谈12脉冲与IGBT高频整流器

谈12脉冲与IGBT高频整流器
谈12脉冲与IGBT高频整流器

谈12脉冲与IGBT高频整流器

2009-06-15 16:33作者:wuhp出处:IT365责任编辑:吴红萍【文字大小:大中小】

一、概述12脉冲整流器的由来

对于直流来说不存在什么功率因数问题,因为直流的电流和电压永远是同相的。而对于交流而言就出现了这个问题,功率因数是由于电压电流不同相造成的,如图1所示,电流和电压有一个相位差q ,图中的黑粗线表示电流和电压同相位时产生的有功功率,而其他部分则是无功功率,功率因数就是表征有功功率和无功功率含量情况的,它是相位差的函数,如式(1)所示。

Pf =cosq (1)

无功功率的出现不是一件好事,因为作为负载来说,它不能将由电网送来的能量全部吸收,只吸收有功功率部分,而无功功率部分则在电网线路中串来串去,白白占据着电网的有效线路而不做功。以后由于非线性负载的出现,如整流脉冲负载,虽然电流不是和电压不同

图1 电流电压不同相时的相对位置关系

相的的正弦波,但由于对正弦电压波形的破坏也同样出现了无功功率,而且这种整流式脉冲负载已是当前影响功率因数的主要来源。为了节能、有效利用能源和降低干扰,国家对企业的输入功率因数限值做出了规定,如何提高用电设备的输入功率因数已成当务之急。

二、12脉冲整流器的提出和解决方法

早期的IT设备供电电源多为单相220V,如果用电设备是电阻负载,其上面的电流和电压波形是连续的,如图2中的左边波形。但一般IT设备又有内部自备电源,这些电源的输

图2 几种负载情况对电压正弦波形的影响情况

入都是一个整流滤波器,使得电流呈脉冲状,使得对应脉冲电流的电压波形部分出现了失真,如图2的中间波形就是单相整流时的破坏情况,这时的输入功率因数只有0.6~0.7。但如果能够将中间图形中的一个大电流脉冲变成布满整个半周的小电流脉冲,也就相当于与电压同相的连续电流了,此时的电压波形就几乎没有失真了,如图中的右图所示,此时的输入功率因数九可以接近于1。

一般单相小功率UPS即使对电网有破坏,也不会造成大的损失,原因是功率不大。最严重的是三项大功率UPS,比如100~400kVA,目前一般标配都是所谓6脉冲结构输入整流器,如图3(a)所示。图(b)是这种电路破坏输入电压波形的一种情况。尽管如此,但它比单相时好多了输入功率因数可达0.8,原因是它将单相时的每半周一个脉冲增到3个,如图

(a)6脉冲整流器主电路图(b) SCR导致的输入电压波形失真

(c)12脉冲整流器主电路图(d)IGBT“高频”整流器

(e) 不同整流情况下的直流电压和电流脉冲波形

图3 几种整流电路结构和电压电流波形

3(e)的“6脉冲整流电流输入波形”所示。但此时如果前面配置发电机还是需要3比1的容量,即发电机的容量至少要3倍于UPS。而且谐波电流也达到30%,对外干扰严重,所以很多用户提出了输入功率因数大于0.9的要求。为了这个目的不得不再增加半周内整流脉冲的数量,最简单的方法是将6脉冲增加到12脉冲,这就需要再增加和原UPS上一模一样的一个6脉冲整流器、一个移相变压器和相应的无源滤波网络。可以看出,造价也增加了不少。有的也尝试增加到18脉冲和24脉冲…但这样做既不经济也带来好多麻烦,比如效率降低很多、功耗大幅度增加、体积越来越庞大和价格越来越高,而效果并不是想象的那样好。于是就陷入了困境。

二、IGBT整流器的出现

IGBT在UPS中的应用最早只限于逆变器。这主要是因为虽然IGBT的电流虽然做得比较大,但耐压等级尚不足对付变化很大的电压范围,这一拖就是十多年。经过这十多年的发展,IGBT 制造技术也有了长足的进步,几经改进,已经达到了用于UPS整流器的条件。目前已有一些厂家将IGBT整流的高频机结构UPS容量做到了200kVA左右。与可控硅相比IGBT的电流容量与耐压还是有些距离,所以器件的并联就成了关键。但任何问题都是可以解决的,这其中就不乏佼佼者,比如GE就将这种高频机结构UPS容量做到了500kVA,伊顿的更是突破了并联的禁区,一举将9395系列的单机容量做到了1200kVA,覆盖了工频机结构UPS当前达到的全部容量水平。到此就完成了UPS全部IGBT化、高频化的进程。这一改变的意义非常重大,首先它结束了可控硅多脉冲整流无法达到的高输入功率因数水平的问题,比如它可在半周中有上万个整流电流脉冲,如图3(e)的“IGBT整流电流输入波形”。同时也实现了节能减排的目标。

有人担心IGBT的可靠性问题,实际上现在的IGBT可靠性比起当年第一代全可控硅UPS来情况好多了,那时的整流器和逆变器都是可控硅器件,而当时的可控硅的水平很原始。不可忽视这几十年的发展,当年的可控硅可以说是在平地上起步的,而现在的IGBT是在积累了几十年经验的基础上发展起来的,二者的基础有本质的区别。具有IGBT整流器的高频机结构UPS在有的厂家已是成熟的技术和成熟的产品,并已被指定为军用产品。由于市场的竞争规律所致,只是一个推广的时间问题。目前在国内几百千伏安的全IGBT结构UPS在金融、在电信、在部队、在科研、在奥运村等很多地方正在服务运行,要正视这个现实,切不可忘言“具有IGBT整流的UPS 目前只有100kVA以下才是成熟的”这种结论性的话。甚至有的人把可靠性与先进性对立起来看,说什么:要可靠就用12脉冲整流,要先进就用IGBT整流。就好像先进就不可靠,可靠就不先进。此种说法值得商榷,实际上不可靠的技术本身就不是先进的,当前用在多处的高频机结构IGBT整流的UPS运行现状就说明了这个问题。

在UPS中IGBT整流器终究要代替可控硅整流器是不争的事实。但不要误会成在别的方面也是这样,比如在高压电力上可控硅的优点是不可忽视的,也是目前其它半导体器件不可代替的。可控硅技术和应用还在发展,那是说在别的领域,并不代表UPS中的12脉冲整流器也是发展方向,即高频机结构UPS和工频机UPS不是两个发展方向,而是只有高频机结构UPS代替工频机UPS一个方向。

是不是IGBT以后也就始终占据着这个整流位置呢?也不尽然。任何器件的服务寿命都不是永恒的。由于可控硅的可控性替代了不可控的普通二极管整流器,又由于可控硅的不可关断性又被IGBT所代替,以后还会由于IGBT的耐压和电流容量问题被其他器件代替,这就是历史。比如有一种器件就是类似于IGBT的MOS管与可控硅的结合器件,既可以有高耐压、大电流,又具高频可控功能的器件正待出现,那时不但在UPS中取代IGBT,而且可能在电力中彻底取代可控硅…这也是历史发展的规律。莫要为IGBT整流器取代12脉冲整流器而耿耿于怀,也不要为IGBT整流器取代12脉冲整流器鸣不平,更不要千方百计地设法阻挡这个潮流。不要模糊人们的视线,向用户讲述真实情况才是最可贵的。

https://www.360docs.net/doc/228324553.html,/173/8905673.shtml来自百度

6脉冲12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别 2007-2-8 10:36:00文/厂商稿出处:https://www.360docs.net/doc/228324553.html, 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:

(1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移

相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流

(1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。

两电平和三电平脉冲整流器的比较

两电平与三电平的脉冲波形比较 电牵二班 组员:杨洋20121550 曾绍桓20121543 徐刚堂20121544 代思瑶20121565 黄异彩20121569 赵杰20121571

两电平与三电平的脉冲波形比较 我国引进的时速200公里动力分散型交流传动动车组中,CRHI 、CRHS 动车组主电路均采用了两电平全桥整流电路。为了降低开关管的电压应力和改善PWM 整流器网侧输出波形,CRHZ 动车组采用了二极管箱位三电平PWM 整流器电路结构。下面主要对这两种电路拓扑的工作原理及数学模型进行分析和研究。 1.1两电平整流器原理与数学模型 单相电压型两电平Pwm 整流器主电路如图2一1所示,网侧漏感L 二起传递和储存能量,抑制高次谐波的作用;支撑电容Cd 起抑制高次谐波,减少直流电压纹波的作用;电感LZ 和电容CZ 形成串联谐振电路,用于滤除电网的2次谐波分量。把开关器件(这里采用IGBT)视为理想开关元件,定义理想开关函数S,和S,,从而得到如图2一2所示简化等效电路。 两电平PWM 脉冲整流电路 两电平PWM 整流器等效电路 由于上桥臂与下桥臂不能够出现直通,则a 1S 与a 2S 、b 1S 与b 2S 不能同时导通和 关断,驱动信号应该互补。PWM 整流器网侧输入端电压ab U 取值有dc U 、0、-dc U 三种电平,有效的开关组合有22=4种,即S,S,=00、01、10、11四种逻辑,则PWM 整流器输入端电压ab U 有如下关系:

ab U =(B A S S -)dc U 则由式(2一2),系统的瞬时等值电路如图2一3所示 瞬时等值电路 由图2- 3可见,通过不同的控制方法适当调节“ab U 的大小和相位,就能控制 输入电流的相位以控制系统功率因数;同时控制输入电流的大小以控制传入功率变换的能量,也就控制了直流侧输出电压。因此,通常采用电压外环和电流内环相结合的双闭环控制方式。此等值电路的电压矢量平衡方程为: ab t iN i d d U R L U N N N N ++= 对应于四个开关的不同工作状态,电路共有以下三种工作模式: 工作模式1:B A S S =00或11,即下桥臂开关或上桥臂开关全部导通,则此时“ab U =0,电容d C 向负载供电,直流电压通过负载形成回路释放能量,直流电压下降,因此, 为了保证直流侧电压的稳定,工作模式1的导通时间比较短,这也是在空间电压矢量调制中,两个零矢量的作用时间要比其他六个矢量的作用时间短的原因。另一方面,网侧电压N U 二两端电压直接加在电感N L 上,对电感N L 充、放电。此时对应的电压矢量平衡方程如下(忽略等效电阻的影响): N U =N L t i d d N 工作模式3:B A S S =10,等效电路如图2- 4(b)所示,则ab U =dc U 。N U >0,储存在电感中的能量向负载L R 和电容d C 释放,电感电流N i 下降,一方面给电容充电,使得直流电压上升,保证直流电压稳定,同时高次谐波电流通过电容形成低阻抗回路;另一方面给负载提供恒定的电流。此时对应的电压矢量平衡方程如下: N L t i d d N =N U -dc U

6脉冲和12脉冲的比较

(一) 6脉冲整流器的原理。参照图1A 图1B 图1A 为电流源型变频器中常用的6脉波晶闸管电流源型蒸馏电路结构,图1B 为该电路典型的输入波形,输入电流中含有很好的谐波分量,输入电流的5次谐波可达20%,7次谐波可达12%(见图3)。由于晶闸管的快速换相,还会产生一定的高次谐波,可达35次谐波以上,高次谐波会对电话等通信线路产生一定的干扰。整流电路总的谐波电流失真约为30%,所以一般要设置输入谐波滤波器。滤波器体积庞大且影响系统的效率,额外增加投资,滤波器的设计与电网参数和负载工况都有关系,一旦参数和工况发生变化,滤波器又得重新调整,十分不便,且影响滤波效果。 (二)12脉波整流器的原理 在图2A 中,整流器由两组晶闸整流串联而成,分别由输入变压器的两组二次绕组(星形和三角形互差30°电角度)供电。 这种整流电路的优点是把整流电路的脉波数由6提高到12,从而大大改善输入电流波形(见图2B ),降低输入谐波电流,总谐波电流失真约10%左右(见图3)。虽然12脉波整流电路的谐波电流必然谐波结构的大大下降,但还不能达到IEEE519—1992标准规定的在电网短路电流小于20倍负载电流时,总谐波电流失真小于5%的要求。因此,一般也要安装谐波滤波装置。 三 12脉冲整流器与6脉冲的优势差异分析 (一)比6脉冲更具有环保概念 1 电流高谐波成份少,所以不电网电源。 2 有12脉冲整流装置,故输入功因率高大约≥0.85,因此总体效率亦比6脉冲整流器高。 (二)成本较高 1 由图1 A 及图2A 所示,12脉冲整流器必须加Δ及у双硫组变压器,故变压器成本较高。 2 控制电路较复杂及元件亦较6脉冲整流,因此施工成本亦较高。 (三)安全顾虑 电场为十分重要的场所,DCS 的控制影响电厂操作的安全,如果谐波电信过大会造成辐射及干预,

12脉波整流

https://www.360docs.net/doc/228324553.html,/view/f05a78d850e2524de5187e4 2.html 串联型12脉波二极管整流器 摘要:串联型12脉波二极管整流器是由两个相同的6脉波二极管整流器在直流输出侧串联得到的。该类型整流器一般用作中压传动系统的变频器的前端。但一般情况下,12脉波的二极管整流器的总谐波畸变率不能满足IEEE 标准。 关键词:串联型、二极管、整流器 变频调速是当今理想的调速方法之一,也是重要的节能措施。交—直—交变频方式因其优势受到越来越广泛的应用。大多数的交—直—交变流装置的前置输入部分都采用二极管整流。随着多脉波整流技术的兴起,各种大功率设备都越来越多的采用多脉波二极管整流器。 1.理论分析 假定直流滤波电容d C 足够大,从而可以忽略直流电源d V 中的纹波含量。 在任何时刻(换相过程除外),上、下两个6脉波二极管整流器中各有两个二极管导通,d i 同时经过4个二极管形成回路。由于两个6脉波二极管整流器的输出为串联连接,二次侧绕组的漏电感也可以认为是串联连接,直流电流的纹波相对较小。 输出直流电流d i 连续,且在每个供电频率周期内包含有12个脉波。变压器二次侧星形连接的绕组中的电流a i 近似为梯形波,只是在顶端有4个纹波。变压器二次侧三角形连接的绕组中的电流~ a i 和a i 的波形形状相同,只是在相位上相差 30 。 由于变压器一次侧和二次侧上面的绕组都为星形连接,折合后的电流' a i 和折 合前的电流a i 波形形状应该相同,只是幅值将减少一半(可根据两个绕组匝数比计算得到)。而二次侧三角形绕组中折合前的电流~ a i 和折合后的电流' ~ a i 波形会不 同。且一次侧电流与二次侧电流之间存在如下关系: ' ' ~ a a A i i i += 2. 仿真结果

6与12脉冲整流器原理

一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为:

(1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流 (1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形

二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表: 某型号大功率UPS谐波实测数据表: 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。 三、谐波分析和改良对策 谐波可能造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为+序(3k+1次,k为0和正整数)、-序(3k+2次,k为0和正整数)、0序(3k次,k为正整数)。 +序电流使损耗加重,-序电流使电机反转、发热,0序电流使中线电流异常增大。 从实测值可见,6脉整流器5次谐波最大,可加装5次滤波器来抑制谐波;12脉整流器11次谐波最大,可加装11次滤波器来抑制谐波。滤波器原理图如下:

艾默生UPS电源专项培训-6脉冲和12脉冲技术差别

120KVA 机型6脉冲和12脉冲的技术差别 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。一般三相电使用6脉冲整流时,由于晶闸管只在交流电压波形幅值大于直流母线电压时才导通,输入电流不连续呈脉冲状,谐波含量很高,不加额外的滤波方式如无源滤波(电感)、有源滤波(PFC )时,输入反馈回电网的谐波电流总THD 超过30%,即总谐波电流含量超过总电流的33%,有可能造成配电线缆、变压器发热,空气开关误动作,发电机喘振等。 6脉冲整流原理图和电流电压效果图: 加入无源滤波器即校正电感后,才可将输入电流谐波含量降至10%左右。但这仅仅是满载情况下的指标。实际上,越是轻载情况,6脉冲整流器的输入谐波电流含量就越大,比如50%负载情况下,6脉冲整流器的输入谐波电流总含量超过56%;25%负载情况下,则超过78%。也就是说,谐波的绝对值基本不随负载量的减轻而减少。 12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。它使整流器导通角大幅增加,输入电流更平滑,谐波电流含量减少,一般可达到10%左右,在增加无源电感滤波后,输入谐波电流可降至4%以下。而且,即使轻载工作,其良好的输入电流特性也不会大幅下降。比如50%负载情况下,12脉冲整流器的输入谐波电流总含量<12%;25%负载情况下,则<15%。可以有效减少谐波的绝对值。 12脉冲整流UPS 原理如下图: UPS 中有并联冗余的2个6脉冲整流器,所以,其工作时即使有一个整流器故障,也不会影响UPS 正常工作,提高了UPS 系统的故障容错能力。 由于使用了全功率的移相变压器和6脉冲整流器,所以同厂家的12脉冲整流器的UPS 比6脉冲整流器的UPS 体积、重量都要大至少1/3。相应的成本也更高。 有的厂家采用IGBT 高频整流技术也能够实现更好的输入谐波电流特性,其整流器可靠性等同於采用一个6脉冲整流器的UPS ,相对于采用12脉冲整流器的UPS 其整流器的容错能力

脉冲整流器说明书

目录 关于本手册 本手册的目的 本手册的适用性 本手册的组成 前言 本系列产品的概括 高频开关电源的示图 性能与技术指标 机械参数 技术参数 安装和启动 使用工具和连接线用材料 安装要求 注意事项 启动 操作 面板控制和显示功能说明 数字电压/电流显示表 启动开关 开关 稳流稳压开关 简要操作说明

维护 工作地方 使用环境使用电压 连接线检查 使用情况反馈表常见故障排除

关于本手册 本手册的目的 本手册主要是提供给您作为使用SDD系列产品的安装、检查、操作的参考资料,同时也列出简单的故障排除方法,供使用人员依照手册所说明的步骤逐步完成设备的安装调试工作。 本手册的适用性 本手册是针对本公司生产的SDD系列双脉冲电源(整流器)的使用、操作、维护而编写。因电镀工程有多类镀种,不同镀种、不同的工件应用不同的电镀工艺;这些工艺应由用户自己调整掌握,本手册说明对电镀工艺效果不负有责任。 本手册的构成 本手册主要由以下几部份内容构成 性能指标 安装和启动 操作 维护

特别声明! ●禁止对本手册内容的全部或任何部份进行未经授权的转换或复制。 ●本手册中包含的内容若有改变恕不另行通知 ●本公司已尽可能地保证本册中包含的内容正确无误,如发现有任何错误或遗漏,请与制造商或经销商联系。 ●本公司对由于使用此手册而引起的或与本手册有关的任何直接或间接的损失将不承担任何责任。 ●电源编号为本公司记录档案代码,用户务必妥善保存,以便我们做好售后服务工作。

前 言 本系列产品概括 SDD 系列智能高频开关电源是我公司研制的新型开关电源产品,采用全方位防腐材料及工艺,多波形、多功能输出选择,满足不同镀种需要,通过面板按键操作控制,大屏幕荧光显示,具有安装、维护、操作、灵活方便、安全可靠等特点。 本设备采用STP (直流)换向功能,提供:双脉冲、直流、正弦波、单脉冲等波形输出选择,用于满足着色工艺要的需要; 示意图 输出正极铜排输入电源线 操作面板 INPUT 220VAC OUTPUT

12脉冲与IGBT高频整流器

电源招聘专家12脉冲与IGBT高频整流器 一、概述整流器的由来 对于直流来说不存在什么功率因数问题,因为直流的电流和电压永远是同相的。而对于交流而言就出现了这个问题,功率因数是由于电压电流不同相造成的,如图 1所示,电流和电压有一个相位差q,图中的黑粗线表示电流和电压同相位时产生的有功功率,而其他部分则是无功功率,功率因数就是表征有功功率和无功功率含量情况的,它是相位差的函数,如式(1)所示。 Pf =cos (1) 无功功率的出现不是一件好事,因为作为负载来说,它不能将由电网送来的能量全部吸收,只吸收有功功率部分,而无功功率部分则在电网线路中串来串去,白白占据着电网的有效线路而不做功。以后由于非线性负载的出现,如整流脉冲负载,虽然电流不是和电压不同相的的正弦波,但由于对正弦电压波形的破坏也同样出现了无功功率,而且这种整流式脉冲负载已是当前影响功率因数的主要来源。为了节能、有效利用能源和降低干扰,国家对企业的输入功率因数限值做出了规定,如何提高用电设备的输入功率因数已成当务之急。 图1 电流电压不同相时的相对位置关系 二、12脉冲整流器的提出和解决方法 早期的IT设备供电电源多为单相220V,如果用电设备是电阻负载,其上面的电流和电压波形是连续的,如图2中的左边波形。但一般IT设备又有内部自备电源,这些电源的输入都是一个整流滤波器,使得电流呈脉冲状,使得对应脉冲电流的电压波形部分出现了失真,如图2的中间波形就是单相整流时的破坏情况,这时的输入功率因数只有0.6-0.7。但如果能够将中间图形中的一个大电流脉冲变成布满整个半周的小电流脉冲,也就相当于与电压同相的连续电流了,此时的电压波形就几乎没有失真了,如图中的右图所示,此时的输入功率因数九可以接近于1。

脉冲与12脉冲区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成得全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流、 当忽略三相桥式可控硅整流电路换相过程与电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13.。.等各次谐波,各次谐波得有效值与谐波次数成反比,且与基波有效值得比值为谐波次数得倒 数。 图1。1计算机仿真得6脉冲A相得输入电压、电流波形 2、12脉冲整流器原理: 12脉冲就是指在原有6脉冲整流得基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流、 下图所示I与II两个三相整流电路就就是通过变压器得不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成) 桥1得网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1—3) 故合成得网侧线电流 (1-4) 可见,两个整流桥产生得5、7、17、19、、、、次谐波相互抵消,注入电网得只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值得比值为谐波次数得倒数。 图1.2 计算机仿真得12脉冲UPS A相得输入电压、电流波形

二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表: 某型号大功率UPS谐波实测数据表: 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致、6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。 三、谐波分析与改良对策 谐波可能造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为+序(3k+1次,k为0与正整数)、-序(3k+2次,k为0与正整数)、0序(3k次,k为正整数)。 +序电流使损耗加重,—序电流使电机反转、发热,0序电流使中线电流异常增大。 从实测值可见,6脉整流器5次谐波最大,可加装5次滤波器来抑制谐波;12脉整流器11次谐波最大,可加装11次滤波器来抑制谐波。滤波器原理图如下: 图:常用得LC滤波器原理图 某型号大功率UPS加装滤波器后谐波对比表如下:

6脉冲与12脉冲区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒 数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流 (1-4)

可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形 二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表: 谐波次数5th 7th 11th 13th 17th 19th 23th 6脉冲谐波含量20% 14% 9% 8% 6% 5% 4% 0% 0% 9% 8% 0% 0% 4% 12脉冲谐波含 量 某型号大功率UPS谐波实测数据表: 谐波次数5th 7th 11th 13th 17th 19th 23th 6脉冲谐波含量32% 3% 8% 3% 4% 2% 2% 1% 1% 9% 4% 1% 1% 2% 12脉冲谐波含 量 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。 三、谐波分析和改良对策

UPS_6脉冲整流器、12脉冲整流器和IGBT整流器技术区别

UPS 6脉冲整流器、12脉冲整流器和IGBT 整流器技术区别 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 三相桥式整流电路忽略换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为: iA=2?31/2/π?Id( sinwt -1/5sin5wt -1/7sin7wt +1/11sin11wt +1/13sin13wt - 1/17Sin17wt -1/19sinwt +…) (1-1) 由此可得以下简洁的结论:电流中含6k ±1(k 为正整数)次谐波,各次谐波有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 2、12脉冲整流器 12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 电池及 逆变器 输入 电池及 逆变器 输入 II

桥1的网侧电流傅立叶级数展开为: iIA=iIa=2?31/2/π?Id( sinwt-1/5sin5wt-1/7sin7wt+1/11sin11wt+ 1/13sin13wt-1/17Sin17wt-1/19sinwt+…) (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?。 iIA=2?31/2/π?Id( sinwt+1/5sin5wt+1/7sin7wt+1/11sin11wt+ 1/13sin13wt+1/17Sin17wt+1/19sinwt+…) (1-3) 故合成的网侧线电流 iA=iIA+iIIA=4?31/2/π(sinwt+1/11sinwt+1/13sin13wt+…) 可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 3、IGBT整流器 IGBT整流器电气图如下: IGBT整流是和6脉、12脉冲整流器完全不同的架构,其特点是: (1)采用三相半桥式SPWM逆变器构成输入Boost开关整流器与输出逆变器,这是高频化UPS的典型特征。 (2)不用(也不能用)输出隔离变压器及ZVS软开关技术。 (3)用高频IGBT作开关管,开关频率大于或等于20kHz。

UPS12脉冲与LC比较

1,12脉冲整流器与LC滤波器配置在各个方面的比较 谐波解决方案12 pulse 6 pulse + LC filter 100 % 负载率时的性能 THDI Power factor < 10- 12 % 0.85 < 5- 6 % up to .94 25-50-75 %负载率时的性能 THDI Power factor increase up to 20 % quite constant > 0.80 constant THDI < 16 % constant > 0.90 是否满足 IEC 61000-3-4标准不满足11次谐 波严重超标,13 谐波超标 11次微量超标 连接方式串联在系统中串联在系统中系统可升级性能不可以不可以 系统可靠性较好,但整流器 故障时 UPS运行将不正 常非常高,增加的配置对系统的可靠性没有影响 发电机或与低压配电系统的兼容性 一般 12脉冲整流器 由于配置有设 备容量的移相 变压器。UPS 上电时有严重 电流浪涌的问 题影响低压配 电系统的稳定 运行,) 同时,THDI水 平比较高) 很好 (采用智能形的LC Filter能够避免配置普 通LC Filter在UPS低 负荷水平时的容性电流 问题) UPS 系统效率的影响average : good : loss of

loss of 2- 3% 0.5 % 2,12脉冲整流器与其他系统配置的谐波水平的比较 3,12脉冲整流器与其他系统配置谐波水平与IEC 标准的比较 4,结论: 12脉冲整流器存在输入启动电流浪涌严重和功率因数比较低的问题。尤其是输入启动电流浪涌问题,对整个配电系统的安全 性可靠性不利。

6脉冲、12脉冲可控硅整流器原理与区别

6脉冲、12脉冲可控硅整流器原理与区别 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开 关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电 抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里 叶级数展开为: (1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数) 次谐波,即5、7、11、13...等各次 谐波,各次谐波的有效值与谐波次 数成反比,且与基波有效值的比值 为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相 的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流 的基础上,在输入端、增加移相变 压器后在增加一组6脉冲整流器, 使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前300, 因网侧线电流比桥I超前300 (1-3) 故合成的网侧线电流

(1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的 输入电压、电流波形 二、实测数据分析。 以上计算为理想状态,忽略了很 多因数,如换相过程、直流侧电流脉 动、触发延迟角,交流侧电抗等。因 此实测值与计算值有一定出入。 理论计算谐波表: 某型号大功率UPS谐波实测数据表: 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。

6脉冲与12脉冲浅析

电子信息系统机房典型用电设备的谐波特性 1.PC机、网关、服务器、交换机等IT设备:输入电流谐波分量<65~77%r ; 2.带PFC校正功能的PC机、高中档服务器、磁盘等IT设备:输入电流谐波 分量<18~27%r ; 3.IGBT脉宽调制整流型UPS:输入电流谐波分量<3%r(满载); 4.6脉冲整流器:输入电流谐波分量<30%r (满载); 5.12脉冲整流器:输入电流谐波分量<9%r (满载); 6.6脉冲整流器+5次谐波滤波器:输入电流谐波分量<9%r (满载); 7.12脉冲整流器+11次谐波滤波器:输入电流谐波分量<4.5%r (满载); 8.6脉冲整流器+有源滤波器:输入电流谐波分量<3~5%r (满载); 9.节能灯:输入电流谐波分量<10~34%r.。

6脉冲与12脉冲UPS的浅析 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论: 电流中含6K1(k为正整数)次谐波,即5、7、11、13…等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。 图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30,因网侧线电流比桥I超前30 (1-3) 故合成的网侧线电流 (1-4) 可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k1(k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而

6脉冲与12脉冲整流

6脉冲、12脉冲整流器原理与区别 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。对大功率UPS的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2)

桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1-3) 故合成的网侧线电流 (1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形 二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表:

脉冲整流器和12脉冲整流器介绍

6脉冲整流器和12脉冲整流器介绍 由于不断电系统之输入端需进行交、直流电压转换,而传统UPS 一般均采用可控硅整流器构成的6脉冲整流器整流电路。此电路的问题在于将造成系统输入功率因数恶化及输入电流谐波失真率增加等负面影响。对此相关问题,亦可利用功率因数矫正电路技术进行改善。然而受限于成本因素,目前该项技术仍较适合应用于中低功率型系统。较大容量之交、直流整流器设计,尚需藉由可控硅整流器予以达成,对此一般可以可采用12脉冲整流器和主动电力滤波器补偿,下文主要介绍6脉冲和12脉冲整流器的结构 图1绘出一典型的3相6脉冲整流器架构,当系统处于理想的运转状况下,市电电感L S 可假设为零,且视直流电感L d 足够大使得直流输出电流无涟波成分,今如令整流器触发角为α,则自市电引入之电流i s 可表示为: ())sinh()sin(21αωαω-+-=t i t i i h S (1) o h I h i π6 =, h =6n ±1, (n=1, 2, 3,…) (2) 其中i h 为市电谐波电流。由上式可看出,3相6脉冲整流器主要之谐波电流成分为5次谐波,而其总谐波含量约为30%。为达到提高功因及降低谐波成分的目的,可在不断电系统之电源输入侧并联LC 滤波器使用。至于谐波滤波器之设计方式可根据下式决定: LC f h π21= (3) 其中f h 为谐波频率、L 为滤波电感、C 为电容值。由于6脉波型整流器所产生之最低阶谐波为5次谐波,目前该型不断电系统机种常采5阶及(或)7阶型滤波器设计。 相控整流器直流 電容器 三相電源L s L d 濾波器濾波器 補償器驅動器α ?* α+++-相控整流器2 直流電容均流迴路相控整流器1 市電端相移變壓器驅動器 图1:三相6脉冲整流器 图2:三相12脉冲整流器及均流控制回路 另一方面,为进一步提高相控整流器所产生之谐波电流阶数,亦可采行12脉冲整流技术,其电路架构如图2所示。主要原理为利用两组变压器将交流电压移相,各自整流后,再于直流侧予以合成,产生12步阶直流涟波效果。由数学理论推导,12脉冲相控整流器所需引入之市电线电流为: ())sin()sin(21αωαωh t h i t i i h S -+-= (4) o h I h i π6 =, h =12n ±1, (n=1, 2, 3,…) (5) 由(4)、(5)式可看出,12脉冲整流电路所产生之谐波电流最低为11次谐波,其远高于6脉冲整流技术产生之5次谐波,且其总谐波含量亦较6脉冲为低;然而该12脉冲机种需额外加入一输入相移变压器,为有效减少相移变压器的生产成本,变压器可采自耦型设计(如图1所示),惟其需注意系统是否有输出入电压隔离的问题。另鉴于12脉冲整流电路在实现时可能因两组整

6脉冲与12脉冲区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成得全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程与电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1—1) 由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13、、、等各次谐波,各次谐波得有效值与谐波次数成反比,且与基波有效值得比值为谐波次数得倒 数。 图1、1 计算机仿真得6脉冲A相得输入电压、电流波形2、12脉冲整流器原理: 12脉冲就是指在原有6脉冲整流得基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I与II两个三相整流电路就就是通过变压器得不同联结构成12相整流电路。

12脉冲整流器示意图(由2个6脉冲并联组成) 桥1得网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1—3) 故合成得网侧线电流 (1-4) 可见,两个整流桥产生得5、7、17、19、、、、次谐波相互抵消,注入电网得只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值得比值为谐波次数得倒数。 图1、2 计算机仿真得12脉冲UPSA相得输入电压、电流波形

二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表: 某型号大功率UPS谐波实测数据表: 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。 三、谐波分析与改良对策 谐波可能造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为+序(3k+1次,k为0与正整数)、-序(3k+2次,k为0与正整数)、0序(3k次,k为正整数)。 +序电流使损耗加重,—序电流使电机反转、发热,0序电流使中线电流异常增大。 从实测值可见,6脉整流器5次谐波最大,可加装5次滤波器来抑制谐波;12脉整流器11次谐波最大,可加装11次滤波器来抑制谐波。滤波器原理图如下: 图:常用得LC滤波器原理图 某型号大功率UPS加装滤波器后谐波对比表如下:

6脉动整流与12脉动整流

6脉冲与12脉冲可控硅整流器原理与区别 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成得全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流、 当忽略三相桥式可控硅整流电路换相过程与电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为: (1—1) 由公式(1-1)可得以下结论: 电流中含6K?1(k为正整数)次谐波,即5、7、11、13。。。等各次谐波,各次谐波得有效值与谐波次数成反比,且与基波有效值得比值为谐波次数得倒数。 图1、1 计算机仿真得6脉冲A相得输入电压、电流波形 2、12脉冲整流器原理: 12脉冲就是指在原有6脉冲整流得基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。

下图所示I与II两个三相整流电路就就是通过变压器得不同联结构成12相整流电路、 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1得网侧电流傅立叶级数展开为: (1—2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30? (1—3) 故合成得网侧线电流 (1—4) 可见,两个整流桥产生得5、7、17、19、.。。次谐波相互抵消,注入电网得只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值得比值为谐波次数得倒数、

图1。2 计算机仿真得12脉冲UPS A相得输入电压、电流波形 二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表: 某型号大功率UPS谐波实测数据表: 从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。 三、谐波分析与改良对策 谐波可能造成配电线缆、变压器发热,降低通话质量,空气开关误动作,发电机喘振等不良后果;谐波按电流相序分为+序(3k+1次,k为0与正整数)、-序(3k+2次,k为0与正整数)、0序(3k次,k为正整数)。 +序电流使损耗加重,-序电流使电机反转、发热,0序电流使中线电流异常增大。 从实测值可见,6脉整流器5次谐波最大,可加装5次滤波器来抑制谐波;12脉整流器11次谐波最大,可加装11次滤波器来抑制谐波、滤波器原理图如下:

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别 产品部 (2007-02-06 15:05:44) 摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细 6脉冲和12脉冲整流器的原理和区别。对大功率UPS 的整流技术有一个深入全面的剖析。 一、理论推导 1、6脉冲整流器原理: 6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。 当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为: (1-1) 由公式(1-1)可得以下结论: 电流中含6K?1(k 为正整数)次谐波,即5、7、11、13...等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。

图1.1 计算机仿真的6脉冲A相的输入电压、电流波形 2、12脉冲整流器原理: 12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。 下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。 12脉冲整流器示意图(由2个6脉冲并联组成) 桥1的网侧电流傅立叶级数展开为: (1-2) 桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?

(1-3) 故合成的网侧线电流 (1-4) 可见,两个整流桥产生的5、7、17、19、...次谐波相互抵消,注入电网的只有12k?1(k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。 图1.2 计算机仿真的12脉冲UPS A相的输入电压、电流波形 二、实测数据分析。 以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。因此实测值与计算值有一定出入。 理论计算谐波表:

相关文档
最新文档