有源功率因数校正 总结

合集下载

功率因数校正(PFC)的几个小知识

功率因数校正(PFC)的几个小知识

1、什么是功率因数校正(PFC)?功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。

基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。

开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。

这对于电力需求量大到某一个水准的电子设备而言是很重要的, 否则电力设备系统消耗的电力可能超出其规格,极可能干扰铜系统的其它电子设备。

一般状况下, 电子设备没有功率因数校正(Power Factor Correction, PFC)时其PF值约只有0.5。

PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。

基本上功率因素可以衡量电力被有效利用的程度,当功率因素值越大,代表其电力利用率越高。

计算机开关电源是一种电容输入型电路,其电流和电压之间的相位差会造成交换功率的损失,此时便需要PFC电路提高功率因数。

目前的PFC有两种,一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。

PFC打个形象的比方:一个啤酒杯的容积是一定的,就好比是视在功率,可是你倒啤酒的时候很猛,就多了不少的泡沫,这就是无功功率,杯底的啤酒其实很少,这些就是有功功率。

这时候酒杯的利用率就很低,相当于电源的功率因数就很小。

PFC的加入就是要减少输入侧的无功功率,提高电网的利用率,对于普通的工业用电来讲是把电流的相位与电压的相位调整到一块了,对于开关电源来讲是把严重畸变了的交流侧输入电流变成正弦,另外还有降低低次谐波的功能,因为输入的电流是正弦了。

2、为什么我们需要PFC?功率因素校正的好处包含:1. 节省电费2. 增加电力系统容量3. 稳定电流低功率因数即代表低的电力效能,越低的功率因数值代表越高比例的电力在配送网络中耗损,若较低的功率因数没有被校正提升,电力公司除了有效功率外,还要提供与工作非相关的虚功,这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施,以弥补损耗的不足。

功率因数校正

功率因数校正

功率因数校正摘要:提高功率因数是开关电源一个重要指标,由UC3854构成的控制电路有电路简单、成本低、功率密度高,在中小功率场合得到了广泛应用。

关键词:功率因数乘法器UC3854引言国际标准IEC555――2中关于谐波限制标准和电磁兼容(EMC 法规对传统采用的桥式整流和大电容量滤波电路从工频市电变换为直流电源的方法提出了限制。

这是因为该交流/直流变换方式不仅输出电压极不稳定,效率很低,负载功率被限制在2KW以下,而且更主要的是会导制交流输入电流波形出现严重畸变,功率因数在0.7以下。

随着绿色电子产品的发展,近年来功率因数校正(PFC)技术获得了广泛的应用。

象开关电源、电子镇流器和变频调速器等产品,采用PFC技术日益成为强制性的要求。

第一章有源功率因数校正技术1.1:有源功率因数校正电路组成有源功率因数校正APFC是抑制电流谐波,提高功率因数最有效的方法,其原理框图如图1所示。

交流输入电压经全波整流后,再经DC/DC变换,通过相应的控制使输入电流的平均值自动跟随全波整流电压基准,同时保持输出电压稳定。

APFC电路有两个反馈控制环:输入电流环使DC/DC变压器的输入电流与全波整流电压波形相同,输出电压环使DC/DC变换器的输出电压稳定。

1.2: 主电路的拓扑结构APFC的主电路拓扑结构采用DC/DC开关变换器。

其中升压式(BOOST)变换器由于电感连续、储能电感也作滤波器抑制RFI和EMI噪声、电流波形失真小、输出功率大及共源极使驱动电路简单等优点,常常作为主电路的拓扑形式。

第二章1800W 100KH PFC 电路设计(原理图见附图)2.1: 性能指标输入:AC220V±15% 50±2HZ输出功率:POUT=1800W输出电压:V OUT=400V开关频率:F S=100KH。

2.2: 主电路的设计1.电感的设计电感在PFC电路设计中相当重要,它决定了输入电流中高频纹波电流的多少。

有关功率因数校正方面的知识总结

有关功率因数校正方面的知识总结

有关功率因数校正方面的知识总结1、什么是功率因数校正(PFC)?功率因数指的是有效功率与总耗电量(视在功率)之间的关系 也就是有效功率除以总耗电量(视在功率)的比值。

基本上功率因数可以衡量电力被有效利用的程度 当功率因数值越大 代表其电力利用率越高。

开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型 使其与直流电电压波型尽可能一致 让功率因数趋近于。

这对于电力需求量大到某一个水准的电子设备而言是很重要的,否则电力设备系统消耗的电力可能超出其规格 极可能干扰铜系统的其它电子设备。

一般状况下,电子设备没有功率因数校正(Power Factor Correction,PFC)时其PF值约只有0.5。

PFC的英文全称为"Power Factor Correction" 意思是"功率因数校正"功率因数指的是有效功率与总耗电量(视在功率)之间的关系 也就是有效功率除以总耗电量(视在功率)的比值。

基本上功率因素可以衡量电力被有效利用的程度 当功率因素值越大 代表其电力利用率越高。

计算机开关电源是一种电容输入型电路 其电流和电压之间的相位差会造成交换功率的损失 此时便需要PFC电路提高功率因数。

目前的PFC有两种 一种为被动式PFC(也称无源PFC)和主动式PFC(也称有源式PFC)。

PFC打个形象的比方 一个啤酒杯的容积是一定的 就好比是视在功率可是你倒啤酒的时候很猛 就多了不少的泡沫 这就是无功功率 杯底的啤酒其实很少 这些就是有功功率。

这时候酒杯的利用率就很低 相当于电源的功率因数就很小。

PFC的加入就是要减少输入侧的无功功率 提高电网的利用率对于普通的工业用电来讲是把电流的相位与电压的相位调整到一块了 对于开关电源来讲是把严重畸变了的交流侧输入电流变成正弦 另外还有降低低次谐波的功能 因为输入的电流是正弦了。

2、为什么我们需要PFC?功率因素校正的好处包含 1.节省电费2.增加电力系统容量3.稳定电流低功率因数即代表低的电力效能 越低的功率因数值代表越高比例的电力在配送网络中耗损 若较低的功率因数没有被校正提升 电力公司除了有效功率外 还要提供与工作非相关的虚功 这导致需要更大的发电机、转换机、输送工具、缆线及额外的配送系统等事实上可被省略的设施 以弥补损耗的不足。

功率因数校正(PFC)技术综述

功率因数校正(PFC)技术综述

功率因数校正(PFC)技术综述摘要:消除电网谐波污染,提高功率因数是电力电子领域研究的一个重大且很有实际价值的课题。

本文介绍了电网谐波污染问题和谐波抑制的方法;指出了功率因数校正的目的和意义;回顾了功率因数校正技术的发展概况、研究现状和未来的发展方向。

1 引言高效无污染地利用电能是目前世界各国普遍关注的问题。

根据统计,实际应用中有70%以上的电能要经过电力电子装置进行转换才能被利用,而在电力电子换流装置中,整流器约占90%,且大多数采用了不控或相控整流,功率因数低,向电网注入大量高次谐波,极大地浪费了电能。

电力系统谐波的来源主要是电网中的电力电子设备,随着此类设备装置的广泛应用,给公用电网造成严重污染,谐波和无功问题成为电器工程领域关注的焦点问题。

为了减轻电力污染的危害程度,许多国家纷纷制定了相应的标准,如国际电工委员会的谐波标准IEEE555-2和IEC-1000-3-2等,这些都有力地促进了学术界和工程界对谐波抑制的研究。

解决谐波污染的主要途径有两条:一是对电网实施谐波补偿,二是对电力电子设备自身进行改进。

前者包括对电力系统的无源滤波和有源滤波(APF),后者包括对电力电子装置的无源和有源功率因数校正,相比而言,后者是积极的方法。

电力电子装置的有源功率因数校正(APFC或PFC)从上个世纪80年代中后期以来逐渐成为电力电子技术领域研究的热点。

功率因数,是对电能进行安全有效利用的衡量标准之一。

从最初的因为大量感性负载投入电网带来的无功损耗,到后来的因为各种非线性整流装置投入电网带来的谐波污染,再到现在的电力电子装置尤其是开关电源的广泛使用而带来的大量谐波对电网的危害,功率因数校正技术走过了从无功功率补偿到无源、有源滤波、再到有源功率因数校正和单位功率因数变换技术的发展历程。

功率因数校正技术的发展,成为电力电子技术发展日益重要的组成部分,并成为电力电子技术进一步发展的重要支撑。

目前,单相功率因数校正技术的研究比较多,在电路拓扑和控制方面都相当成熟,而三相功率因数校正的研究则相对较晚较少。

有源功率因数校正电路(APFC)分析

有源功率因数校正电路(APFC)分析

有源功率因数校正电路(APFC)
2. 功率因数
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
设基波电流i1落后Vi,相位差为α,如下图所示。
Vi 、Ii 波形
有源功率因数校正电路(APFC) AC-DC电路输入功率因数与谐波的关系: 定义总谐波畸变(THD):
I 2 2 I 2 3 I 2 4 .... I 2 n THD 100% I1
由此可见,大量应
用整流电路,要求电网 供给严重畸变的非正弦 电流,造成严重的后果, 谐波电流对电网有危害 作用,并且输入端功率 因数下降。
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
谐波电流对电网的危害 脉冲状的输入电流,含 有大量谐波。右图给出了输 入电流波形及电流谐波频谱 分析,其中电流的三次谐波 分量达77.5%,五次谐波分 量达50.3%,……总的谐波 分量(或称总谐波失真Total Harmonic Distortion,用 THD表示)为95.6%,输入 端功率因数仅有0.683,非常 的低。
输入电流波形及其谐波分量频谱分析
有源功率因数校正电路(APFC)
I 2 2 I 2 3 I 2 4 .... I 2 n THD 100% I1
对AC-DC电路输入端谐波电流的限制 为了减小AC-DC交流电路输入端谐波电流造成的噪 声和对电网产生的谐波“污染”,以保证电网供电质量, 提高电网的可靠性;同时也为了提高输入端功率因数, 已达到节能的效果;必须限制AC-DC电路的输入端谐 波电流分量。
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
1. 平均电流模式 2. 峰值电流模式

有源功率因数校正控制方法浅析_杨永清

有源功率因数校正控制方法浅析_杨永清

櫬櫬櫬櫬櫬櫬櫬櫬櫬櫬毬毬毬毬理论研究收稿日期:2011-12-09作者简介:杨永清(1969-),男,甘肃武山人,本科,工程硕士,高级工程师,主要从事移动电站的研究、设计工作,E-mail :yyq8828@126.com 。

有源功率因数校正控制方法浅析杨永清1,张萍1,席小卫2(1.兰州电源车辆研究所有限公司,兰州730050;2.兰州理工大学技术工程学院,兰州730050)摘要:简要阐述功率与功率因数之间的关系及改善功率因数的主要措施;对有源功率因数校正控制方法的三种电路结构进行比对分析。

关键词:功率因数;校正控制;方法doi :10.3969/j.issn.1003-4250.2012.01.004中图分类号:TM401+.1文献标识码:A 文章编号:1003-4250(2012)01-0014-03在以220V 交流电网电压作为输入的开关稳压电源中,交流输入电压整流后接滤波电容器,输入电压是正弦波形,但由于电路中含有非线性元件和储能元件,此时输入的电流不是正弦波,而是一种脉冲波形。

脉冲状的输入电流含有大量的谐波,其无功分量基本上为高次谐波,三次谐波幅度约为基波幅度的95%,五次谐波约为70%,七次谐波约为45%,九次谐波为25%。

高次谐波的产生大大降低了输入端的功率因数,对电能的品质产生较大的影响。

大量电流谐波分量倒流入电网,造成对电网的谐波污染。

谐波电流流过线路阻抗产生谐波电压降,使原来是正弦波形的电网输入电压的波形发生畸变。

另外,谐波也可能使电路发生故障甚至损坏,谐波造成其流经的导线过热、配电变压器过热、引起电网LC 谐振、三相电路中的中性线因三次谐波电流的叠加而过热。

1功率及功率因数分析以单相为例,瞬时功率p 等于电压u 和电流i 的乘积,P =ui在正弦稳态情况下,设:u 槡=2U cos (ωt +ψu )i 槡=2I cos (ωt +ψi )则p 槡=2U cos (ωt +ψu )槡ˑ2I cos (ωt +ψi )=UI cos (ψu -ψi )+UI cos (2ωt +ψu +ψi )令φ=ψu -ψi ,φ为电压和电流之间的相位差,有p =UI cos φ+UI cos (2ωt +ψu +ψi )(1)瞬时功率有两个分量,设第一个分量为恒定值,第二个分量为正弦量,其频率是电压或电流频率的两倍。

(整理)功率因数校正电路分析.

(整理)功率因数校正电路分析.

第三章功率因数校正电路分析一: 引言有源功率因数校正的目的,是要使电源从输入端看就象一个简单的电阻。

有源功率因数校正器是靠控制输入电流随着输入电压变化来实现这个目的的。

当输入电压和电流之比是个常数,输入就是阻性的,功率因数就等于1.0。

当这个比值不是常数时,输入就包含相位移和/或谐波失真,功率因数就会下降。

功率因数最一般的定义是实功对视功之比其中P1是实功,P2是视在功率。

如果负载是纯阻性的,实功P1视在功率,功率因数就等于1.0。

如果负载不是纯阻性的,功率因数就低于1.0。

相位移是有源功率因数校正器输入阻抗的电抗的度量。

不论电抗是多大,也不管它是感性的还是容性的,都会引起输入电流波形对于输入电压波形的相位移。

这个电压和电流间的相位移是功率因数的经典定义,即正弦波电压和电流间的相位角的余弦电压和电流间的相位移的大小表明了负载的阻性程度。

如果电抗只占阻抗的一小部分,相位移就比较小。

如果有源功率因数校正器的前馈信号或控制环具有相位移,校正就会引入相位移。

交流母线电流滤波也会产生相位移。

谐波失真是有源功率因数校正器输入阻抗非线性的度量。

输入阻抗随输入电压的任何变化都会引起输入电流的失真,这个失真是引起功率因数下降的另一主要因素。

这个失真会增加电流的方均根值,但不会增加传递的总功率。

一个非线性负载的功率因数之所以低,是因为电流的方均根值大,而所传递的总功率又小。

如果非线性成分较小,谐波失真就小。

对于有源功率因数校正器来说,谐波失真来自几个方面,包括前馈信号,反馈环,输出电容、电感,以及输入整流器。

有源功率因数校正器能很容易地获得高输入功率因数,一般都大于0.9。

但功率因数并不能精确度量电流波形的失真或相位移。

因此往往都直接考虑这些量,而不是通过功率因数。

例如,当谐波失真为3%时,功率因数仍可高达0.999。

电流的总谐波失真达30%时,功率因数还可达0.95。

电流对于电压的相位移为25℃时,功率因数还可达0.90。

第8章 有源功率因数校正技术

第8章 有源功率因数校正技术
现代电力电子学
第8章 有源功率因数校正技术
第8章 有源功率因数校正技术 8.1 单相有源功率因数校正原理
8.2 CCM单相BOOST功率因数校正变换器
8.3 DCM单相BOOST功率因数校正变换器 8.4 其他单相功率因数校正变换技术 8.5 三相PFC原理 8.6 本章小结
8.1 单相有源功率因数校正原理 8.1.1 电阻负载模拟
8.3.1 CRM单相BOOST功率因数校正变换器电路分析
8.3.1 CRM单相BOOST功率因数校正变换器电路分析
8.3.1 CRM单相BOOST功率因数校正变换器电路分析
图8-26 开关频率极小值与 输入电压有效值的关系
8.3.1 CRM单相BOOST功率因数校正变换器电路分析
8.3.1 CRM单相BOOST功率因数校正变换器电路分析
8.4.3 窗口控制功率因数校正变换电路
图8-37 窗口功率因数校正变换电路实现方式
8.5 三相PFC原理 8.5.1 三相单开关Boost PFC电路的控制
8.5.2 三相六开关PFC电路的控制
8.5.3 其他三相PFC电路
8.5 三相PFC原理
图8-38
三相单开关Boost PFC电路
8.5.1 三相单开关Boost PFC电路的控制 1.工作原理
8.3.2 CRM单相BOOST功率因数校正变换器的控制
图8-27 CRM单相BOOST功率因数校正 变换器的控制框图
8.4 其他单相功率因数校正变换技术 8.4.1 无桥型功率因数校正变换电路
8.4.2 低频开关功率因数校正变换电路
8.4.3 窗口控制功率因数校正变换电路
8.4.1 无桥型功率因数校正变换电路
8.2.2 CCM单相BOOST功率因数校正变换器的控制
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有源功率因数校正一、功率因数的定义功率因数PF 定义为:功率因数(PF )是指交流输入有功功率(P )与输入视在功率(S )的比值。

PF =SP =R L L I U I U φcos 1=RI I 1cos φ= γcos φ (1) 式中:γ:基波因数,即基波电流有效值I 1与电网电流有效值I R 之比。

I R :电网电流有效值I 1:基波电流有效值U L :电网电压有效值cos Φ:基波电流与基波电压的位移因数在线性电路中,无谐波电流,电网电流有效值I R 与基波电流有效值I 1相等,基波因数γ=1,所以PF =γ·cos Φ=1·cos Φ=cos Φ。

当线性电路且为纯电阻性负载时,PF =γ·cos Φ=1·1=1。

二、有源功率因数校正技术1.有源功率因数校正分类(1)按电路结构分为:降压式、升/降压式、反激式、升压式(boost )。

其中升压式为简单电流型控制,PF 值高,总谐波失真(THD :Total Harmonic Distortion )小,效率高,适用于75W~2000W 功率范围的应用场合,应用最为广泛。

它具有以下优点:● 电路中的电感L 适用于电流型控制● 由于升压型APFC 的预调整作用在输出电容器C 上保持高电压,所以电容器C 体积小、储能大● 在整个交流输入电压变化范围内能保持很高的功率因数● 输入电流连续,并且在APFC 开关瞬间输入电流小,易于EMI 滤波 ● 升压电感L 能阻止快速的电压、电流瞬变,提高了电路工作可靠性(2)按输入电流的控制原理分为:平均电流型(工作频率固定,输入电流连续)、滞后电流型、峰值电流型、电压控制型。

图1 输入电流波形图其中平均电流型的主要有点如下:●恒频控制●工作在电感电流连续状态,开关管电流有效值小、EMI滤波器体积小。

●能抑制开关噪声●输入电流波形失真小主要缺点是:●控制电路复杂●需用乘法器和除法器●需检测电感电流●需电流控制环路EMI:电磁干扰(Electromagnetic-interference)(3)按输入电流的工作模式分为:连续导通模式CCM(Continuous Conduction Mode)和不连续导通模式DCM(Discontinuous Conduction Mode)。

(4)按拓扑结构可分为:双级模式和单级模式。

单级功率校正---峰值电流控制2、有源功率因数校正原理有源功率因数校正(Active Power Factor Correction,简称APFC)技术的思路是,控制已整流后的电流,使之在对滤波大电容充电之前能与整流后的电压波形相同,从而避免形成电流脉冲,减小输入电流谐波,达到改善功率因数的目的。

有源功率因数校正电路原理图整流器输出电压ud、升压变换器输出电容电压uC与给定电压U*c的差值都同时作为乘法器的输入,构成电压外环, 而乘法器的输出就是电流环的给定电流I*s。

升压变换器输出电容电压uC与给定电压U*c作比较的目的是判断输出电压是否与给定电压相同,如果不相同,可以通过调节器调节使之与给定电压相同,调节器(图中的运算放大器)的输出是一个直流值,这就是电压环的作用。

而整流器输出电压ud显然是正弦半波电压波形,它与调节器结果相乘后波形不变,所以很明显也是正弦半波的波形且与ud同相。

将乘法器的输出作为电流环的给定信号I*s ,才能保证被控制的电感电流iL与电压波形ud一致。

I*s的幅值与输出电压uC同给定电压U*c的差值有关,也与ud的幅值有关。

L1中的电流检测信号iF与I*s构成电流环,产生PWM信号, 即开关V的驱动信号。

V导通,电感电流i L增加,电流线性增加,电能以磁能的形式储存在电感线圈中,电容C放电为负载提供能量。

当i L增加到等于电流I s*时,V截止,二极管导通,电源和升压电感L1(由于线圈中的磁能将改变线圈L两端的电压极性,以保持其电流iL不变,线圈L 转化成VL与电源电压VIN串联高于输出电压)释放能量,同时给电容C充电和向负载供电,这就是电流环的作用。

这种电路优点是输入电流完全连续,并且在整个输入电压的正弦周期都可以调试,缺点是输出电压必须大于输入电压的最大值,所以输出电压比较高,不能利用开关管实现输出短路保护。

三、UC3854控制集成块UC3854是一种工作于平均电流的的升压型(boost)APFC电路,它的峰值开关电流近似等于输入电流,是目前使用最广泛的APFC电路。

1、UC3854总体结构UC3854的总体结构如下图所示,主要包括以下几个功能模块:电压误差放大器模块,电流误差放大器模块,乘除法器模块,锯齿波发生器模块,输出驱动模块,以及峰值限制比较器模块,欠电压过电压保护模块,软起动模块和一些数字逻辑。

为了简化模型,建模中省去欠电压、过电压锁存比较器,软起动等辅助环节。

UC3854 内部结构图中,标有A、B、C 的方框是所谓的乘法器,电压误差放大器的输出(在引脚7 上可以测量到)是乘法器的一个输入,称作A。

乘法器的另一个输入,取自整流器的输出电压波形,通过引脚 6 引入,称作B。

前馈电压校正是通过引脚 6 引入的,称作C。

这三个量在乘法器里运算后,乘法器输出为电流Imo,它接到引脚5。

这个电流Imo 与实际电流值Isense(引脚4)在电流误差放大器中进行比较。

电流误差放大器的右侧是PWM 比较器。

在PWM 比较器里,电流误差放大器的输出与芯片振荡器的输出斜坡电压相比较。

振荡器与PWM 比较器的输出用来驱动一个RS 触发器,RS 触发器再驱动推挽电路输出PWM 信号(脚16),用来控制主电路开关管的开断时刻。

振荡器的定时电容从引脚14 接入,定时电阻器外接在脚12,它在UC3854 中还起到乘法器的最大输出电流限制作用。

另外,芯片工作电源自脚15引入,脚1 为芯片“地”。

UC3854 内部结构图的左上角,包含了一个欠压锁定比较器和一个使能比较器,它们都是滞环比较器,欠压比较器用来监控芯片本身工作电源的电平;使能比较器可用来控制芯片是处于工作状态还是封锁状态,只有当使能比较器的输出都为高电平时,才允许芯片进入工作状态。

这两个比较器的下方是电压比较器。

芯片中的电压比较器实际上是电压误差放大器。

电压比较器的同相输入端内接3V 的参考电压,反相输入端连接到引脚11,称作Vsence,Vsence 代表的是输出电压。

电压误差放大器旁边所接的二极管是想表示其内部作用而不是表示其实际配置。

电压误差放大器的同相输入端还连到下方的软启动电路。

这样可以让电压控制环在输出电压达到它的工作点之前就开始工作,可以消除一般电源装置深受其害的开启超调。

在引脚11 与放大器反向输入端之间所接的二极管同样是一个理想二极管,用来消除参考电压上是否有额外的二极管压降的疑虑。

引脚 2 上提供一个紧急峰值电流限制信号,当脚 2 的电平被轻微地拉到“地”以下时,PWM 输出信号就会被封锁。

芯片内置了一个14uA 电流源给软起动电路的定时电容器CT 充电。

2、UC3854的引脚(端)功能表3、主要电路参数设计3.1主要设计要求(1)输入:AC 220V±20%,50Hz±5% 。

(2)输出:DC 400V。

(3)输出功率:5000W。

(4)电压调整率:≤1%,负载10%~100%变化范围时。

(5)效率:≥80% 。

(6)功率因数:在输入电压220V±20%,输出满载时,≥99%。

3.2主要参数计算与选择(1)主开关器件VT 的选择开关器件所承受的最大电压为输出直流电压,即400V。

开关器件所承受的最大电流为线路的最大峰值电流I line(pk)。

式(3)中,Pout为输出功率,为5000W;Vin(min)为最低网压的有效值,为220(1%~20%)V;η为电源效率,为0.8。

算出:I line(pk)=50A。

根据开关器件对电压和电流的要求,开关器件选择单管型IGBT 器件。

考虑适当的裕度以及在较高温度下的降额使用后,本设计选择1200V/150A的IGBT 器件。

(2)开关频率的选择开关频率高,可以减小APFC 电路的结构尺寸,提高功率密度,减小失真;但频率太高又会增大开关损耗,影响效率。

本设计中将开关频率选择为30kHz,作为尺寸与效率之间的一种综合考虑,这样的频率下,电感量的大小合理,尖峰失真小,电感器的物理尺寸较小,IGBT 和Boost 二极管VD上的功率耗损也不会过多。

(3)Boost 电感的计算[5]在变换器频率一定的情况下,电感值决定了输入端高频纹波的值。

线路输入电流的最大值I line(pk)发生在最小网压的峰值处,它的值前已算出,即Iline(pk)=50A。

升压变换器的最大纹波电流发生在占空比为50%处,也就是当升压比为M=V out/Vin=1/(1-D)=2 时。

电感器纹波电流的峰峰值,通常是按照最大输入电流值的20%来选取的,这只是经验值,因为这通常不是高频纹波电流的最大值。

纹波电流选择过大,就可能使变换器进入断续工作方式的时间在整个周期占的比例过大,为此就必须设计更大的输入滤波器,以衰减更高频的纹波电流。

UC3854 由于采用了平均电流方式控制,因此允许变换器在连续与断续工作方式下平稳过渡并保持性能基本不变。

电感器的电感量是根据最小网压下,正弦波定点处的电流幅值和占空比D,再结合开关频率来选择的。

式(4)、(5)中,∆I 是纹波电流的峰峰值;V out 是输出电压;Vin(pk)是最小网压的峰值;fs 是开关频率。

由(4)、(5)上式可算出:D=0.38,L=0.31mH。

高频纹波电流是叠加在线路电流之上的,所以峰值电感电流就是线路电流的幅值与1/2 纹波电流峰峰值的和。

本设计中,已将峰值电流限制设定为120%的最大电流,即60A。

因此电感器额定电流按60A 选择。

(2)升压二级管VD 的选择升压二级管应选trr 小,正向压降小且具有软恢复特性的超快恢复二极管。

二极管的额定电流必须大于电感上电流的最大峰值60A,并留有一定的裕度。

(3)输出电容器的选择流过输出电容器的总电流是开关纹波电流与二次谐波线路电流之和。

输出电容器的选择应考虑开关频率、纹波电流值、二次谐波纹波电流、直流输出电压值、输出纹波电压值及维持时间。

输出维持时间,在选择输出电容器的电容量中起主导作用。

它是指在输入功率已经切断(开关管关断)之后,在给定的电压范围内,输出电压能够维持的时间长度。

维持时间是输出电容器储能、负载功率、输出电压和负载容许工作的最小电压之间的一个函数,输出电容值可用下面的公式计算出。

式(6)中,C 是输出电容器的值;Pout 是负载功率;V out 是输出额定电压;V out(min)是负载容许工作的最小电压;∆T 是维持时间。

相关文档
最新文档