TCR静止型动态无功补偿装置应用
动态无功补偿装置在煤矿推广应用

浅谈动态无功补偿装置在煤矿的推广与应用摘要:本文详细介绍了tcr型高压静止型动态无功补偿装置(svc)在清水营煤矿110kv变电站应用中的设计方案、该装置的基本性能以及该装置的应用情况,实践证明该装置稳定可靠,在煤矿大规模推广应用有着非常广阔的前景。
关键词:煤矿变电站无功补偿鸳鸯湖矿区清水营煤矿是一座现代化特大型矿井,建设产能规模为1000万吨,年。
由于清水营煤矿选用了大量的变频控制及直流拖动系统,其产生的谐波电流不可避免的对电源质量造成污染,为消除诸多大功率变频、直流设备产生的谐波及无功冲击,减少无功能耗,清水营煤矿在110kv变电站装备了10kvtcr型高压静止型动态无功补偿装置(svc),在10kv高压侧集中进行无功补偿。
通过两年的运行证明了该装置稳定可靠,在煤矿大规模推广应用有着非常广阔的前景。
1、设计方案设计参数:清水营煤矿(含选煤厂)电力总负荷:总有功功率:42860kw,总无功功率:33967.73 kvar功率因数:0.95,无功补偿总容量为2×10000kvar补偿后无功功率:13967.7kvar,视在功率:45078.6kva全矿年耗电量:180012000kwh,吨煤电耗:18.0度/吨。
通过计算,清水营煤矿110kv变电站设计安装了三台sfz10-m-31500/110±8×1.25%/10.5主变压器,容量为31500kva,进线电压110kv,二次侧输出电压10.5kv。
一次侧两回进线接线方式为双母线分段式,二次侧三回进线接线方式为单母线分三段接线。
两套10kv静止型动态无功补偿装置(svc)分别挂接在10kvⅰ、ⅲ段母线上,每套svc装置的tcr部分有效补偿容量为10.5mva,fc部分设置3次、5次、7次共三组单调谐串联谐振滤波器,每套svc装置占用4台出线柜2、装备tcr+fc型svc装置的目的装备svc装置主要实现3个目的:(1)抑制电压波动,减少电压波动冲击,确保用电安全。
静止型动态无功补偿装置TCR说明书

1 TCR 控制系统原理SVC 如图1接入系统中,滤波器FC 提供固定的容性无功Q C ,补偿电抗器提供感性无功。
只要能做到Q N =Q V -Q C +Q TCR =常数(或0),就能实现电网功率因数=常数,电网电压几乎不波动。
式中:Q N 为系统无功,Q V 为负荷无功。
补偿效果好坏的关键是准确控制晶闸管的触发角,得到所需的流过补偿电抗器的电流。
可控硅阀和控制系统能够实现这个功能。
采集电流和电压,求得补偿无功值,计算得触发角大小,通过晶闸管触发装置,使晶闸管流过所需电流。
补偿电抗器电纳值与电抗器的导通角有关。
当电抗器额定电感值确定后,控制电抗器的导通角可改变电抗器在工作电路中的等效电纳值。
补偿电抗器电纳值与导通角的关系如下:Br=其中:α为电抗器触发角L 为电抗器额定电感值改变电抗器的导通角是用可控硅实现的。
如图2所示,控制可控硅的触发角来改变电抗器的导通角。
当触发角增大时,电抗器的电纳值增大,补偿功率减小。
图 2 中 I 为电抗器电流,它随触发角α的增大而减小。
TCR 控制系统完成如下功能:通过检测系统电压、电流和TCR 的电流,计算出可控硅的触发角,控制电抗器电纳值,达到无功补偿的目的。
2π-2α+sin 2απωL负荷图1:SVC系统组成简图滤波器FC控制系统TCR对于不对称负荷,应用分相调节。
TCR 分相调节的理论基础为STEINMETZ 理论,此理论的前提是系统电压为平衡对称的。
从这个前提出发,补偿后理论上负荷是纯有功、平衡的。
STEINMETZ 理论给出多种补偿表达形式,本系统采用无功功率平均值表示的补偿电纳公式:B r ab = ³ (V bc ³i a (l )+V ca ³i b (l )-V ab ³i c (l ))dtB r bc = ³ (V ca ³i b (l )+V ab ³i c (l )-V bc ³i a (l ))dt (1)B r ca = ³ (V ab ³i c (l )+V bc ³i a (l )-V ca ³i b (l ))dt其中:B r ab ,B r bc ,B r ca 分别为△形连接的补偿电抗器电纳值 V 为系统电压有效值V ab ,V bc ,V ca 为系统线电压瞬时值 i a(l), i b(l),i c(l)为负荷电流瞬时值T 为采样周期10ms TCR 的分相调节控制系统能做到补偿后各项指标均达到国家标准,并满足用户要求。
国家标准《静止式动态无功补偿装置功能特性》(精)

国家标准《静止式动态无功补偿装置功能特性》征求意见稿编制说明2005年7月一、概述国家标准《静止式无功功率补偿装置(SVC)功能特性导则》被列入了2003年国家标准制修订计划,计划编号为20032411-T-469。
完成年限2005年。
本标准由国家标准化管理委员会提出;全国电压电流等级和频率标准化技术委员会(以下简称“标委会”)归口并负责起草。
本标准主要起草单位:本标准主要起草人:本标准参加起草单位:本标准参加起草人:为了保证标准质量,特别邀请西安交通大学夏道止教授、王兆安教授、清华大学陈建业教授、中国电力科学研究院林海雪教授级高工(兼)、全国电力电子学标委会秘书处周观允教授级高工(兼)担任标准编制工作组顾问。
1 标准项目的提出和编制过程该项目是在全国电压电流等级和频率标委会委员、鞍山荣信电力电子有限公司左强总经理的提议下,于2001年初和《静止式动态无功补偿装置(SVC) 现场试验导则》国家标准项目一起,向国家标准委提出立项申请,2003年底被批准立项的。
2004年第1季度,标委会秘书处研究确定:成立以全国电压电流等级和频率标委会秘书处、全国电力电子学标委会秘书处、中国电力科学研究院、西安领步电能质量研究、鞍山容信电力电子有限公司为主要起草单位的标准编制工作组;随着工作的进一步开展,还将扩展供电、用电、设备及其主要部件制造行业的工程技术人员参加标准编制工作。
根据2004年6月23日国家标准委高新技术部有关“无功补偿装置”国家标准规划及制定工作会议精神,两项《静止式动态无功补偿装置(SVC)》国家标准的制定过程中将积极吸收相关行业和单位的意见。
2004年12月21-23日,于北京召开了主要起草人和顾问工作扩大会议。
会议就采用美国IEEE相应标准的基本原则达成以下共识:——本标准不是等同、也不是修改采用,但鉴于美国IEEE 1303:1994相应标准的框架和技术内容有一定价值,因此在编制我国标准时应作为主要参考文件;关键是要保证国家标准的先进性,提高产品竞争力,技术内容可适当超前以指导科研;——标准的适用范围要突破美国IEEE相应标准,涵盖输电和配电系统;——保持立项时的标准名称,暂不改变;——标准中,对实现产品性能的方法(例如冷却方式)不应强行做推荐性规定;——该标准在编制过程中,要注意与国家标准《静止式动态无功补偿装置现场试验》的编制工作的密切协调;——标准内容不应与现行国家标准发生矛盾;——编制标准时应注意充分研究现正在编制的相关电力行业标准和可控硅阀国家标准。
静止无功补偿器((TCR+FC)SVC)

SVC-技术参数
项目 电网电压(kV) TCR 额定功率(Mvar) 晶闸管阀组结构 晶闸管冷却方式
晶闸管型式
触发方式 控制系统 控制方式 无功调节范围 调节方式 调节系统响应时间 噪声水平 辅助电网供电电压 使用期限
规格
6
10 27.5
35 66
6-300
组架开放式
热管自冷、水冷却
电触发晶闸管(ETT)或 光控晶闸管(LTT)
--------------------------------------------------------------------------◆ 轧机
轧机及其他工业对称负载在工作中所产生的无功冲击会对电网造成如下影响: ■引起电网电压降及电压波动,严重时使电气设备不能正常工作,降低了生产效率 ■使功率因数降低 ■负载的传动装置中会产生有害高次谐波,主要是以 5、7、11、13 次为代表的奇次谐波及旁频,会使电网 电压产生严重畸变
◆ 先进的全数字控制系统
系统响应时间小于 10 ms 分相调节 自诊断 远程监控 ---------------------------------------------------------------------------
◆ 国内唯一的高压全载检测试验成套技术
72 小时高压全载动态连续运行成套试验检测技术 SCR 阀组成套试验技术 满足 IEC61954 要求
◆ 高可靠的 SVC 可控硅阀技术
直挂于 6 KV,10KV,35KV 系统 标准组架式结构 SCR 合理冗余设计 高效热管冷却和全密闭纯水冷却 光电触发和光触发 ---------------------------------------------------------------------------
静止型动态无功补偿装置(SVC)在厂矿企业的应用

静止型动态无功补偿装置(SVC)在厂矿企业的应用摘要:svc装置目前已广泛应用于冶金、电力、铁路等行业,如果发现运行中高压开关柜有发热现象,应检查柜内铜排连接处是否接触好,可采取涂导电脂等措施减少接触电阻。
关键词:svc装置原理应用中图分类号:u46 文献标识码:a 文章编号:1672-3791(2012)10(b)-0083-011 静止型动态无功补偿装置(svc)原理概述svc装置主要由可控支路和固定电容器支路并联而成,其主要应用型式是tcr+fc型:tcr支路功能是通过相控电抗器的电流控制相控电抗器输出的感性无功值ql,fc回路一个功能是提供固定的容性无功功率qc,另一个功能是通过电容器与电抗器的串联支路滤除电弧炉产生的主要高次谐波;电弧炉工作时产生负载感性无功用qfz表示,当svc装置系统参数设计合理时,可以使系统的无功功率qs=qc-qfz(随机变化)-ql(响应受控)=定值或0。
图1为我厂110 kv变电站svc装置原理图。
从图1可以看出,整套svc装置由3台高压开关柜、1组tcr支路、4组fc支路、1台tcr控制柜及配套电力电缆、支架组成。
2 svc装置的作用目前国内在用的svc成套装置达1000套以上,广泛应用于冶金、电力、煤炭、电气化铁路、有色冶金、石油化工等行业,应用于工矿企业时其主要作用有以下几点。
(1)滤除电弧炉、中频炉等产生的高次谐波,消除谐波对数控加工设备的干扰。
(2)平抑电弧炉炼钢时引起的电压波动、闪变和电压不平衡,提高供电质量。
(3)快速响应自动跟踪无功,提高功率因数,减少线路功率损耗。
3 svc装置使用效果我厂110 kv变电站6 kv母线为放射式单母线供电,其主要用电设备为数控机床、电焊机、电动机,中频炉,三台10t电弧炉(单台电炉变压器容量为5500 kva),系统未上svc装置前由于电弧炉、中频炉运行时产生2次、3次、4次及4次以上高次谐波,同时引起系统电压波动大,电压闪变严重。
TCR控制系统在动态补偿中的应用

1 S V C 无功 补偿 原 理 及 其 组 成
1 . 1 S V C无功补偿原理 静止无功补偿最重要 的性质是它能维持结点电压不 发生变化 。 为 此. 它要 能够连续地调节 向负荷 提供 的无功 功率 . 维持系统 的无 功平 衡, 即满 足方程 : Q = + Q L - Q 。 = 常数 = O ( 式中Q s 为系统无 功功率 ,
为负荷无功功率 , 为 电抗器无功功率 , Q 为电容器 组无功 功率 。)
S V C控制部分由控制 柜、 脉冲柜和功率单元三部分组成 。控制柜 的作用是通过采 集系统信号经 内部计算处理后发出触发脉冲 . 同时检 测可控硅击穿、 触发 脉冲丢失 和 T C R 过 流等 脉冲柜是将触发脉 冲转 图 1 无功功率补偿原理 变为符合要求的脉冲信号 。 触 发可控硅 。 功率单元是串人电抗器 回路 . 如图 1 所示 , A为系统工作点 。负荷工作 时吸收 Q , 补偿装置 由 通过接收脉 冲柜 发出的脉冲信号 , 控制 晶闸管 的通 断 . 使电抗器产 生 电容 器组提供 固定 的 Q ; 当负 荷工作状态改 变 , 导致 吸收 的 Q 变化 补偿所需 的电流
2 0 1 3年
第2 1 期
S C I E NC E&T E C H N O L OG YI N F O R MA T I O N
0企业论坛0
科技信 息
T C R控制系统在动态补偿中的应用
胡 举凡 ( 舞阳钢 板有 限责 任公 司 , 河南 舞 阳 4 6 2 5 0 0 )
【 摘 要】 本 文介绍 了舞钢公 司动力厂四号总降 T C R控制 系统。 它通过控 制调节 串 联在 电抗 器回路 中晶闸管的导通角的大小 , 来控制 电路
TCR+FC型SVC原理及应用

TCR+FC型SVC原理及应用1 引言随着国民经济的发展和现代化技术的进步,电力网负荷急剧增大,对电网感性无功要求也与日惧增。
特别是如可逆式大型轧钢机、炼钢电弧炉等冲击负荷、非线性负荷容量的不断增加,加上普遍应用的电力电子和微电技术,使得电力网发生电压波形畸变,电压波动闪变和三相不平衡等,产生电能质量降低,电网功率因数降低,网络损耗增加等不良影响。
近年发展起来的静止型无功补偿装置(static var compensator,下简称svc)是一种快速调节无功功率的装置,已成功的应于冶金、采矿和电气化铁路等冲击性负荷的补偿上。
而晶闸管控制电抗器型(称t cr型)svc用晶闸管控制线性电抗器实现较快、连续的无功功率调节,由于它具有反应时间快(5~20ms),运行可靠,无级补偿、分相调节,能平衡有功,适用范围广和价格便宜等优点。
tcr装置还能实现分相控制,有较好的抑制不对称负荷的能力,因而其应用最广。
尤其是在冶金行业中,使用例子也最多。
2 tcr+fc型svc系统的组成及控制原理2.1 系统组成tcr+fc型svc系统的组成如图1所示,一般由tcr、滤波器(fc)及控制系统组成。
通过控制与电抗器串联的两个反并联晶闸的导通角,既可以向系统输送感性无功电流,又可以向系统输送容性无功电流。
该补偿器响应时间快(小于半周波),灵活性大,而且可以连续调节无功输出,缺点是产生谐波,但加上滤波装置则可以克服。
图1 tcr+fc型svc系统的组成2.2 可调控电抗器相(tcr)产生连续变化感性无功的基本原理如图2(a)所示,u为交流电压。
th1、th2为两个反并联晶闸管,控制这两个晶闸管在一定范围内导通,则可控制电抗器流过的电流i,i和u的基本波形如图2(b)所示。
图2 可调控电抗器相(tcr)产生连续变化感性无功的基本原理α为th1和th2的触发角,则有i=(cosα-cosωt)i的基波电流有效值为:i=(2π-2α+sin2α)式中:v为相电压有效值;ωl为电抗器的基波电抗(ω)。
TCR型静止式动态无功功率补偿新型

SVC技术在中板四辊的应用研究报告1.项目简介1.1静止型动态无功功率补偿器(Static Var Compensator),简称SVC,所属电力电子技术领域。
SVC是一种由电容器和各类电抗器组成的无功补偿系统(SVC由TCR和FC组成),其特点是不需要机械触点就可以实现无功功率的平滑控制,响应速度很快。
1.2电力网络中大多使用感性负载,电感性负载越大,则无功功率所占得比例就愈大。
由于无功功率的存在使得电网的功率因数下降、电压降低、线路损耗增大、供电质量降低,同时对用电设备运行也会带来不利的影响。
提高功率因数,合理地选择用电设备提高自然功率数外,还广泛采用并联电容性负载的方法来补偿无功功率。
传统的方法是采用固定电容补偿方法,它仅使用于负载固定、无功功率相对稳定的静态用电装置;随着微机控制技术和半导体器件的发展,利用计算机对电网进行实时检测、控制,并根据无功功率的变化,自动切换补偿电容,可以准确、快速地实现动态无功补偿,达到降低消耗、改善供电质量之目的。
目前电力有源滤波器仍存在一些问题,如电流中有高次谐波,单台容量低,成本较高等。
随着电力半导体器件向大容量、高频化方向发展,这类既能补偿谐波又能补偿无由于性价比较高,目前我国广泛使用的还是静止动态补偿器(SVC)。
其中,能够进行无功功率动态补偿的基于智能控制策略的TSC仍然需要大力推广。
实际上,国内外对SVC的研究仍在继续,研究的重点集中在控制策略上,试图借助于人工智能提高SVC的性能。
随着微机控制技术和功率半导体器件的发展,用微机进行实时检测、跟踪负荷的无功功率的变化并自动控制补偿电路的投切,可以实现准确,快速的动态无功补偿,从而达到降低配电线路的线损、改善电网供电质量的目的。
1.3中板厂新建的四辊轧机,上、下辊电机的容量都为5000KW,轧机在工作过程中,轧机的无功冲击负荷,不但会向电网中注入大量的高频谐波,还会引起三相供电不平衡,电压发生较大幅度的波动,危及电网上其它用电设备的使用安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TCR静止型动态无功补偿装置应用
摘要:平煤集团天安八矿设有35KV程庄变电站一座,电网35KV/6KV为单母线分段运行,该系统为八矿生产提供电源。
综合考虑该矿供电电网的现状,综合考虑该矿供电电网的现状,TCR静止型动态无功功率补偿及滤波设备将所有冲击负荷及产生谐波电流大的设备集中在6KVⅠ段、Ⅱ段母线统一治理,无论在技术上还是在经济上都是最佳的效果,成为改善区域电网供电质量的最有效方法。
关键词:变电站;TCR;SVC
一、概述
平煤集团天安八矿设有35KV程庄变电站一座,电网35KV/6KV 为单母线分段运行,该系统为八矿生产提供电源。
其主要负荷主、副井绞车,新副井绞车采用直流电机和电控系统晶闸管直流供电装置。
随着企业生产能力的不断发展,设计规模的扩大,二水平已投入运行。
该矿以前在6KVⅠ段母线侧装设的无功补偿及滤波设备,因设备陈旧老化,且补偿效果差,谐波所造成的的危害也日趋严重,必须加以改进。
在谐波电流较大时,最直接的问题就是使电气测量仪表计量不准确,同样幅值的电压产生的N次电流在电感中为基波电流的1/N,在电容中为基波电流的N倍,常见的现象是继电保护和自动装置的误动作,中断供电。
同时由于波形失真,谐波还造成控制系统的功能紊乱甚至颠覆;随着矿井的扩建,新副井新装两台绞车,原有无
功补偿及滤波设备已不能满足该矿生产对无功补偿及滤波方面的要求。
根据对6KVⅡ段母线设备的无功功率及谐波的测试,6KVⅡ段母线上缺少无功功率补偿及滤波,对该矿供电电网的安全性和经济性都十分不利。
综合考虑该矿供电电网的现状,在6KVⅠ、Ⅱ段母线新增一套SVC高压动态无功补偿及滤波装置,把所有冲击负荷及产生谐波电流大的设备集中在6KVⅠ、Ⅱ段母线内综合治理,无论在技术上还是在经济上都是最佳的效果,成为改善区域电网供电质量的最有效方法。
1、目的
因此,可以通过控制电抗器L上串联的两只反并联可控硅的触发角α来控制电抗器吸收的无功功率的值。
SVC连接到系统中,电容器(滤波器FC)提供固定容性无功功率Qc,补偿电抗器通过具有完好线性特征的的电流决定了从补偿电抗器输出的感性无功值QTCR,感性无功与容性无功相抵消,只要QN(系统)=QV(负载)-QC+QTCR=恒定值(或0),功率因数就能保持恒定,电压几乎不波动。
最重要的是精确控制可控硅的触发角,获得所需要的电抗器的电流。
根据采集的进线电流及母线电压经乘法器后得出要补偿的无功功率,计算机发出触发脉冲、光纤传输至脉冲放大单元,经放大后触发可控硅,得到所补偿的无功功率。
三、技术创新点:
(1)本项目设计选用成熟、可靠、先进、实用的TCR型动态无功补偿装置,全数字控制系统。
(2)晶闸管阀组采用俄罗斯萨兰斯克原装进口优质元件,因其导通一致性好、压降小,热阻小,最适合高压SVC装置的长期可靠运行。
(3)触发系统采用专利技术的外取能触发方式,由一个脉冲同时触发一臂晶闸管,触发一致性好,可靠性高。
(4)冷却系统采用热管散热装置,使冷却系统做到免维护地可靠运行,降低了用户的运行费用。
(5)控制系统响应时间快,可靠性高,控制柜采用德国威图原装柜体,抗干扰能力强。
(6)控制系统采用全数字控制系统,有友好的人机界面,方便使用和维护。
经过以上分析,选择技术先进的TCR静止型动态无功补偿装置(SVC),即晶闸管控制电抗器(TCR+FC)方案是平顶山煤业集团平煤八矿供电系统提高电能质量和经济效益的最佳手段。