重要性。
通过该测试,能够有效评估电子设备的兼容性,减少因各种电磁干扰事件导致的故障,并加强设备的抗扰性和稳定性。
浪涌保护器的相关参数

浪涌保护器参数--SDP1、标称电压Un:被保护系统的额定电压相符,在信息技术系统中此参数表明了应该选用的电涌保护器的类型,它标出交流或直流电压的有效值。
2、额定电压Uc:能长久施加在电涌保护器的指定端,而不引起保护器特性变化与激活保护元件的最大电压有效值。
3、额定放电电流Isn:给电涌保护器施加波形为8/20μs的标准雷电波冲击10次时,保护器所耐受的最大冲击电流峰值。
4、最大放电电流Imax:给保护器施加波形为8/20μs的标准雷电波冲击1次时,电涌保护器所耐受的最大冲击电流峰值。
5、电压保护级别Up:电涌保护器在下列测试中的最大值:1KV/μs 斜率的跳火电压;额定放电电流的残压。
6、响应时间tA:主要反应在保护器里的特殊保护元件的动作灵敏度、击穿时间,在一定时间内变化取决于du/dt或di/dt的斜率。
7、数据传输速率Vs:表示在一秒内传输多少比特值,单位:bps;就是数据传输系统中正确选用浪涌保护器的参考值,防雷器的数据传输速率取决于系统的传输方式。
8、插入损耗Ae:在给定频率下电涌保护器插入前与插入后的电压比率。
9、回波损耗Ar:表示前沿波在保护设备(反射点)被反射的比例,就是直接衡量保护设备同系统阻抗就是否兼容的参数。
10、最大纵向放电电流:指每线对地施加波形为8/20μs的标准雷电波冲击1次时,浪涌保护器所耐受的最大冲击电流峰值。
11、最大横向放电电流:指线与线之间施加波形为8/20μs的标准雷电波冲击1次时,浪涌保护器所耐受的最大冲击电流峰值。
12、在线阻抗:指在标称电压Un下流经保护器的回路阻抗与感抗的与。
通常称为“系统阻抗”。
13、峰值放电电流:分两种:额定放电电流Isn与最大放电电流Imax。
14、漏电流:指在75或80标称电压Un下流经保护器的直流电流。
浪涌保护器的主要技术参数

浪涌保护器的主要技术参数摘要:1.浪涌保护器的定义和作用2.浪涌保护器的主要技术参数3.浪涌保护器技术参数的解释4.浪涌保护器的应用场景5.如何选择合适的浪涌保护器正文:浪涌保护器,又称电涌保护器(Surge Protective Device,简称SPD),是一种用于保护电子设备、仪器仪表和通讯线路安全的电子装置。
当电气回路或通信线路因外界干扰突然产生尖峰电流或电压时,浪涌保护器能够在极短时间内导通分流,从而避免浪涌对回路其他设备器材造成损害。
浪涌保护器的主要技术参数包括:1.额定电压:指浪涌保护器正常工作的电压范围,一般为220V 至380V。
2.额定放电电流:表示浪涌保护器能够承受的最大冲击电流,通常以kA 为单位。
例如,100kA 代表冲击电流Iimp 的数值。
3.响应时间:指浪涌保护器从接收到浪涌信号到启动保护作用的时间,通常以微秒(μs)为单位。
响应时间越短,保护效果越好。
4.保护水平:表示浪涌保护器能够有效抑制的电压峰值,通常以kV 为单位。
保护电压水平越低,对设备的保护效果越好。
5.接口类型:浪涌保护器通常有串口、并口和直流接口等不同类型的接口,以适应各种电气回路的需要。
在理解了浪涌保护器的主要技术参数后,我们需要根据实际应用场景选择合适的浪涌保护器。
以下是一些常见的应用场景和对应的浪涌保护器选择建议:1.家庭住宅:家庭住宅一般使用交流50/60HZ,额定电压220V 的供电系统。
在此场景下,可以选择额定电压为220V,响应时间在10/350μs,保护水平在2kV 的浪涌保护器。
2.第三产业:包括商业、金融、旅游等行业,通常使用交流50/60HZ,额定电压220V 至380V 的供电系统。
在此场景下,可以选择额定电压为220V 至380V,响应时间在10/350μs,保护水平在2kV 的浪涌保护器。
3.工业领域:工业领域对浪涌保护器的要求较高,通常需要承受更高的冲击电流和电压峰值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浪涌电流是surge current;而冲击电流是inrush current。
surge current是EMS的一个测试项目,即雷击试验,通过特定的装置通过感容打入一个超大的电流脉冲,电源需要经受得起这个脉冲而不损坏;而inrush current是一入市电,特别是90/-90度输入电压高端时的电流第一个脉冲值,不能超过规定值。
浪涌电流的规定为:IEC 61000-4-5;国标里面为:GB/T 17626.5 电磁兼容试验和测量浪涌(冲击)坑扰度试验。
请问一下关于冲击电流的标准是什么样的呢?对于电流的限值是怎么规定的呢??
浪涌电流指电源接通瞬间,流入电源设备的峰值电流。
由于输入滤波电容迅速充电,所以该峰值电流远远大于稳态输入电流。
电源应该限制AC开关、整流桥、保险丝、EMI滤波器件能承受的浪涌水平。
反复开关环路,AC输入电压不应损坏电源或者导致保险丝烧断。
浪涌电流同样也是指电网中出现的短时间象“浪”一样的高电压引起的大电流。
当某些大容量的电气设备接通或断开时间,由于电网中存在电感,将在电网产生“浪涌电压”,从而引发浪涌电流。
一般不管设备容量大小,都会存在浪涌电压,问题是小容量的设备产生的浪涌电压较小,不会产生多大的危害,因此常常被人们所忽略。