UPS_6脉冲整流器、12脉冲整流器和IGBT整流器技术区别
6脉冲与12脉冲整流

6脉冲与12脉冲整流6脉冲、12脉冲整流器原理与区别摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。
对大功率UPS的整流技术有一个深入全面的剖析。
一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。
当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:xLx (jHiiat--sin S M--dn7at + —siiillai + —一-—smlT^t一- del 知5 7 11 13 1719(1-1)由公式(1-1 )可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13.??等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。
桥1的网侧电流傅立叶级数展开为:■ Ij ■ tiuird ' wEdar- '、血_01 * ' Mtd lor * ' fiitl 如+ . .}iA n 45 7 11 1317 IPf(1-2)600 0 400,0200 0 W 0.0 ^200,0-400.0 600 0 400 O 200,0 £ 0.0 -200 0 -4 00 0图1.1计算机仿真的6脉冲A 相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组流器,使直流母线电流由 12个可控硅整流完成,因此又称为12脉冲整流。
6脉冲整F 图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
12脉冲整流器示意图(由 2个6脉冲并联组成)桥II 网侧线电压比桥I 超前30?,因网侧线电流比桥I 超前30?:加=丄、++krf + —soil Ajtf + —'iijl-ci# + — ud^ + I(1-3)故合成的网侧线电流A - ijx+hjA~x(siii at + — suillot+ ?suii3<it< p="">真11 13(1-4)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有 12k?1 (k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
6脉冲12脉冲可控硅整流器原理与区别

6脉冲12脉冲可控硅整流器原理与区别6脉冲和12脉冲可控硅整流器是一种用于交流电转直流电的电力电子装置。
它们的主要原理和区别如下:1.原理可控硅整流器是一种半电压型整流装置,通过控制可控硅的导通角,改变可控硅导通时间的方式,将交流电转换成直流电。
可控硅整流器的主要控制参数有触发脉冲角度和触发脉冲宽度。
6脉冲可控硅整流器的原理是在单相交流电源上,通过两组互相相差60°的三相整流方式,使得输出的直流电压带有6个整流脉动。
12脉冲可控硅整流器的原理是通过两个直流电枢和两组互相相差30°的三相整流方式,在一个周期内产生12个整流脉动,从而减小了脉动幅值,得到了更平滑的直流输出电压。
2.区别2.1.输出电压波形6脉冲可控硅整流器的输出电压波形带有6个整流脉动,脉动幅值较大,相对于12脉冲可控硅整流器而言,输出的直流电压波动较大。
12脉冲可控硅整流器通过在一个周期内产生12个整流脉动,脉动幅值较小,输出的直流电压波动较小。
相对于6脉冲可控硅整流器而言,得到了更平滑的直流输出电压。
2.2.输出电流波形6脉冲可控硅整流器的输出电流波形带有6个整流脉动,脉动幅值较大。
12脉冲可控硅整流器的输出电流波形带有12个整流脉动,脉动幅值更小。
2.3.效率12脉冲可控硅整流器相对于6脉冲可控硅整流器而言,由于输出电压波动更小,脉动幅值更小,因此具有更高的效率。
2.4.成本12脉冲可控硅整流器相对于6脉冲可控硅整流器而言,由于结构复杂性更高,需要控制电路和相应的控制技术,所以成本更高。
综上所述,12脉冲可控硅整流器相对于6脉冲可控硅整流器来说,输出的直流电压和电流波动更小,效率更高,但成本也更高。
在实际应用中,可根据需求和成本的考虑来选择合适的可控硅整流器。
脉冲与12脉冲区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成得全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流、当忽略三相桥式可控硅整流电路换相过程与电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1-1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13.。
.等各次谐波,各次谐波得有效值与谐波次数成反比,且与基波有效值得比值为谐波次数得倒数。
图1。
1计算机仿真得6脉冲A相得输入电压、电流波形2、12脉冲整流器原理:12脉冲就是指在原有6脉冲整流得基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流、下图所示I与II两个三相整流电路就就是通过变压器得不同联结构成12相整流电路。
12脉冲整流器示意图(由2个6脉冲并联组成)桥1得网侧电流傅立叶级数展开为:(1-2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1—3)故合成得网侧线电流(1-4)可见,两个整流桥产生得5、7、17、19、、、、次谐波相互抵消,注入电网得只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值得比值为谐波次数得倒数。
图1.2 计算机仿真得12脉冲UPS A相得输入电压、电流波形二、实测数据分析。
以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。
因此实测值与计算值有一定出入。
理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致、6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。
6脉冲和12脉冲的比较

(一) 6脉冲整流器的原理。
参照图1A 图1B图1A 为电流源型变频器中常用的6脉波晶闸管电流源型蒸馏电路结构,图1B 为该电路典型的输入波形,输入电流中含有很好的谐波分量,输入电流的5次谐波可达20%,7次谐波可达12%(见图3)。
由于晶闸管的快速换相,还会产生一定的高次谐波,可达35次谐波以上,高次谐波会对电话等通信线路产生一定的干扰。
整流电路总的谐波电流失真约为30%,所以一般要设置输入谐波滤波器。
滤波器体积庞大且影响系统的效率,额外增加投资,滤波器的设计与电网参数和负载工况都有关系,一旦参数和工况发生变化,滤波器又得重新调整,十分不便,且影响滤波效果。
(二)12脉波整流器的原理 在图2A 中,整流器由两组晶闸整流串联而成,分别由输入变压器的两组二次绕组(星形和三角形互差30°电角度)供电。
这种整流电路的优点是把整流电路的脉波数由6提高到12,从而大大改善输入电流波形(见图2B ),降低输入谐波电流,总谐波电流失真约10%左右(见图3)。
虽然12脉波整流电路的谐波电流必然谐波结构的大大下降,但还不能达到IEEE519—1992标准规定的在电网短路电流小于20倍负载电流时,总谐波电流失真小于5%的要求。
因此,一般也要安装谐波滤波装置。
三 12脉冲整流器与6脉冲的优势差异分析 (一)比6脉冲更具有环保概念1 电流高谐波成份少,所以不电网电源。
2 有12脉冲整流装置,故输入功因率高大约≥0.85,因此总体效率亦比6脉冲整流器高。
(二)成本较高1 由图1 A 及图2A 所示,12脉冲整流器必须加Δ及у双硫组变压器,故变压器成本较高。
2 控制电路较复杂及元件亦较6脉冲整流,因此施工成本亦较高。
(三)安全顾虑电场为十分重要的场所,DCS 的控制影响电厂操作的安全,如果谐波电信过大会造成辐射及干预,易使设备错误动作,及降低寿命。
注:得出结论是如英威腾高压变频每一个功率单元就是一个6脉冲。
例:3KV共9个功率单元,每相3个*6脉冲就是18脉冲变频器6KV共15个功率单元,每相5个*6脉冲就是30脉冲变频器3KV共24个功率单元,每相8个*6脉冲就是48脉冲变频器。
UPS_6脉冲整流器、12脉冲整流器和IGBT整流器技术区别

UPS 6脉冲整流器、12脉冲整流器和IGBT 整流器技术区别6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。
三相桥式整流电路忽略换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为:iA=2⨯31/2/π⨯Id( sinwt -1/5sin5wt -1/7sin7wt +1/11sin11wt +1/13sin13wt -1/17Sin17wt -1/19sinwt +…) (1-1)由此可得以下简洁的结论:电流中含6k ±1(k 为正整数)次谐波,各次谐波有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。
2、12脉冲整流器12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
电池及 逆变器 输入电池及 逆变器 输入 II桥1的网侧电流傅立叶级数展开为:iIA=iIa=2⨯31/2/π⨯Id( sinwt-1/5sin5wt-1/7sin7wt+1/11sin11wt+1/13sin13wt-1/17Sin17wt-1/19sinwt+…) (1-2)桥II网侧线电压比桥I超前30︒,因网侧线电流比桥I超前30︒。
iIA=2⨯31/2/π⨯Id( sinwt+1/5sin5wt+1/7sin7wt+1/11sin11wt+1/13sin13wt+1/17Sin17wt+1/19sinwt+…) (1-3)故合成的网侧线电流iA=iIA+iIIA=4⨯31/2/π(sinwt+1/11sinwt+1/13sin13wt+…)可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
6脉冲与12脉冲浅析

电子信息系统机房典型用电设备的谐波特性1.PC机、网关、服务器、交换机等IT设备:输入电流谐波分量<65~77%r ;2.带PFC校正功能的PC机、高中档服务器、磁盘等IT设备:输入电流谐波分量<18~27%r ;3.IGBT脉宽调制整流型UPS:输入电流谐波分量<3%r(满载);4.6脉冲整流器:输入电流谐波分量<30%r (满载);5.12脉冲整流器:输入电流谐波分量<9%r (满载);6.6脉冲整流器+5次谐波滤波器:输入电流谐波分量<9%r (满载);7.12脉冲整流器+11次谐波滤波器:输入电流谐波分量<4.5%r (满载);8.6脉冲整流器+有源滤波器:输入电流谐波分量<3~5%r (满载);9.节能灯:输入电流谐波分量<10~34%r.。
6脉冲与12脉冲UPS的浅析摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。
对大功率UPS的整流技术有一个深入全面的剖析。
一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。
当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1-1)由公式(1-1)可得以下结论:电流中含6K1(k为正整数)次谐波,即5、7、11、13…等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。
图1.1 计算机仿真的6脉冲A相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
下图所示I和II两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
6脉冲与12脉冲整流

6脉冲、12脉冲整流器原理与区别摘要:本文从理论推导、实测数据分析、谐波分析和改善对策、性能对比四个方面详细阐述6脉冲和12脉冲整流器的原理和区别。
对大功率UPS的整流技术有一个深入全面的剖析。
一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。
当忽略三相桥式可控硅整流电路换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:xLx (jHiiat--sin S M--dn7at + —siiillai + —一-—smlT^t一- del 知5 7 11 13 1719(1-1)由公式(1-1 )可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13.••等各次谐波,各次谐波的有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。
桥1的网侧电流傅立叶级数展开为:■ Ij ■ tiuird ' wEdar- '、血_01 * ' Mtd lor * ' fiitl 如+ . .}iA n 45 7 11 1317 IPf(1-2)600 0 400,0200 0 W 0.0 ^200,0-400.0 600 0 400 O 200,0 £ 0.0 -200 0 -4 00 0图1.1计算机仿真的6脉冲A 相的输入电压、电流波形2、12脉冲整流器原理:12脉冲是指在原有6脉冲整流的基础上,在输入端、增加移相变压器后在增加一组 流器,使直流母线电流由 12个可控硅整流完成,因此又称为12脉冲整流。
6脉冲整F 图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成 12相整流电路。
12脉冲整流器示意图(由 2个6脉冲并联组成)桥II 网侧线电压比桥I 超前30?,因网侧线电流比桥I 超前30?:加=丄、++krf + —soil Ajtf + —'iijl-ci# + — ud^ + I(1-3)故合成的网侧线电流A - ijx+hjA~x(siii at + — suillot+ ™suii3<it真11 13(1-4)可见,两个整流桥产生的 5、7、17、19、…次谐波相互抵消,注入电网的只有 12k?1 (k 为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基 波有效值的比值为谐波次数的倒数。
6脉冲与12脉冲区别

大功率UPS 6脉冲与12脉冲可控硅整流器原理与区别一、理论推导1、6脉冲整流器原理:6脉冲指以6个可控硅(晶闸管)组成得全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。
当忽略三相桥式可控硅整流电路换相过程与电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a为零,则交流侧电流傅里叶级数展开为:(1—1)由公式(1-1)可得以下结论:电流中含6K?1(k为正整数)次谐波,即5、7、11、13、、、等各次谐波,各次谐波得有效值与谐波次数成反比,且与基波有效值得比值为谐波次数得倒数。
图1、1 计算机仿真得6脉冲A相得输入电压、电流波形2、12脉冲整流器原理:12脉冲就是指在原有6脉冲整流得基础上,在输入端、增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
下图所示I与II两个三相整流电路就就是通过变压器得不同联结构成12相整流电路。
12脉冲整流器示意图(由2个6脉冲并联组成)桥1得网侧电流傅立叶级数展开为:(1-2)桥II网侧线电压比桥I超前30?,因网侧线电流比桥I超前30?(1—3)故合成得网侧线电流(1-4)可见,两个整流桥产生得5、7、17、19、、、、次谐波相互抵消,注入电网得只有12k?1(k为正整数)次谐波,即11、13、23、25等各次谐波,且其有效值与与谐波次数成反比,而与基波有效值得比值为谐波次数得倒数。
图1、2 计算机仿真得12脉冲UPSA相得输入电压、电流波形二、实测数据分析。
以上计算为理想状态,忽略了很多因数,如换相过程、直流侧电流脉动、触发延迟角,交流侧电抗等。
因此实测值与计算值有一定出入。
理论计算谐波表:某型号大功率UPS谐波实测数据表:从以上两表对比可得,6脉整流器谐波含量最大为5次谐波、12脉整流器强度最大为11次谐波,与理论计算结果一致。
6脉5次谐波实测值较计算值偏大,12脉11次谐波实测值与计算值相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UPS 6脉冲整流器、12脉冲整流器和IGBT 整流器技术区别
6脉冲指以6个可控硅(晶闸管)组成的全桥整流,由于有6个开关脉冲对6个可控硅分别控制,所以叫6脉冲整流。
三相桥式整流电路忽略换相过程和电流脉动,假定交流侧电抗为零,直流电感为无穷大,延迟触发角a 为零,则交流侧电流傅里叶级数展开为:
iA=2⨯31/2/π⨯Id( sinwt -1/5sin5wt -1/7sin7wt +1/11sin11wt +1/13sin13wt -
1/17Sin17wt -1/19sinwt +…) (1-1)
由此可得以下简洁的结论:电流中含6k ±1(k 为正整数)次谐波,各次谐波有效值与谐波次数成反比,且与基波有效值的比值为谐波次数的倒数。
2、12脉冲整流器
12脉冲是指在原有6脉冲整流的基础上,在输入端增加移相变压器后在增加一组6脉冲整流器,使直流母线电流由12个可控硅整流完成,因此又称为12脉冲整流。
下图所示I 和II 两个三相整流电路就是通过变压器的不同联结构成12相整流电路。
电池及 逆变器 输入
电池及 逆变器 输入 II
桥1的网侧电流傅立叶级数展开为:
iIA=iIa=2⨯31/2/π⨯Id( sinwt-1/5sin5wt-1/7sin7wt+1/11sin11wt+
1/13sin13wt-1/17Sin17wt-1/19sinwt+…) (1-2)
桥II网侧线电压比桥I超前30︒,因网侧线电流比桥I超前30︒。
iIA=2⨯31/2/π⨯Id( sinwt+1/5sin5wt+1/7sin7wt+1/11sin11wt+
1/13sin13wt+1/17Sin17wt+1/19sinwt+…) (1-3)
故合成的网侧线电流
iA=iIA+iIIA=4⨯31/2/π(sinwt+1/11sinwt+1/13sin13wt+…)
可见,两个整流桥产生的5、7、17、19、…次谐波相互抵消,注入电网的只有12k±1(k为正整数)次谐波,且其有效值与与谐波次数成反比,而与基波有效值的比值为谐波次数的倒数。
3、IGBT整流器
IGBT整流器电气图如下:
IGBT整流是和6脉、12脉冲整流器完全不同的架构,其特点是:
(1)采用三相半桥式SPWM逆变器构成输入Boost开关整流器与输出逆变器,这是高频化UPS的典型特征。
(2)不用(也不能用)输出隔离变压器及ZVS软开关技术。
(3)用高频IGBT作开关管,开关频率大于或等于20kHz。
高频大功率UPS与工频机的对比
1 工频机和高频机的原理分析
工频机和高频机是按UPS的设计电路工作频率来区分的。
工频机是以传统的模拟电路原理设计,由晶闸管(SCR)整流器、IGBT逆变器、旁路和工频升压隔离变压器组成。
因其整流器和变压器工作频率均为工频50Hz,顾名思义叫工频UPS。
高频机通常由IGBT高频整流器、电池变换器、逆变器和旁路组成。
IGBT 可以通过控制加在门极的驱动来控制其开通与关断,IGBT整流器开关频率通常在几千赫到几十千赫,甚至高达上百千赫,远远高于工频机,因此称为高频UPS。
2 隔离变压器的原理分析
隔离变压器是利用电磁感应原理,对配电或信号进行电气隔离的装置。
隔离变压器在UPS中通常被设计在逆变器的输出端,可以起到增加UPS性能改善负载端供电质量的作用。
通常,UPS的输出隔离变压器有以下四大优点:
(1)降低零地电压,优化UPS末端供电网络
UPS的逆变输出安装隔离变压器可以隔离输入和输出之间的电气连接,从而有效地降低输出的零地电压。
由于隔离变压器的副边绕组采用Y型接法,中性点接地后产生新的零线,从而达到降低零地电压的目的。
事实上,HP、IBM、SUN的小型机因为要保证精密的计算能力与高可靠的数据处理传输能力,都会对零地电压有极高的要求,加装隔离变压器可以彻底解决因为零地电压偏高所造成的一些问题。
(2)滤除负载端谐波,提高供电质量
隔离变压器本身具有电感特性,输出隔离变压器可以滤除负载端的大量低次谐波,减少高频干扰,并可以使高次谐波大幅度衰减。
采用电源隔离变压器,可以有效地抑制窜入交流电源中的噪声干扰,提高设备的电磁兼容性。
(3)增强过载短路保护能力,保护负载与UPS主机
由于其自身的特性,隔离变压器是UPS中工作最为稳定的器件。
UPS在正常工作过程中,如果遇到大的短路电流,变压器会产生反向电动势,延缓短路电流对负载以及逆变器的冲击破坏,具有保护负载与UPS主机的作用。
(4)UPS故障时保护负载
高频UPS的AC/DC变换部分采用高频化设计,提高了UPS的输入功率因数(0.98以上)及输入电压范围,DC/AC逆变部分高频化减少了输出滤波电感的体积,功率密度大。
由于无输出隔离变压器,一旦逆变器桥臂的IGBT被击穿短路,UPS母线直流高电压将加到负载上,危及负载的安全。
输出隔离变压器具有“通交流阻直流”的能力,可以解决此类问题,在UPS发生故障时能够使负载安全运行。
3 从工频机和高频机的性能对比来分析
(1)在可靠性方面,工频机要优于高频机
工频机采用晶闸管(SCR)整流器,该技术经过半个多世纪的发展和革新,已经非常成熟,其抗电流冲击能力非常强。
由于SCR属于半控器件,不会出现直通、误触发等故障。
相比而言,高频机采用的IGBT高频整流器虽然开关频率较高,但是IGBT工作时有严格的电压、电流工作区域,抗冲击能力较低。
因此在总体可靠性方面,IGBT整流器比SCR整流器低。
(2)在环境适应性方面,高频机要优于工频机
高频机是以微处理器作为处理控制中心,将繁杂的硬件模拟电路烧录于微处
理器中,以软件程序的方式来控制UPS的运行。
因此,体积、重量等方面都有明显的降低,噪音也较小,对空间、环境影响小,因此比较适合于对可靠性要求不太苛刻的办公场所。
正因为如此,许多厂家的中小功率UPS普遍推出了高频机。
(3)在负载对零地电压的要求方面,工频机要优于高频机
大功率三相高频机零线会引入整流器并作为正负母线的中性点,这种结构就不可避免地造成整流器和逆变器高频谐波耦合在零线上,抬升零地电压,造成负载端零地电压抬高,很难满足IBM、HP等服务器厂家对零地电压小于1V的场地需求。
另外,在市电和发电机切换时,高频机往往因零线缺失而必须转旁路工作,在特定工况下可能造成负载闪断的重大故障。
工频机因整流器不需要零线参与工作,在零线断开时,UPS可以保持正常供电。
综上所述,工频机UPS和高频机UPS的差异主要表现在隔离变压器上,而工频机对隔离变压器的使用,在很大程度上提升了UPS的可靠性。
从综合性能方面来讲,工频机和高频机则各有优劣,至少在当前,不存在谁取代谁的问题。