概率统计大题练习题

合集下载

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

《概率统计》练习题及参考答案

《概率统计》练习题及参考答案

习题一 (A )1.写出下列随机试验的样本空间: (1)一枚硬币连抛三次;(2)两枚骰子的点数和;(3)100粒种子的出苗数;(4)一只灯泡的寿命。

2. 记三事件为C B A ,,。

试表示下列事件:(1)C B A ,,都发生或都不发生;(2)C B A ,,中不多于一个发生;(3)C B A ,,中只有一个发生;(4)C B A ,,中至少有一个发生; (5)C B A ,,中不多于两个发生;(6)C B A ,,中恰有两个发生;(7)C B A ,,中至少有两个发生。

3.指出下列事件A 与B 之间的关系:(1)检查两件产品,事件A =“至少有一件合格品”,B =“两件都是合格品”; (2)设T 表示某电子管的寿命,事件A ={T >2000h },B ={T >2500h }。

4.请叙述下列事件的互逆事件:(1)A =“抛掷一枚骰子两次,点数之和大于7”; (2)B =“数学考试中全班至少有3名同学没通过”; (3)C =“射击三次,至少中一次”;(4)D =“加工四个零件,至少有两个合格品”。

5.从一批由47件正品,3件次品组成的产品中,任取一件产品,求取得正品的概率。

6.电话号码由7个数字组成,每个数字可以是9,,1,0 中的任一个,求:(1)电话号码由完全不相同的数字组成的概率;(2)电话号码中不含数字0和2的概率;(3)电话号码中4至少出现两次的概率。

7.从0,1,2,3这四个数字中任取三个进行排列,求“取得的三个数字排成的数是三位数且是偶数”的概率。

8.从一箱装有40个合格品,10个次品的苹果中任意抽取10个,试求:(1)所抽取的10个苹果中恰有2个次品的概率;(2)所抽取的10个苹果中没有次品的概率。

9.设A ,B 为任意二事件,且知4.0)()(==B p A p ,28.0)(=B A p ,求)(B A p ⋃;)(A B p 。

10.已知41)(=A p ,31)(=AB p ,21)(=B A p ,求)(B A p ⋃。

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。

求三位同学中至少有一位通过考试的概率。

答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。

现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。

答案约为0.599。

2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。

答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。

答案约为0.201。

3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。

答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。

答案约为0.967。

以上为高中数学概率统计专题练习题及答案。

希望对您的学习有所帮助!。

中职数学概率统计练习题

中职数学概率统计练习题

中职数学概率统计练习题
练一:概率计算
1. 某班级有50名学生,其中30人擅长篮球,20人擅长足球,10人既擅长篮球又擅长足球。

从该班级中随机选一个学生,请计算该学生擅长篮球或足球的概率。

练二:条件概率
2. 一家电子产品公司生产电视机和电冰箱两种产品。

该公司的统计数据显示,电视机的次品率是5%,而电冰箱的次品率是3%。

另外,该公司生产的电视机和电冰箱的比例为3:2。

从该公司中随机选一个产品,请计算该产品是电视机的概率,且是次品的条件概率。

练三:二项分布
3. 一枚硬币正面向上的概率是0.6。

现在进行5次抛硬币的实验,请计算恰好有3次正面朝上的概率。

练四:正态分布
4. 某市一所高中的学生成绩服从正态分布,其平均分为80分,标准差为10分。

请计算学生中成绩大于90分的比例。

练五:抽样与估计
5. 某公司的员工数量为1000人。

为了对该公司员工的平均年
龄进行估计,从中随机抽取了100人并统计了他们的年龄。

请计算
在95%的置信水平下,对于该公司员工平均年龄的置信区间。

练六:相关与回归
6. 一个研究人员想要了解身高和体重之间的关系。

他在200名
成年男性中测量了他们的身高(单位:厘米)和体重(单位:千克)。

请计算身高和体重之间的相关系数,并解释其意义。

概率统计练习题

概率统计练习题

概率统计练习题一、选择题1. 某事件A的概率为0.3,事件B的概率为0.5,且事件A和B互斥,那么事件A和B至少有一个发生的概率是多少?A. 0.2B. 0.5C. 0.8D. 0.32. 某工厂生产的产品中,有5%的产品是次品。

如果随机抽取100件产品,那么至少有5件次品的概率是多少?A. 0.95B. 0.99C. 0.05D. 0.013. 抛一枚均匀硬币两次,求出现至少一次正面的概率。

A. 0.25B. 0.5C. 0.75D. 1.04. 某机器发生故障的概率为0.01,如果该机器连续工作10天,那么至少发生一次故障的概率是多少?A. 0.01B. 0.1C. 0.62D. 0.995. 某次考试的及格率为70%,如果一个班级有30名学生,那么这个班级至少有20名学生及格的概率是多少?A. 0.95B. 0.5C. 0.05D. 0.01二、填空题6. 假设一个随机变量X服从二项分布,参数为n=10,p=0.4,那么P(X=3)的值是____________。

7. 某地区居民的平均寿命为75岁,标准差为10岁。

根据正态分布的性质,该地区寿命超过85岁的居民占总人口的百分比大约是____________。

8. 假设随机变量Y服从泊松分布,参数为λ=5,那么P(Y=3)的值是____________。

9. 某工厂生产的产品中,次品率是0.03。

如果随机抽取100件产品,那么恰好有3件次品的概率是____________。

10. 某公司有100名员工,其中60%是男性。

如果随机选取10名员工,那么至少有7名男性的概率是____________。

三、简答题11. 请简述什么是大数定律,并给出一个实际生活中的例子。

12. 请解释什么是中心极限定理,并说明为什么它在统计学中非常重要。

13. 描述什么是条件概率,并给出一个条件概率的计算例子。

14. 解释什么是统计推断,并简述其在数据分析中的作用。

15. 什么是假设检验?请简述其基本步骤。

数学问题练习题概率与统计的计算

数学问题练习题概率与统计的计算

数学问题练习题概率与统计的计算概率与统计是数学中一门重要的分支,通过对事件发生的可能性进行分析和数据的收集与解释,我们可以更好地理解现实世界中的各种现象和问题。

为了提升你的数学问题解决能力,下面将提供一些数学问题练习题,涉及到概率与统计的计算。

一、概率计算题1. 在一副标准的扑克牌中,从中随机抽取一张牌,求抽到黑桃的概率。

2. 一个箱子中有5个红球和3个蓝球,从中随机抽取两个球,求抽到两个红球的概率。

3. 一枚骰子投掷一次,求投掷结果为奇数的概率。

4. 一箱有8个苹果,3个梨和4个橘子,从中随机抽取一个水果,求抽到苹果或橘子的概率。

二、统计计算题1. 某班级有30名学生,他们的身高数据如下:160cm、165cm、170cm、172cm、175cm、178cm、180cm、182cm、185cm、188cm、190cm。

请计算这组数据的平均身高和中位数。

2. 某电影院观众的年龄分布如下:10岁以下的有30人,10岁到20岁的有60人,20岁到30岁的有90人,30岁到40岁的有70人,40岁以上的有50人。

请计算这组数据的众数。

3. 某次考试中,一班30位学生的成绩如下:70、75、80、68、90、85、92、78、75、82、73、87、88、69、80、72、81、76、85、83、79、88、82、90、85、78、75、71、84、91。

请计算这组数据中成绩大于80分的学生人数。

三、综合计算题1. 一批产品中,有20%的次品率。

从这批产品中随机选取5个进行检测,请计算出现至少一个次品的概率。

2. 100名学生参加一场数学考试,成绩分布如下:60分及以下的有10人,60分到70分的有20人,70分到80分的有30人,80分到90分的有25人,90分以上的有15人。

请计算成绩在70分以下或90分以上的学生所占的比例。

3. 一箱子中装有10个红球和20个蓝球,从中连续抽取3个球,不放回。

求抽到2个红球和1个蓝球的概率。

概率统计练习题

概率统计练习题

概率统计复习题1.一射手向目标射击3 次,i A 表示第i 次射击中击中目标这一事件)3,2,1(=i ,则3次射击 中至多2次击中目标的事件为( ): 321321321321)(;)(;)(;)(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃2. 袋中有10个乒乓球,其中7个黄的,3个白的,不放回地依次从袋中随机取一球。

则第一次和第二次都取到黄球的概率是( );()715A ; ()49100B ; ()710C ; ()2150D3..将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A.81 B. 83 C. 41 D.214、设事件A 与B 互不相容,则有( ) )()()()(B P A P B A P A = )()()(B P B A P B =)()()()(A P B P B A P C -= )()()()(AB P A P B A P D -=5.设事件A 与B 相互独立,且0)(,0)(>>B p A p ,则下列等式成立的是() A. φ=AB B. 0)|(=A B pC. )(1)(A p B p -=D. )()()(B p A p B A p =6.设随机变量X 的取值范围是(-1,1),以下函数可作为X 的概率密度的是() A. .;11,0,21)(其它<<-⎪⎩⎪⎨⎧=x x f B. .;11,0,2)(其它<<-⎩⎨⎧=x x fC .;11,0,)(其它<<-⎩⎨⎧=x x x f . D. .;11,,0)(2其它<<-⎩⎨⎧=x x x f7、设随机变量)1,0(~N X ,X 的分布函数为)(x Φ,则{}2>X P 的值为( )[])2(12)(Φ-A 1)2(2)(-ΦB)2(2)(Φ-C )2(21)(Φ-B8、设随机变量X 的密度函数为⎩⎨⎧∈=其它0],0[2)(A x x x f ,则常数A=( )A 、41B 、21C 、 1D 、29. 设A 、B 是两个随机事件,且0)(=AB P ,则 ( )A 、A 和B 不相容; B 、A 和B 独立;C 、0)(0)(==B P A P 或;D 、)()(A P B A P =-10.加工一种零件需经过三道独立工序,各道工序的废品率为321,,p p p ,则加工该种零件的成品率为( ) 3211)(p p p A -)1)(1)(1)((321p p p B --- 3211)(p p p C --- 3213211)(p p p p p p D ----11.若A 与B 互为对立事件,则下式成立的是( ) A. P (AB )=P (A )P (B ) B P (A ⋃B )=ΩC. P (AB )=φD. P (A )=1-P (B )12.下列各函数中,可作为某随机变量概率密度的是( )A . ⎩⎨⎧-<<=其他,1;10,3)(2x x x fB .⎩⎨⎧<<-=其他,0;11,4)(3x x x fC . ⎩⎨⎧<<=其他,0;10,2)(x x x fD .⎪⎩⎪⎨⎧<<=其他,0;10,21)(x x f13.列函数中可作为某一随机变量X 的概率密度的是( )A.()⎩⎨⎧≤≤=其他00cos πx x x f B.()⎩⎨⎧≤≤=其他00sin 23πx x x f C.()⎩⎨⎧≤≤=其他00cos 2πx x x f D.()⎩⎨⎧≤≤-=其他0sin 22ππx x x f 14 。

统计与概率综合练习题

统计与概率综合练习题

统计与概率综合练习题在统计与概率的学习过程中,实际的练习题是非常重要的。

通过练习题,我们可以更好地掌握知识点,加深对统计与概率的理解和应用能力。

下面是一些综合性的练习题,希望能够帮助读者巩固所学内容。

练习题一:概率计算某班有60人,其中男生有30人,女生有30人。

如果从班级中随机选取一人,那么这个人是女生的概率是多少?解答:总人数为60人,其中女生有30人,所以女生的概率是30/60=0.5。

练习题二:排列组合小明有红、黄、蓝、绿四种颜色的糖果。

他想从中选出3颗不同颜色的糖果,问他一共有多少种选法?解答:由于是从四种颜色的糖果中选出3颗,所以可以采用组合的方式计算。

根据组合的公式C(n, k) = n! / (k! * (n-k)!),其中n为待选取的物品数量,k为选取的物品数量,则所需的计算步骤为:C(4, 3) = 4! / (3! * (4-3)!) = 4! / (3! * 1!) = 4。

所以小明一共有4种选法。

练习题三:样本均值与总体均值的关系某电商平台有1000个用户,他们每个人每年的购物金额服从均值为500元、标准差为50元的正态分布。

现在选取100个用户的购物金额数据,求这100个用户的平均购物金额的期望值和标准差。

解答:根据中心极限定理,当样本容量足够大时,样本均值的分布接近于总体均值的分布。

因此,这100个用户的平均购物金额的期望值等于总体均值,即500元。

而标准差的计算公式为总体标准差除以样本容量的平方根。

所以标准差等于50元除以10,即5元。

练习题四:假设检验某电视台声称每天平均有1000万观众收看其黄金时间段的节目。

现在要对这一说法进行检验。

通过一个星期的观众收视率调查,得到了每天收看该节目的观众数量(单位:百万)为1060、1045、1015、1005、998、1002、1008。

假设观众数量服从正态分布,显著水平为0.05,你能否拒绝电视台的言论?解答:首先我们需要建立假设:零假设(H0):每天平均观众数为1000万。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,已知在这
30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
15
8.得到了如下列联
男性女性合计
反感10
不反感8
合计30
(1)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析是否有百分之九十五以上的把握认为反感“中国式过马路”与性别是否有关?
(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.附表
P(K2≥k)0.0500.0100.001
k 3.841 6.63510.828
2.某市在2015年2月份的高三期末考试中对数学成绩数据统计显示,全市10000名学生的成绩服从正态分布N(120,25),现某校随机抽取了50名学生的数学成绩分析,结果这50名同学的成绩全部介于80分到140分之间现将结果按如下方式分为6组,第一组[85,95),第二组[95,105),…第六组[135,145],得到如图所示的频率分布直方图.
(Ⅰ)试估计该校数学的平均成绩;
(Ⅱ)这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X,求X的分布列和期望.
附:若 X~N(μ,σ2),则P(u﹣3σ<X<u+3σ)=0.9974.
3.一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的,,
A B C三种商品有购
买意向.已知该网民购买A种商品的概率为3
4,购买B种商品的概率为2
3
,购买C种商
品的概率为1
2
.假设该网民是否购买这三种商品相互独立.
(1)求该网民至少购买2种商品的概率;
(2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.
4.(本小题满分12分)某高校在2012年自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100]得到的频率分布直方图如图所示.
(1)分别求第3,4,5组的频率;
(2)若该校决定在笔试成绩较高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试。

(ⅰ)已知学生甲和学生乙的成绩均在第三组,求学生甲和学生乙恰有一人进入第二轮面试的概率;
(ⅱ)学校决定在这已抽取到的6名学生中随机抽取2名学生接受考官L的面试,设第ξ名学生被考官L面试,求ξ的分布列和数学期望.
4组中有
5.(2012•模拟)形状如图所示的三个游戏盘中(图(1)是正方形,M、N分别是所在边中点,图(2)是半径分别为2和4的两个同心圆,O为圆心,图(3)是正六边形,点P为其中心)各有一个玻璃小球,依次摇动三个游戏盘后,将它们水平放置,就完成了一局游戏.
(Ⅰ)一局游戏后,这三个盘中的小球都停在阴影部分的概率是多少?
(Ⅱ)用随机变量ζ表示一局游戏后,小球停在阴影部分的事件数与小球没有停在阴影部分的事件数之差的绝对值,求随机变量ζ的分布列及数学期望.
参考答案
1.(1)详见解析
试题解析:解(1)
所以,没有充足的理由认为反感“中国式过马路”与性别有关. (2)X 的可能取值为0,1,2.
X 的数学期望为:2.(Ⅰ)112;试题解析:解:(Ⅰ)由频率分布直方图可知[120,130)的频率为
1﹣(0.01×10+0.024×10+0.03×10+0.016×10+0.008×10)=0.12 所以估计该校全体学生的数学平均成绩约为90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112
P (120﹣
3×5<X <120+3×5)=0
.9974
,即0.0013
1000013⨯=
所以前13名的成绩全部在130分以上
根据频率分布直方图可知这50人中成绩在135以上(包括135分)的有50×0
.08=4人,而在[125,145)的学生有50
×(0.12+0.08)=10 所以X 的取值为0,1,2,3.
所以P (X=0)P (X=1)
P (X=2)P (X=3)
考点:频率分布直方图;离散型随机变量的分布列及数学期望.
3.(12
23
12 E=
试题解析:解:(1)记“该网民购买i种商品”为事件,2,3
i
A i=,
所以该网民至少购买2种商品的概率为
答:该网民至少购买2
(2)随机变量的可能取值为0,1,2,3,
(0)(1
==-
(2)(P
==(3)(P
==(1)1
==-所以随机变量的概率分布为:
1
24
故数学期望
1
24 E=⨯+
考点:数学期望,概率分布
4.(1)第3,4,5组的频率分别为0.3,0.2,0.1;
)(ⅰ)
27 145
(ⅱ)随机变量ξ的分布列为:
012
2
515
2
3
=
【解析】
试题分析:(1)第三组的频率为0.06×5=0.3;第四组的频率为0.04×5=0.2;
第五组的频率为0.02×5=0.1. 3分
(2)(ⅰ)设“学生甲和学生乙恰有一人进入第二轮面试”为事件A,第三组应有3人进入面试
则: P(A)=
12
228
3
30
27
145
C C
C

= 6分
(ⅱ)第四组应有2人进入面试,则随机变量ξ可能的取值为0,1,2. 7分

2
24
2
6
()(012)
i i
C C
P i i
C
ξ
-
===、、
则随机变量ξ的分布列为:
ξ012
P2
5
8
15
1
15
10分
822
15153
Eξ=+= 12分
考点:本题考查频率分布直方图,古典概型的概率,随机变量的分布列和数学期望
点评:解决本题的关键是(1)掌握在频率分布直方图中,小正方形的面积表示频率;(2)正确列出随机变量可取的值,求出取各值时的概率
5.(Ⅰ);
(Ⅱ)分布列为
ξ13
P
数学期望Eξ=1×+3×=.
【解析】
试题分析:(Ⅰ)先根据几何概型的概率公式得到在三个图形中,小球停在阴影部分的概率,因为三个小球是否停在阴影部分相互之间没有关系,根据相互独立事件同时发生的概率得到结果.
(Ⅱ)根据一次游戏结束小球停在阴影部分的事件数可能是0,1,2,3,得到ξ的可能取值是1,3,当变量等于3时,表示三个小球都在阴影部分或三个小球都不在阴影部分,这两种情况是互斥的,得到概率,分布列和期望.
解:(Ⅰ)“一局游戏后,这三个盘中的小球都停在阴影部分”分别记为事件A1、A2、A3,
由题意知,A1、A2、A3互相独立,
且P(A1)=,P(A2)=,P(A3)=,
∴P(A1 A2 A3)=P(A1) P(A2) P(A3)=××=
(Ⅱ)一局游戏后,这三个盘中的小球都停在阴影部分的事件数可能是0,1,2,3,相应的小球没有停在阴影部分的事件数可能取值为3,2,1,0,所以ξ可能的取值为1,3,则
P(ξ=3)=P(A1 A2 A3)+P(••)=P(A1) P(A2) P(A3)+P()P()P ()
=××+××=,
P(ξ=1)=1﹣=.
所以分布列为
ξ13
P
数学期望Eξ=1×+3×=.
考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.。

相关文档
最新文档