全自动变频恒压供水及其远程监控系统的设计

全自动变频恒压供水及其远程监控系统的设计
全自动变频恒压供水及其远程监控系统的设计

华南理工大学

硕士学位论文

全自动变频恒压供水及其远程监控系统的设计

姓名:龙迎春

申请学位级别:硕士

专业:电子与通信工程

指导教师:姚若河;杜平德

20050402

变频器恒压供水

变频器恒压供水系统设计 目录 工艺简介 实验目的与要求 系统设计内容及要求 一、供水系统的具体要求 二、总体设计方法 三、变频器恒压供水系统原理 四、水泵切换条件分析 五、系统主电路分析 六、系统控制电路分析 七、系统的硬件设计 参数设置 系统主要设备的选型 基本运行操作方式 变频器恒压供水系统的技术要求 实习心得

工艺简介 一、变频恒压供水系统介绍 变频恒压供水系统是指在供水管网中用水量发生变化时,出口压力保持不变的供水方式。供水管网的出口压力值是根据用户需求确定的。传统的恒压供水方式是采用水塔、高水位箱、气压罐等设施实现的。近年来,随着变频调速技术的日益成熟,其显著的节能效果和可靠稳定的控制方式,在供水系统中得到广泛的应用。变频恒压供水系统对水泵电机实行无级调速,依据用水量及水压变化通过微机检测、运算,自动改变水泵转速保持水压恒定以满足用水要求,是目前最先进,合理的节能供水系统。与传统的水塔、高位水箱、气压罐等供水方式比较,不论是投资、运行的经济性、还是系统的稳定性、可靠性、自动化程度等方面都具有优势: (1)高效节能。与传统供水方式相比变频恒压供水能节能30%-60%。 (2)占地面积小,投入少,效率高。 (3)配置灵活,自动化程度高,功能齐全,灵活可靠。 (4)运行合理,由于一天内的平均转速下降,轴上的平均扭矩和磨损减少,水泵的寿命将大为提高。 (5)由于能对水泵实现软停和软起,并可消除水锤效应(水锤效应:直接起动和停机时,液体动能的急剧变大,导致对管网的极大冲击,有很大破坏力)。

(6)操作简便,省时省力。 二、城市供水系统的要求 众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。在恒压供水技术出现以前,出现过许多供水方式。以下就逐一分析。 (1)一台恒速泵直接供水系统 (2)恒速泵+水塔的供水方式 (3)射流泵十水箱的供水方式 (4)恒速泵十高位水箱的供水方式 (5)变频调速供水方式 (6)恒速泵十气压罐供水方式 三、变频恒压供水产生的背景和意义 泵站担负着工农业和生活用水的重要任务,运行中需大量消耗能量,提高泵站效率:降低能耗,对国民经济有重大意义。我国泵站的特点是数量大、范围广、类型多、发展速度快,在工程规模上也有一定水平,但由于设计中忽视动能经济观点以及机电产品类型和质量上存在的一些问题等等原因,致使在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。目前,大量的电能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电量在这类负载中占了相当的比例。这一方面是由于我国居民多,用水量大,造成用电量大:另一方面是因为我国供水设备工作效率低,控制方式不够科学合理。造成不必要的能量浪费。因此,研究提水系统的能量模型,找出能够节能的控制策略方法,

变频恒压供水控制系统

变频恒压供水控制系统 发表时间:2019-01-08T16:21:17.107Z 来源:《电力设备》2018年第24期作者:蒋正锋[导读] (四川理工技师学院四川成都 611130) 1、系统构成 整个系统由一台PLC,一台变频器,水泵机组(3台),一个压力传感器,低压电器及一些辅助部件构成。 2、系统硬件设计 2.1.1 PLC选型 本系统选用FX2N-32MR型PLC。 2.1.2 接线及I/O分配 2.3 变频器选型及接线 2.3.1 变频器选型 根据设计的要求,本系统选用FR-A740系列变频器。 2.3.2变频器的接线 变频器端子 PLC端子功能 STF Y7 电机正转 FU X2 增泵、减泵 OL X3 增泵、减泵 2.6系统主电路设计 系统主电路接线 3 系统的软件设计 (1)自动运行部分 LD M8002 SET M0 LD X015 CJ P0 LD M0 AND X000 RST M0 SET M2 SET M7 SET M8 1)启动1#泵 按下启动按钮,系统检测采用那种运行模式。如果按钮SB7没按,则使用自动运行模式。变频启动1#水泵。 LD M2 AND X002 RST M2 SET M1 SET M4 2)启动1#,2#泵: 接收到变频器上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频启动第2#水泵。 LD M1 AND M4 AND X003 RST M1 RST M4 SET M2 3)启动1#泵: 接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。 LD M1 AND M3 AND M6 AND X003 RST M6 RST M3 SET M4 4)启动1#,2#泵: 输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频启动。 LD M1 AND M4 AND X003 RST M4 RST M1 SET M2 5)启动1#泵: 接到下限信号关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。

各种变频器恒压供水参数

安邦信AM300变频器供水参数表 F0.04=1 端子COM 与X1短接启动变频器 F0.02=30 加速时间 如启动过程中出现过流报警现象请加大此值 F0.03=30 减速时间 F0.05=5 PID 控制设定 闭环控制 F0.07=50 上限频率 F0.08=30 下限频率 F4.01=1 P 型机 F9.01= 键盘预置PID 给定 压力设定(100%对应压力表满量程)1Mpa (10公斤)压力 设定值40,则设定压力为4公斤 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 安邦信G7-P7系列变频器供水参数表 F9= 给定压力值(0—50对应压力表压力) F10= 1:外部端子0(本机监视) 3:外部端子1(远程监视) F11=0 本机键盘/远控键盘 F17= 下限频率,休眠启动模式下为休眠频率 F76= 运行监视功能选择 0:C00输出频率/PID 反馈 1:C01参考频率/PID 给定 6:C06机械速度(PID 模式下变频器输出频率) F80=1 PID 闭环模式有效 F87=4 比例P 增益 F88=0.2积分时间常数Ti F114= 休眠时间,10秒,0表示休眠关闭 F115= 唤醒频率,唤醒压力,此值要低于给定的压力值(小于F9)。需根据现场情况自行调整 F116= 0:G 型机 1:P 型机 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。

全自动变频调速恒压供水控制柜

概况: HDL系列水泵控制柜是海德隆公司充分吸收国内外水泵控制的先进经验,经多年的生产和应用,不断完善优化,精心设计制作而成。该产品具有过载、短路、缺相保护以及泵体漏水、电机超温及漏电等多种保护功能及齐全的状态显示。还具备单泵及多泵控制工作模式,多种主、备泵切换方式及各类起动方式。可广泛适用于工农业生产及各类建筑的给水、排水、消防、喷淋管网增压以及暖通空调冷热水循环等多种场合的自动控制系统。 海德隆公司的控制设备根据不同的使用情况,可分为液位控制、压力(恒压)控制、时间控制、温度控制、空调联控、消防专用等类型。按产品使用的特点可分为:生活泵控制设备、变频恒压控制设备、消防泵专用控制设备、空调泵专用控制设备、潜水排污泵专用控制设备等。 启动方式: 1、直接启动:一般电机功率为15kW以下的水泵采用直接起动。 2、自耦降压启动:15kW以上的排污泵,一般采用自耦降压启动。消防喷淋泵亦多选用此起动方式。 3、Y-△降压启动:其余型号15kW以上的水泵,若无特殊要求,一般采用Y-△降压方式起动。 4、软启动器启动:若希望进一步降低起动时对电源及电机的冲击,延长机械寿命,完全消除水锤现象和噪音,并达到节能的目的,则采用软起动方式。 5、变频启动:适用于任何功率情况下的控制设备,变频控制系统设在自动状态下,水泵启动方式为通过改变电源的频率由小到大延时启动,达到平稳启动的目的。 工作条件: 1、周围最高空气温度不超过40℃,最低温度不低于-5℃。 2、安装地点海拔高度不超过1000米。 3、周围空气中无爆炸危险的介质,且介质中无足以腐蚀金属和破坏绝缘的气体及导电尘埃。 4、工作电压为380±10%。 5、震动:<5.9m/s2(0.6G); 功能原理及用途: 多泵控制工作模式: 一用一备:控制Ⅰ、Ⅱ二台水泵,可工作于“Ⅰ主Ⅱ备”或“Ⅱ主Ⅰ备”两种方式。 二用一备:控制Ⅰ、Ⅱ、Ⅲ三台水泵,可工作于“Ⅰ、Ⅱ主Ⅲ备”或“Ⅱ、Ⅲ主Ⅰ备”或“Ⅰ、Ⅲ主Ⅱ备”三种方式。 三用一备:控制Ⅰ、Ⅱ、Ⅲ、Ⅳ四台水泵,可工作于“Ⅰ、Ⅱ、Ⅲ主Ⅳ备”或“Ⅱ、Ⅲ、Ⅳ主Ⅰ备”或“Ⅰ、Ⅲ、Ⅳ主Ⅱ备”

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

变频器恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (4) 2 变频恒压供水系统设计 (5) 2.1 设计任务及要求 (5) 2.2 系统主电路设计 (5) 2.3 系统工作过程 (6) 3 器件的选型及介绍 (8) 3.1 变频器简介 (8) 3.1.1 变频器的基本结构与分类 (8) 3.1.2 变频器的控制方式 (8) 3.2 变频器选型 (9) 3.2.1 变频器的控制方式 (9) 3.2.2 变频器容量的选择 (10) 3.2.3 变频器主电路外围设备选择 (12) 3.3 可编程控制器(PLC) (14) 3.3.1 PLC的定义及特点 (14) 3.3.2 PLC的工作原理 (15) 3.3.3 PLC及压力传感器的选择 (15) 4 PLC编程及变频器参数设置 (16) 4.1 PLC的I/O接线图 (16) 4.2 PLC程序 (17) 4.3 变频器参数的设置 (21) 4.3.1 参数复位 (21) 4.3.2 电机参数设置 (21) 总结 (22) 参考文献 (23)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。

变频恒压供水控制系统设计

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

14 / - 1 - 一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节

变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示: 14 / - 2 - PLC 变频PIT 恒压供水变频控制系统原理图图1 系统设备选型三、 主要电气元件参数指标1,三相异步电动机水泵:35KW1.0Mpa 恒压设定点:,两线制,4-20mA电流输出压力变送器:0-1.6Mpa VVVF变频器变频器: 1)水泵(小时,35m3/根据设计要求水泵正常供水20m3/小时,最大供水量50 ,流量扬程45m扬程。参考相关资料选择型号为IS50-32-125(50m 的水泵即可满足要求。m3/小时) (2)远传压力表结合具体有数据读取表盘等优点,由于远传压力表具有价格低、14 / - 3 - 实际设计,故在此处选择其作为反馈信号。 四、系统控制要求 1、设两台水泵。一台工作,一台备用。正常工作时,始终有 一台水泵供水。当工作泵出现故障时,备用泵自投。 2、两台泵可以互换。 3、给定压力可调,压力控制点设在水泵处。 4、具有自动,手动工作方式,各种保护、报警装置。 5、用PLC为主要器件完成控制系统的设计。

变频恒压供水系统设计

变频恒压供水系统设计 昆明电器科学研究所谢国政 [摘要] 变频调速恒压供水设备是采用变频调速器、可编程控制器(PLC)和PID调节器等构成的新型供水设备,本设备具有给水压力设定方便、显示直观、成本低,调试容易的特点。 [关键词] 变频调速恒压供水设备PID 1概述 生活给水设备,一般可分为匹配式和非匹配式两种形式。非匹配式给水需要配置高位水箱或水塔等蓄水设备,其特点是水泵的给水量总是大于用水量,且存在造价高、二次给水水质易污染、能源消耗大、水锤效应等问题。匹配式给水则是通过调速装置随用水量的大小及时调节水泵的转速,以达到调整给水量的目的。匹配式给水能维持给水系统给水压力恒定,需要多少水就供多少水。此外,由于水泵的轴功率与转速的三次方成正比,而水泵转速又与水的输送量成正比,如果用水量减少,水泵的轴功率就可以大幅度下降,可以达到节能的目的。在目前的条件下,采用交流变频调速器控制水泵电机的转速,以维持给水的恒定压力的方法是一种较完善的节能给水方式。据测算,变频恒压供水设备与传统给水方式相比,可节约初始投资10%,节能30%以上。所以,自90年代末以来,给水行业贯彻《城市给水行业2000年技术进步发展规划》中提出的"二提高三降低"(即提高给水水质,提高给水安全可靠性,降低能耗、降低漏耗和降低药耗)的要求,住宅小区的给水系统已逐渐取消了高位水箱,而采用变频恒压

供水设备给水,既满足给水安全,又避免水质的二次污染,对保证人们生活用水质量有着非常重要的意义。此外,由于采用了PLC控制给水系统,消防给水的可靠性也大大提高,且很容易与生活给水系统统一控制。 2变频调速恒压供水系统设计方案 2.1 住宅小区给水系统的要求 多层住宅小区已取消屋顶水箱,逐渐采用变频恒压供水设备给水系统,而对于十二层及十二层以下的"小高层",《民用建筑水灭火系统设计规程》中规定"当采用小区集中给水泵房的生活消防共用给水系统时,可不设高位水箱。但应符合下列规定:①泵房的给水服务半径不宜大于150m;②消防泵和生活泵的电源应不低于按二级负荷的要求供电或自备柴油发电机;③消防泵的流量应满足生活和消防同时给水的流量;④泵房的出水压力平时不应大于0.45MPa,且应保证室内消火栓给水系统充满水;在灭火时应满足室内消防给水系统的压力;⑤室内消火栓给水系统竖管的顶部应设自动排气阀"。 2.2 用水量计算及水泵的选型 (1)用水量计算 设计流量的大小直接关系到水泵的选型、管网的口径及给水的安全保证性。目前,一般住宅小区的设计流量主要包括以下几方面; ①居民生活用水;②公共建筑用水;③消防用水;④绿化用水; ⑤浇洒道路用水;⑥未预见水量及管网漏失水量。其中,公共建筑用

全自动变频调速恒压变压供水设备

全自动变频调速恒压变压供水设备 一、概述 在改革开放形势下,随着国民经济的发展,能源已经成为制约国民经济发展的重要因素,节约用能、合理用能是经济发展的重要指标,采用高新科技提高供水系统的效率,足今后供水技术和设备的必然发展方向。 通常的气压供水装置,为保证系统的正常工作,气压罐内的压力,必须具有高出实际用水高度的“上限压力”,以维持调节水量所必须的压差,结果足增大了水泵的功率,加之在运行过程中电机启动频繁,启动电流大,所以在电能消耗方面是不合理的。为了更好的节省电能,提高运行效率,我公司经过大量的调查研究,在采用国际先进的一一交流电动机变频变压调速器的基础上,成功开发了BTS型电脑控制自动恒压供水装置系列产品。该产品打破了目前国内气压罐传统供水方式,采用变速泵、恒速泵供水。它通过电脑控制系统,根据用户实际用水量自动调节,根据变速泵的特性,当用水量减少到某一定值时,附属气压罐系统开始工作,以便更有效的节省电能。这种供水系统是目前世界各国采用的最经济的供水方式,节能效果显著。 BTS型供水装置配有微型电脑,功能齐全,保护性能可靠,操作方便,自动化程度高,更易实现无人管理运行。它比现在通用的气压供水设备有更多的优点,不仅实现了在耗能最低的条件下,满足用水点的水量和水压要求,而且占地面积小,调试方便,安装工程时间短,降低了供水工程投资。 二、节能原理 供水装置的水泵在运行过程中,有恒速和变速两种方式,均可按供水用户的要求进行流量调节。恒速运行时,一般采用节流调节,这种方式的缺点是效率低、能耗大。变速运行时在运行过程中改变水泵转速,从而调节输出流量以适应用水量的变化,并可保证管网压力恒定,水泵始终在高效率的工况下工作。用水量减少时,水泵降低转速运行。由于水泵的轴功率与转速的三次方成正比。转速下降时,轴功率下降极大,故变速调节流量在提高机械效率和减少能耗方面足最为经济合理的。 轴功率与转速关系式:

变频器恒压供水接线

第一篇 一、接线: 按图所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数:电阻满量程:400Ω(蓝、红);零压力起始电阻值:≤20Ω (黄、红);满量程压力上限电阻值:≤360Ω(黄、红);接线端外加电压:≤10V(蓝、红) 二、开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF 和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反

馈电压上升,记录下将要设定的恒定压力(比如5Kg)对应的反馈电压值(比如 3.1V)。按停车键STOP,变频器减速停车。 三、闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5Kg。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。 第二篇 一、前言 目前,应用最广泛的变频恒压供水系统是水泵出口压力恒定系统,其工作原理是在水泵出水口安装压力传感器,将测定的压力值转换成电信号输入压力控制器,压力控制器根据设定压力值与测定压力之间的差值,通过PI调节运算后,控制变频器,调节水泵的转速,使水泵出口压力保持恒定。 这种控制系统电控部分较简单,国内外采用广泛。缺点是仍有小量能量浪费且不能反映水流通过给水管网时,管网阻力持性的变化。所以当用水低峰时,虽然由于转速的改变水泵扬程能保持恒定不再升高,但管道最末端的出口水压将高于其所需的流出水头。 采用泵出口变压力控制系统,则可解决以上的不足,即泵出口的设定压力随用水量的变化而变化,使管道最末端的出口水压恒定在其所需的流出水 头。 ABB公司的ACS510系列变频器是专为风机、水泵控制系统设计的,其中参数“给定增量8103、8104和8105”可完成泵出口变压力控制功能。 二、ACS510中的变压力控制部分参数设置 在多台并联泵供水系统中,随着泵的运行数量的增加,流量会成倍的增大,管道阻力会迅速增高。如果随着流量的变化,增减恒压控制系统的设定压力,做到小流量小压力,大流量大压力,则可以最大限度的较少管道阻力对管道出口压力的影响,并且提高了节能比例。ABB公司的ACS510系列变频器就提供了上述功能。 在ACS510中,参数8103、8104、8105是给定增量参数,他们的作用是每多

变频恒压供水控制系统设计

课题名称变频恒压供水控制系统设计 学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级 2011320401 学生阿不都热扎克·阿不都拉 _ 学号 06 月 23 日至 06 月 27 日共 1 周 指导教师(签字) 2011年 06 月 7 日

目录 摘要 (3) 一、设计容 (4) 二、设计要求 (4) 三、设计容 1、方案的确定 (5) 2、变频调速恒压供水系统简介及工作原理 (6) 3、水泵的容量计算 (8) 4、水泵/变频器/PLC的选择 (9) 5、变频器参数设定 (10) 6、PID控制器参数选择 (10) 7、PLC外部接线图的设计 (11) 8、主电路的设计 (12) 9、系统的工作原理 (12) 四、设计图纸 (13) 五、操作使用说明书 (14) 六、设计体会 (15) 七、主要参考资料 (16) 附录一/附录二 (17) 附录三 (18) 附录四 (19)

摘要 随着我国社会经济的不断发展,住房制度改革的不断深入,人民生活水平的不断提高,城区中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活与工作,也直接体现了小区物业水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水灯供水方式普遍不通话程度的存在效率低、可靠性差、自动化不高等缺点,难以满足当前经济生活的需要。 论文分析了采用变频调速方式实现恒压供水的工作机理,通过对PID模块的参数预置,利用远传压力表的水压反馈量,构成闭环调节系统,利用变频器与水泵的配合作用实现恒压供水且有效节能。 论文论述了多种供水方案的合理性,同时也指出各种方案存在的问题,通过对比比较给出了比较适合该系统的方案——PLC控制变频恒压供水。 关键字:恒压供水变频调速 PLC

恒压供水系统设计

目录 1 摘要 (1) 1.1 引言 (1) 1.1变频恒压供水系统理论分析 (2) 1.1.1变频恒压供水系统的原理 (2) 1.1.2 变频恒压控制理论模型....................... 错误!未指定书签。 1.2恒压供水控制系统构成............................. 错误!未指定书签。 2 变频恒压供水系统设计................................. 错误!未指定书签。 2.1 设计任务及要求................................... 错误!未指定书签。 2.2 系统主电路设计.................................. 错误!未指定书签。 2.3 系统工作过程.................................... 错误!未指定书签。 3 器件的选型及介绍..................................... 错误!未指定书签。 3.1 变频器简介...................................... 错误!未指定书签。 3.1.1 变频器的基本结构与分类.................... 错误!未指定书签。 3.1.2 变频器的控制方式.......................... 错误!未指定书签。 3.2 变频器选型...................................... 错误!未指定书签。 3.2.1 变频器的控制方式.......................... 错误!未指定书签。 3.2.2 变频器容量的选择.......................... 错误!未指定书签。 3.2.3 变频器主电路外围设备选择.................. 错误!未指定书签。 3.3 可编程控制器() .................................. 错误!未指定书签。 3.3.1 的定义及特点.............................. 错误!未指定书签。 3.3.2 的工作原理................................ 错误!未指定书签。 3.3.3 及压力传感器的选择........................ 错误!未指定书签。 4 编程及变频器参数设置................................. 错误!未指定书签。 4.1 的接线图......................................... 错误!未指定书签。 4.2 程序............................................ 错误!未指定书签。 4.3 变频器参数的设置................................ 错误!未指定书签。 4.3.1 参数复位.................................. 错误!未指定书签。 4.3.2 电机参数设置.............................. 错误!未指定书签。总结.................................................... 错误!未指定书签。参考文献................................................ 错误!未指定书签。

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.360docs.net/doc/226831125.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.360docs.net/doc/226831125.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

一个最简单的变频恒压供水实例

恒压供水 接线: 按图五所示的电路,连接空气开关、漏电开关、电源,检查接线无误后,合上空气开关,变频器上电,数码管显示0.0。 关掉电源,电源指示灯熄灭后,再连接电机、起停开关、远程压力表、限流电阻等,变频器和电动机接地端子可靠接地,并仔细检查。 压力表选用YTZ-150电位器式远程压力表,安装在水泵的出水管上,该压力表适用于一般压力表适用的工作环境场所,既可直观测出压力值,又可以输出相应的电信号,输出的电信号传至远端的控制器。压力表有红、黄、蓝三根引出线。 压力表电气技术参数: 电阻满量程:400?(蓝、红) 零压力起始电阻值:≤20?(黄、红) 满量程压力上限电阻值:≤360?(黄、红) 接线端外加电压:≤6V(蓝、红) 图五 恒压供水接线图 开环调试: 检查接线无误后,合上空气开关和漏电开关,变频器上电,数码管显示0.0,按JOG键,检查水泵的转向,若反向,改变电机相序。 按运行键RUN,运行指示灯亮(绿色),顺时针方向旋转键盘旋钮,输出频率上升,观察压力表的压力指示,同时用万用表直流电压档测量变频器端子VF和GND之间电压值,随着变频器输出频率升高,压力增加,VF和GND之间的反馈电压上升,记录下将要设定的恒定压力(比如5公斤)对应的反馈电压值(比如3.1V)。按停车键STOP,变频器减速停车。

参数设定: F1.01出厂值为0.0,设定为1 F1.23出厂值为0,设定为30.0 F2.05出厂值为0,设定为1 F2.19出厂值为0,设定为1 F4.00出厂值为0,设定为1 F4.06出厂值为0,设定为3.10 按电机名牌设定电机参数:F1.21、F5.00~F5.04 闭环变频恒压运行: 合上起停开关,变频器运行指示灯亮,输出频率从0.0Hz到达30.0Hz后,根据用水情况自动调节,保证出水口的压力恒定为5KG。增大F4.06的参数设定值,出水口的压力增加,减小F4.06的参数设定值,出水口的压力降低。

变频器恒压供水课程设计

目录 1变频器恒压供水系统简介 ................................................................... 错误!未定义书签。 1.1变频恒压供水系统节能原理 .................................................... 错误!未定义书签。 1.2变频恒压控制理论模型 ............................................................ 错误!未定义书签。 1.3恒压供水控制系统构成 ............................................................ 错误!未定义书签。 1.4恒压供水系统特点 .................................................................... 错误!未定义书签。 1.5恒压供水设备的主要应用场合 ................................................ 错误!未定义书签。2变频恒压供水系统设计 ....................................................................... 错误!未定义书签。 2.1设计任务及要求 ........................................................................ 错误!未定义书签。 2.2系统主电路设计 ........................................................................ 错误!未定义书签。 2.3系统工作过程 ............................................................................ 错误!未定义书签。 2.3.1减泵过程 ....................................................................... 错误!未定义书签。 2.3.2加泵过程 ....................................................................... 错误!未定义书签。 3 器件介绍及选型 .................................................................................. 错误!未定义书签。 3.1变频器介绍 ................................................................................ 错误!未定义书签。 3.2变频器的种类 ............................................................................ 错误!未定义书签。 3.3变频器选型 ................................................................................ 错误!未定义书签。 3.3.1变频器的控制方式 ....................................................... 错误!未定义书签。 3.3.2变频器容量的选择 ......................................................... 错误!未定义书签。 3.3.2变频器主电路外围设备选择 ......................................... 错误!未定义书签。 3.4可编程逻辑控制器(PLC)..................................................... 错误!未定义书签。 3.4.1 PLC的工作原理 ........................................................... 错误!未定义书签。 3.4.2 PLC及压力传感器的选择 ........................................... 错误!未定义书签。4PLC编程及变频器参数设置............................................................ 错误!未定义书签。 4.1 PLC的I/O接线图 ............................................................... 错误!未定义书签。 4.2 PLC .......................................................................................... 错误!未定义书签。 4.3 变频器参数的设置 ................................................................. 错误!未定义书签。总结 .......................................................................................................... 错误!未定义书签。参考文献 .................................................................................................. 错误!未定义书签。

变频恒压供水工作原理

变频恒压供水工作原理标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

变频恒压供水工作原理 产品工作原理: 全自动变频调速供水设备是应用先进的现代控制理论,结合可编程控制技术、变频控制技术、电机泵组控制技术的新型机电一体化供水装置。该设备通过安装在水泵出水总管上的远传压力表(内为一滑动电阻),将出口压力转换成0-5V电压信号,经A/D转换模块将模拟电压信号转换成数字量并送入可编程序控制器,经可编程内部PID运算,得出一调节参量并将该参量送入D/A转换模块,经数摸转换后将得出模拟量传送变频器,进而控制其输出频率的变化。设备采用多泵并联的供水方式,用户用水量的大小决定了投入运行的水泵的数量,当用水量较小时,单台泵变频工作,当用水量增加,水泵运行频率随之增加,如达到水泵额定输出功率仍无法满足用户供水要求时,该泵自动转换成工频运行状态,并变频启动下一台水泵。反之,当用水量减少,则降低水泵运行频率直至设定下限运行频率,如供水量仍大于用水量,则自动停止工频运行泵同时变频泵转速增加。当用水量降至某一程度时(如夜间用水很少时),变频主泵停止工作,改由辅泵及小型气压罐供水。 产品特点: ※采用先进的供水专用变频器 ※最新供水专利技术 ※全中文人机界面,操作简单 ※RS485远程通讯 ※压力控制精度5‰ ※压力频率全数字显示 ※一次水高、低水位报警 ※供水压力过压、欠压保护 ※系统故障自诊断 ※水泵过载、过流保护 ※水泵软启动,软切换 ※适用于各种泵站 ※故障水泵自动切除运行系统 ※体积小,安装调试方便 ※全部进口低压电器集成,运行更安全可靠 ※优化的控制软件更利于系统节能运行 变频恒压供水控制器采用最新微电脑设计处理器设计制造配备液晶中文显示,参数显示、设定一目了然,故障时弹出供货商公司名称及2个服务电话(可按要求设置),多达75个功能参数项、9种应用宏选择,能满足五台以下的所有运行程序,其主要特点有: 1.外部接线简单:用户只需通过菜单设置,即可使控制器适用于不同的供水控制系统;无需改变复杂的外部接线。 2.可靠性:由于控制器已将各种功能模块集成于内部,外部配件少,、进一步降低了整个系统出现故障的机会。 3.调试简单方便:丰富而完美的汉字提示。使一般的操作人员无需经过复杂的培训,也能对各种操作应用自如。

变频恒压供水系统

供水系统方案图

变频恒压供水系统构成及工作原理 1系统的构成 图3-1 系统原理图 如图3-1所示,整个系统由三台水泵,一台变频调速器,一台PLC和一个压力传感器及若干辅助部件构成。三台水泵中每台泵的出水管均装有手动阀,以供维修和调节水量之用,三台泵协调工作以满足供水需要;变频供水系统中检测管路压力的压力传感器,

一般采用电阻式传感器(反馈0~5V电压信号)或压力变送器(反馈4~20mA电流);变频器是供水系统的核心,通过改变电机的频率实现电机的无极调速、无波动稳压的效果和各项功能。 从原理框图,我们可以看出变频调速恒压供水系统由执行机构、信号检测、控制系统、人机界面、以及报警装置等部分组成。 (1)执行机构 执行机构是由一组水泵组成,它们用于将水供入用户管网,图2.3中的3个水泵分为二种类型: 调速泵:是由变频调速器控制、可以进行变频调整的水泵,用以根据用水量的变化改变电机的转速,以维持管网的水压恒定。 恒速泵:水泵运行只在工频状态,速度恒定。它们用于在用水量增大而调速泵的最大供水能力不足时,对供水量进行定量的补充。 (2)信号检测 在系统控制过程中,需要检测的信号包括自来水出水水压信号和报警信号: ①水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。 ②报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常。该信号为开关量信号。 (3)控制系统 供水控制系统一般安装在供水控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。 ①供水控制器:它是整个变频恒压供水控制系统的核心。供水控制器直接对系统中的工况、压力、报警信号进行采集,对来自人机接口和通讯接口的数据信息进行分析、实施控制算法,得出对执行机构的控制方案,通过变频调速器和接触器对执行机构(即水

相关文档
最新文档