有源功率因数校正电路(APFC)分析

合集下载

有源功率因数校正技术及控制方式分析

有源功率因数校正技术及控制方式分析

有源功率因数校正技术及控制方式分析摘要:本文深入探讨了有源功率因数校正技术及其控制方式,重点分析了不同类型的APFC电路的工作原理和性能特点,以及控制策略在改善系统性能中的作用。

通过对几种典型APFC电路的实验分析,本文展示了APFC在提高电力电子设备效率、减小谐波污染方面的巨大潜力。

关键词:有源功率因数校正;控制方式;电力电子一、引言随着电力电子技术的迅猛发展,大量非线性负载如开关电源、变频器等被广泛应用,导致电网中谐波含量增加,功率因数降低。

为了解决这一问题,有源功率因数校正技术(APFC)应运而生。

APFC技术不仅可以提高电力电子设备的功率因数,还能减小谐波对电网的污染。

二、有源功率因数校正技术原理及分类1.功率因数及有源功率因数校正的基本概念(1)功率因数是电力系统中非常重要的一个参数,它表示了电压和电流之间的相位差。

在电力系统中,功率因数的大小直接影响到系统的效率和稳定性。

当功率因数大于0时,表示电压超前电流,即正功率;当功率因数等于0时,表示电压和电流同相,即零功率;当功率因数小于0时,表示电压滞后电流,即负功率[1]。

(2)有源功率因数校正是一种电力电子学中的技术,它通过控制电源的相位差来调整系统的功率因数。

这种技术可以有效地提高系统的效率和稳定性,减少系统的损耗。

有源功率因数校正的基本原理是利用一个可控的电源,通过控制这个电源的相位差,来调整系统的功率因数[2]。

2.有源功率因数校正技术分类及其工作原理(1)APFC电路(AC-DC Power Factor Correction Circuit)是一种用于校正交流电压波形的电路,其作用是将交流电压转换成直流电压,以便于后续的电压调节和稳定。

APFC电路的分类有多种,根据不同的应用场景和需求,可以分为不同的类型。

(2)另外一种常见的APFC电路是电流控制型APFC电路。

电流控制型APFC电路的工作原理是通过对输入电流的控制来实现对输出电压的校正和调节。

单相有源功率因数校正电路仿真

单相有源功率因数校正电路仿真

单相有源功率因数校正电路仿真摘要:传统的AC-DC 变换器的广泛应用对电网产生了大量的谐波污染。

有源功率因数校正技术(APFC)是抑制谐波电流、提高功率因数的行之有效的办法。

本文论述了单相功率因数校正APFC 的原理和方法,通过对Boost 型滞环控制的DC-DC 变换器采用Matlab 进行仿真,获得了最后校正的功率因数结果,说明这种PFC 方案的能获得良好的效果,适用于多种场合。

关键词:有源功率因数校正,Boost 电路,滞环控制1 绪论功率因数指的是有效功率与总耗电量(视在功率)之间的关系。

功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电能利用率越高。

交换式电源供电器上的功率因数校正器的运作原理是通过控制调整交流电电流输入波形,使其与直流电电压波形尽可能一致,让功率因数趋近于1.折对于电力需求量达到某一个水平的电子设备而言是很重要的,否则,电力设备系统消耗的电能可能超出其规格,极可能干扰同系统的其他电子设备。

2 功率因数的定义和校正原理根据电工学的基本理论功率因数(PF )的定义:交流输入有功功率(P )与视在功率(S )的比值,用公式表示为:1111cos cos cos rms rmsU I I P PF S U I I φφγφ==== (1) 式中:1U 表示输入基波电流有效值;cos φ表示基波电压与基波电流之间的位移因数;γ表示输入电流畸变因数;rms I 表示输入电流有效值。

可见PF 由电流畸变因数γ和位移因数cos φ决定,cos φ小表示用电设备的功率大,在有功功率不变的情况下实在功率增加,线路总电流增大,线路传输压降也将增大,倒是电气设备容量增加,利用率低,导线、变压器绕组损耗大,严重影响电网的供电质量,变化快时甚至可以导致电网崩溃。

输入电流即便因数γ值低,表示输入电流谐波分量大,将造成输入电流波形畸变,对电网造成污染,使用电设备产生机械振动、噪声、过电压,损坏电子设备。

PFC电路与BOOST电路设计实例解析

PFC电路与BOOST电路设计实例解析

f (mmin )
sin 2 t dt
0
1
1
sint
mm in
13
基于Boost电路的PFC变换器及其控制方法——DCM
要保证电感电流断续,必须满足d1+d2<1 随着mmin=Vo/Vin的增加,d1+d2先减小后增大 因此在输入电压较小与较大时均会使电感电流趋
于连续
通常在断续模式下的电感量设计中按最低输入电 压时确参数。
(4)单周控制:能优化系统响应、减小畸变和抑制电源干扰,有反应 快、开关频率恒定、鲁棒性强、易于实现、抗电源干扰、控制电路简 单等优点。
36
上节内容回顾
谐波污染的治理主要途径: 无源电力滤波器(PPF)
BOOST电路
功率因素校正(PFC) 基于Boost电路的PFC变换器及其控制方法 PFC典型芯片UC3854介绍 基于Boost电路的PFC变换器设计实例
1
功率因素校正-谐波的危害
Ii
a

Vi
流 变 换
负 载

b
2
功率因素校正-谐波的危害
传统的AC-DC变换器和开关电源,其输入 电路普遍采用了全桥二极管整流,输出端 直接接到大电容滤波器。
DCM
输入电流自动跟踪输入电压,控制简单,仅需一个电压环, 成本低,电感量小,主管ZCS,续流管无反向恢复问题 ,定频工 作,适合小功率用电设备 。
BCM
输入电流自动跟踪输入电压,电感量小,一般采用变频控制, 在固定功率开关管开启时间的条件下,调整开关管的关断时间, 使电感始终处于临界导电模式,可获得单位功率因数,但是滤 波器设计困难,适用于中小功率场合。
ui
其中,di ima,x 因此 dt Ton

功率因数校正

功率因数校正

功率因数校正摘要:提高功率因数是开关电源一个重要指标,由UC3854构成的控制电路有电路简单、成本低、功率密度高,在中小功率场合得到了广泛应用。

关键词:功率因数乘法器UC3854引言国际标准IEC555――2中关于谐波限制标准和电磁兼容(EMC 法规对传统采用的桥式整流和大电容量滤波电路从工频市电变换为直流电源的方法提出了限制。

这是因为该交流/直流变换方式不仅输出电压极不稳定,效率很低,负载功率被限制在2KW以下,而且更主要的是会导制交流输入电流波形出现严重畸变,功率因数在0.7以下。

随着绿色电子产品的发展,近年来功率因数校正(PFC)技术获得了广泛的应用。

象开关电源、电子镇流器和变频调速器等产品,采用PFC技术日益成为强制性的要求。

第一章有源功率因数校正技术1.1:有源功率因数校正电路组成有源功率因数校正APFC是抑制电流谐波,提高功率因数最有效的方法,其原理框图如图1所示。

交流输入电压经全波整流后,再经DC/DC变换,通过相应的控制使输入电流的平均值自动跟随全波整流电压基准,同时保持输出电压稳定。

APFC电路有两个反馈控制环:输入电流环使DC/DC变压器的输入电流与全波整流电压波形相同,输出电压环使DC/DC变换器的输出电压稳定。

1.2: 主电路的拓扑结构APFC的主电路拓扑结构采用DC/DC开关变换器。

其中升压式(BOOST)变换器由于电感连续、储能电感也作滤波器抑制RFI和EMI噪声、电流波形失真小、输出功率大及共源极使驱动电路简单等优点,常常作为主电路的拓扑形式。

第二章1800W 100KH PFC 电路设计(原理图见附图)2.1: 性能指标输入:AC220V±15% 50±2HZ输出功率:POUT=1800W输出电压:V OUT=400V开关频率:F S=100KH。

2.2: 主电路的设计1.电感的设计电感在PFC电路设计中相当重要,它决定了输入电流中高频纹波电流的多少。

APFC直流稳压(ACDC)电路仿真研究.

APFC直流稳压(ACDC)电路仿真研究.

APFC直流稳压(AC/DC)电路仿真研究090607344 郑太锋指导教师刘继伦讲师内容摘要传统的整流变换电路(AC/DC)存在功率因数低、输入电流畸变的问题。

本文对常用的AC/DC变换电路进行了研究,设计了升压型APFC(Active Power Factor Correction,有源功率因数校正)电路模型和参数,并对模型进行了仿真。

结果显示,该电路具有提高功率因数、减小输入电流畸变的功能,对功率因数校正电路的设计有一定的参考价值。

关键词有源功率因数校正; AC/DC变换器; 电流环控制APFC直流稳压(AC/DC)电路仿真研究一绪论为了保证开关电源的输电流谐波能够达到谐波标准的要求,绿化电网环境,有源功率因数校正(Active Power Factor Correction,APFC)技术已经成为当今电力电子学领域十分活跃和颇具研究价值的热点。

直接接入电网的开关电源应用非常普遍,一般来说,其前置级AC/DC 变换部分都采用图1所示的二极管桥式整流加大容量电容滤波电路。

虽然输入的交流电压是正弦波行,但输入的交流电流却呈脉冲状,波形严重畸变,如图2所示。

图1AC/DC 整流电路图2输入电压,输入电流波形实践表明,在提高开关电源类装置的功率因数方面,有源功率因数校正(APFC)技术是应用最为广泛和行之有效的方法。

(一)功率因数及其校正方法根据电工学的基本理论,功率因数(Power Factor)定义为有功功率(P)和视在功率(S)的比值,用公式表示为:PF=(1-1)式中::输入电流基波有效值;:电网电流有效值,,其中,,,为输入电流各次谐波有效值;:输入电压基波有效值;:输入电流的波形畸变因数;:基波电压和基波电流的位移因数。

为畸变因数,表示基波电流有效值在总的输入电流有效值中所占的比例;为位移因数,表示输入电流与输入电压之间的相位差。

从本质上来讲,功率因数校正技术的目的是要使用电设备的输入端口针对交流电网呈现“纯阻性”,这样输入电流和电网电压为同频同相的正弦波,功率因数为1,没有谐波污染问题。

功率校正pfc原理说明

功率校正pfc原理说明

有源功率因数校正(APFC)原理说明APFC 基本电路就是一种开关电源,但它与传统的开关电源的区别在于:DC/DC 变换之前没有滤波电容,电压是全波整流器输出的半波正弦脉动电压,这个正弦半波脉动直流电压和整流器的输出电流与输出的负载电压都受到实时的检测与监控,其控制的结果是达到全波整流器输入功率因数近似为 1 。

本次设计采用boost升压式电路,并采用平均电流控制法(CCM),基于功率因数校正芯片UC3854设计的。

主电路由二极管桥式整流电路与Boost升压型DC-DC变换器组成,控制电路主要由UC3854芯片组成,包括基准电压Ur、电压误差放大器V A、电路误差放大器CA、乘法器M、脉宽调制器PWM及驱动器。

具体工作过程为:输入电压Uo与基准电压Ur比较后,误差信号经过误差发达器放大后送入乘法器,与全波整流电压取样信号共同送到乘法器输入端,相乘后形成基波电流信号输出,基波电流信号与电流反馈信号经电流误差放大器CA相比较后输出信号,再与锯齿波信号相比较后形成PWM信号驱动功率开关管VT工作。

由于全波整流电压信号Udc为双半波正弦信号,稳定时电压误差放大器输出信号恒定,所以乘法器输出的基准电流信号波形和二极管桥式整流输出电压信号一致,也是双半波正弦信号,与高频的锯齿波信号比较后形成高频的PWM信号驱动开关管VT,可以迫使电感电流信号即输入电流信号在每个周期内按正弦规律变化,且与电路输入电压信号同相位,从而使输入电流跟踪输入电压,尽可能消除电流与电压的相位差,从而实现功率校正,提高功率因数,使功率因数近似为1。

采用boost升压式电路,并采用平均电流控制法(CCM)的原因:Boost 升压型变换器具有电感电流连续、储能电感能抑制RFI 和E.MI 噪声、流波形失真小、输出功率大及驱动电路简单等优点,因此常被用来作为有源功率因数正主电路拓扑。

平均电流控制法(CCM):CCM 采用乘法器方法来实现APFC,其电路相对复杂,但工作频率固定,电感电流连续,开关管电流有效值小、EMI 滤波器体积小、输入电流波形失真小。

MC33262有源功率因数校正技术(APFC)

有源功率因数校正技术(APFC)在开关电源中的应用研究近年来,开关电源因效率高,成本低,而在各个领域获得了广泛的应用。

但是采用传统的非控整流开关电源,由于输入阻抗呈容性,网侧输入电压和输入电流间存在较大相位差,加上输入电流严重非正弦,并呈脉冲状,故功率因数极低,谐波分量很高,给电力系统带来了严重的谐波污染。

为此,国际电工委员会早在90年代初就制定了IEC1000-3-2标准,严格限定设备的功率因数必须接近于1,提高开关电源的功率因数已经成为国内电源厂商的当务之急。

由于输入端有整流元件和滤波电容,单相AC/DC开关电源及大部分整流电源供电的电子设备,其电网侧功率因数仅为0.65左右。

采用有源功率校正技术后可提高到0.95~0.99,既治理了电网的谐波污染,又提高了开关电源的整体效率。

有源功率因数校正主要是在整流滤波和DC/DC功率级之间串入一个有源PFC作为前置级,用于提高功率因数和实现DC/DC级输入的预稳,用作PFC电路的功率级基本上是升压型Boost变换器,它具有效率高、电路简单、适用电源功率高等优点。

开关电源同时是一个重要的电磁干扰源,所以减少和抑制开关电源的电磁发射成为3C认证中的关键,也是开关电源设计中的重要课题。

开关电源中的功率开关管在高频下的通、断过程产生大幅度的电压和电流跳变,从而产生强大的电磁骚扰。

滤波是压缩干扰频谱的基本手段,抗EMI滤波器是EMC技术的基础元器件之一。

在开关电源的滤波器设计中,磁性元件中电感的材料选取及电感取值的设定,对于开关电源的电磁兼容设计至关重要。

APFC控制技术原理APFC技术主要采用一个变换器串入整流滤波与DC/DC变换器之间,通过特殊的控制,一方面强迫输入电流跟随输入电压,从而实现单位功率因数;另一方面反馈输出电压使之稳定,从而使DC/DC变换器的输入实现预稳。

功率因数补偿控制专用芯片MC33262的电流控制方式是峰值电流控制方式。

它的基本思想是采用一个正弦基准电流作为上限,由输出检测信号经误差放大后与输入全波电压的检测信号相乘获得,下限则为零。

APFC

BOOST有源功率因数校正学生:何安然学号:TSP080301021Q 学院:机电学院1、概述从电网获取交流电经整流为各种电气设备提供直流电是一种常用的变流方案。

但整流装置、电感、电容组成的滤波器中非线性元件和储能元件的存在使输入交流电流波形发生严重畸变,呈尖峰脉冲状,网侧输入功率因数降低。

电网电流的畸变由于电网阻抗反过来影响电网电压,造成谐波污染。

谐波的存在使电网中元件产生附加损耗,会降低用电设备的效率;会影响电器设备的正常工作及其寿命:会导致继电保护和自动装置误动作,并使电器测量仪表计量不准确;会降低电网功率因数等系列危害。

由于电力电子装置是现在最主要的谐波污染源,这己经阻碍了电力电子技术的发展,它迫使电力电子领域的研究人员对谐波的污染问题要给出有效的解决方案。

为了解决电力电子装置的谐波污染问题,基本思路有两条:一是装设谐波补偿装置来补偿谐波;另一条是对电力电子装置本身进行改造,提高输入端的功率因数。

对于新型的电力电子设备,多采用后一种思路,即加入功率因数校正器,它的原理就是在整流器与负载直接接入DC-DC开关变换器,应用电流反馈技术,使得输入端电流的波形跟踪交流输入正弦电压波形,可使得输入端电流接近正弦波,从而使得输入端的谐波畸变率THD小,功率因数提高。

功率因数是电源对电网供电质量的一个重要的指标。

许多发达国家率先采用了多种功率因数校正(PFC)方法,来实现“绿色能源”革命,并强制推行了国际标准IEC555-2、EN60555-2等,限制了电子生产厂家入网电气设备的电流谐波值。

目前,有源功率因数校正(APFC)技术是解决谐波污染最有效的方法之一。

采用PWM控制方式的整流器,能得到较好的单位功率因数,减少线电流畸变,实现能量的双向传输,是实现电力电子装置功率因数校正和谐波抑制的理想整流器。

近年来,谐波污染的加重和相关谐波标准的制定和强制执行,为PWM整流器的研究和发展注入了动力。

全控型电力电子器件的成熟和大容量化也为大功率PWM整流器的研制奠定了坚实的物质基础。

APFC


对输入电压升降压,输入
电压选择范围大,可利用 开关管实现输出短路保护
14
升降压型
正激型功Βιβλιοθήκη 级电路简单常用 APFC 分类
反激型
15
按电流连续方式分类
CCM控制型
电感能量不完全传输 ,只把部分能量转移 到输出电容中
DCM控制型
电感能量完全传输, 获得的能量完全转移 到输出电容中
16
17
常用的三种PFC控制方法比较
有源功率因数校正技术的应用 APFC
程斌
1
背景
近年来,开关电源因效率高,成本低,而在各个 领域获得了广泛的应用。但是采用传统的非控整流开 关电源,由于输入阻抗呈容性,网侧输入电压和输入
电流间存在较大相位差,加上输入电流严重非正弦,
并呈脉冲状,故功率因数极低,谐波分量很高,给电 力系统带来了严重的谐波污染。为此,国际电工委员 会早在90年代初就制定了IEC1000-3-2标准,严格限定 设备的功率因数必须接近于1,提高开关电源的功率因
22
基于DSP的数字控制技术
模拟控制 器件多、成本 高 抗干扰、可靠 老化和温漂 PID调节
数字控制
控制灵活
先进的算法和策略
近年来,DSP 器件的性价比有望进一步提高,这使得高 质量数字控制 PFC 的实现成为了可能,数字控制代替模 拟控制势必成为今后发展的趋势
23
基于 TMS320LF2407A 控制的功率因数校正电路
33
31
滞环电流控制
当功率管导通,电感充电 时,电感电流的检测信号 和上限基准电流环信号相 比较,当电感电流上升到 上限基准信号值时,触发 逻辑控制部分使功率管关 断,电感开始放电;当电感 电流下降到下限基准信号 值时,触发逻辑控制部分 使功率管导通,电感重新 充电。

PFC电路原理介绍

PFC 电路U n R e g i s t er edPFC 电路概述谐波电流对电网有危害作用:•使电网电压发生畸变;•使线路与配电变压器过热,损坏设备;•引起电网LC谐振;•使电网的高压电容过流、过热而爆炸;Un Re gi st er edPFC 电路概述Un Re gi st er edPFC 电路概述有源功率因数校正(APFC:Active Power Factor Correction),在负无源功率因数校正是利用电感和电容组成滤波器,对输入电容进行移相和整形。

主要是增加输入电流的导电宽度,减缓其脉冲上升性,从而减小电流的谐波成分。

一般通过仿真选择电感与电容,得到需要的THD 与PF 值。

载即电力电子装置本身的整流器和滤波电容之间增加一个功率变换电路,将整流器的输入电流校正成为与电网电压同相位的正弦波,消除了谐波和无功电流,因而将电网功率因数提高到近似为1。

APFC 电路常用拓扑:升压式(Boost );降压式(Buck );升/降压式(Buck/Boost );反激式(Fly back )。

Un Re gi st er edPFC 的工作原理Boost-PFCUn Re gi st er edPFC的工作原理Un Re gi st er edPFC 的工作原理Un Re gi st er edPFC 的控制方法电感电流断续控制方法(DCM )优点:控制简单,无需检测输入电流与输入电压;输出二极管ZCS。

缺点:开关管与电感的峰值电流大,PF 小,THD 大。

Un Re gi st er edPFC 的控制方法电感电流临界连续控制方法(BCM )优点:PF接近1,二极管ZCS。

缺点:变频调制,EMI难,电感电流纹波大。

Un Re gi st er edPFC 的控制方法峰值电流方法优点:输入电流连续,电流纹波小,电感与开关管的峰值电流小,PF接近1。

缺点:需要斜率补偿,控制电路复杂,对噪声敏感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有源功率因数校正电路(APFC)
2. 功率因数
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
设基波电流i1落后Vi,相位差为α,如下图所示。
Vi 、Ii 波形
有源功率因数校正电路(APFC) AC-DC电路输入功率因数与谐波的关系: 定义总谐波畸变(THD):
I 2 2 I 2 3 I 2 4 .... I 2 n THD 100% I1
由此可见,大量应
用整流电路,要求电网 供给严重畸变的非正弦 电流,造成严重的后果, 谐波电流对电网有危害 作用,并且输入端功率 因数下降。
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
谐波电流对电网的危害 脉冲状的输入电流,含 有大量谐波。右图给出了输 入电流波形及电流谐波频谱 分析,其中电流的三次谐波 分量达77.5%,五次谐波分 量达50.3%,……总的谐波 分量(或称总谐波失真Total Harmonic Distortion,用 THD表示)为95.6%,输入 端功率因数仅有0.683,非常 的低。
输入电流波形及其谐波分量频谱分析
有源功率因数校正电路(APFC)
I 2 2 I 2 3 I 2 4 .... I 2 n THD 100% I1
对AC-DC电路输入端谐波电流的限制 为了减小AC-DC交流电路输入端谐波电流造成的噪 声和对电网产生的谐波“污染”,以保证电网供电质量, 提高电网的可靠性;同时也为了提高输入端功率因数, 已达到节能的效果;必须限制AC-DC电路的输入端谐 波电流分量。
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
1. 平均电流模式 2. 峰值电流模式
"CCM" type
IL IAC
"TM" type
IL IAC
ON OFF
ON
MOSFET
OSFET
OFF
固定的频率,占空比调节, 连续的电流模式,也是平均 电流模式控制,适用于大功 率输出的场合 >200W
有源功率因数校正电路(APFC)
从上式可以看出,欲提高线路功率因数.就必须最大 限度地抑制输入电流的波形畸变,同时还必须尽可能 地使电流基波与电压基波之间的相位差趋于零。对于 未采取功率因数校正措施酌电子镇流器,由于THD一 般不低于110%, 不超过0.65。 4. 提高AC-DC电路输入端功率因数和减小输入电流谐 波的主要方法:使输入电流与输入电压同相位,减小 两者的相位差,采用APFC功率因数校正电路。
APFC结构框图
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
APFC的工作原理:
◆主电路的输出电压Vo和基准电压Vr比较后,输入给电压误差
放大器VA,整流电压Vdc检测值和VA的输出电压信号共同加到
乘法器M的输入端,乘法器M的输出则作为电流反馈控制的基 准信号,与开关电流is检测值比较后,经过电流误差放大器CA 加到PWM及驱动器,以控制MOS管的导通与关断; ◆使输入电流(即电感电流)il的波形与整流电压Vdc的波形基本 一致,使电流谐波大为减小,提高了输入端功率因数,可达到 0.99以上,谐波失真THD=3%-5%,由于功率因数校正器同时保持
有源功率因数校正电路(APFC)
(三) L6561/6562芯片的应用电路
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
(四) APFC电路的参数计算 1、最低工作频率fSM 效率0.95,VI(MIN)=85V PO=80W,VO=400V, fSM不小于23K
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
1.谐波定义 从220V交流电网经整流供给直流是电力电子及电子 仪器中应用极为广泛的一种基本变流方案。例如离线式 开关电源的输入端,AC电源经全波整流后,一般接一 个大电容,如图所示。
AC/DC整流电路
有源功率因数校正电路(APFC)
整流之后得到波形较为平直的直流电压。波形如下图所 示,输入交流电压Vi是正弦的,但是交流电流ii波形却严重 畸变,呈脉冲状。
固定的导通时间,可变的开关 频率。峰值电流模式控制,适用 于小和中等功率输出的场合 <200W,工作在临界模式
有源功率因数校正电路(APFC)

二、峰值电流控制APFC控制器L6561/6562 (一) L6561/6562芯片的特点
有源功率因数校正电路( APFC) (二) L6561/6562 芯片的结构框图及引脚功能
有源功率因数校正电路(APFC)
3.提高线路功率因数的意义
有源功率因数校正电路(APFC)
离线式高频开关电源
负载(需
输入
整流桥 PFC 隔离降压电路
要供电的
设备)
有源功率因数校正电路(APFC)
APFC电路的工作原理
有源滤波器(APFC):在 整流器和开关电源功率变 换电路之间接入一个DCDC变换器,应用电流反馈 技术,使输入端电流i波形 跟踪交流输入正弦电压波 形,可以使i接近正弦波。 Multiplier (乘法器) CA: current amplifier 电流误差放大器 VA:voltage amplifier 电压误差放大器
输出电压恒定,使下一级开关电源设计更容易些。
功率因数校正的控制芯片: 1. 连续模式(平均电流模式,适用于大功率输出的场合 >200W ) (CCM---continuous conduction mode)
A TI公司: UC3854、UC3817 B 英飞凌:ICE2PCS01G C 赛意法:LT4981 D 国际整流 :IR1150 2. 临界模式(峰值电流模式,适用于小和中等功率输出的场合 <200W)(TM—Transition mode or critical conduction mode) A 意法(ST):L6562/6563 B 仙童 :FAN7529 C TI公司:UC28050
相关文档
最新文档