偏压偏拉破坏特征
大偏压和小偏压的破坏特征

大偏压和小偏压的破坏特征1. 引言大家好,今天我们来聊聊一个挺有意思的话题,那就是“大偏压”和“小偏压”。
听起来有点复杂,但别担心,我会用最简单的方式跟你们说清楚。
这就像是打游戏,打得太猛会让你吃亏,但如果轻轻松松又可能无聊得睡着。
大偏压和小偏压的破坏特征,就像在游戏中选择的难度,一不小心就可能“Game Over”!2. 大偏压的破坏特征2.1 什么是大偏压?首先,我们得搞清楚什么叫大偏压。
简单来说,这就像是在你开车的时候,踩油门踩得太狠了,车子可能飞出去。
大偏压就代表着超出正常范围的强力作用,它会让一切都变得不堪重负。
这种情况下,设备或材料就像是被撕扯的纸一样,瞬间崩溃。
2.2 大偏压的影响想象一下,一根绳子,如果你使劲儿拉,到了极限它就会断掉。
大偏压就像是这种拉扯,导致材料结构被破坏,甚至出现裂缝、变形,搞得一团糟。
你可能觉得,哎呀,材料这么脆弱嘛?其实不然,很多材料在正常情况下都挺强壮,但一旦遇到大偏压,哼,别说是材料了,人都顶不住。
再来看看具体例子,比如电路板。
当电流超过安全范围时,电路板就像个被打了鸡血的小孩,瞬间过热,甚至冒烟,搞得周围一片狼藉。
真是“一失足成千古恨”啊!3. 小偏压的破坏特征3.1 小偏压的定义那么,小偏压又是啥呢?顾名思义,它就是相对小的压力或电流。
虽然听起来温柔得多,但别被它的“娇嫩”外表迷惑,实际上它的潜在破坏力可不容小觑。
就像是你吃了个小糖果,外表甜蜜,里面却藏着一颗榴莲味的惊喜。
3.2 小偏压的危害小偏压的破坏特征往往是“潜伏型”的,乍一看没什么大问题,结果长时间积累后,就像时间的沙漏,慢慢地,慢慢地,它们会引起疲劳、老化甚至裂纹。
你想啊,木头久了会开裂,电线长时间使用也会出现短路。
这个过程就像是“慢性中毒”,说不定有一天你就会发现,它已经悄无声息地毁掉了你的设备。
比如说,在某些老旧的设备里,小偏压导致的老化问题,可能在你不知道的情况下就开始捣鬼。
等你反应过来,可能已经是“马失前蹄”,一切都晚了。
(整理)大偏压与小偏压解决方案比较

大偏压与小偏压解决方案比较偏心受压构件正截面承载力计算一、偏心受压构件正截面的破坏特征(一)破坏类型1、受拉破坏:当偏心距较大,且受拉钢筋配置得不太多时,发生的破坏属大偏压破坏。
这种破坏特点是受拉区、受压区的钢筋都能达到屈服,受压区的混凝土也能达到极限压应变,如图7—2a 所示。
2、受压破坏:当偏心距较小或很小时,或者虽然相对偏心距较大,但此时配置了很多的受拉钢筋时,发生的破坏属小偏压破坏。
这种破坏特点是,靠近纵向力那一端的钢筋能达到屈服,混凝土被压碎,而远离纵向力那一端的钢筋不管是受拉还是受压,一般情况下达不到屈服。
(二)界限破坏及大小偏心受压的分界1、界限破坏在大偏心受压破坏和小偏心受压破坏之间,从理论上考虑存在一种“界限破坏”状态;当受拉区的受拉钢筋达到屈服时,受压区边缘混凝土的压应变刚好达到极限压应变值。
这种特殊状态可作为区分大小偏压的界限。
二者本质区别在于受拉区的钢筋是否屈服。
2、大小偏心受压的分界由于大偏心受压与受弯构件的适筋梁破坏特征类同,因此,也可用相对受压区高度比值大小来判别。
当时,截面属于大偏压;当时,截面属于小偏压;当时,截面处于界限状态。
二、偏心受压构件正截面承载力计算(一)矩形截面非对称配筋构件正截面承载力1、基本计算公式及适用条件:(1)大偏压():,(7-3),(7-4)(7-5)注意式中各符号的含义。
公式的适用条件:(7-6)(7-7)界限情况下的:(7-8)当截面尺寸、配筋面积和材料强度为已知时,为定值,按式(7-8)确定。
(2)小偏压():(7-9)(7-10)式中根据实测结果可近似按下式计算:(7-11)注意:﹡基本公式中条件满足时,才能保证受压钢筋达到屈服。
当时,受压钢筋达不到屈服,其正截面的承载力按下式计算。
(7-12)为轴向压力作用点到受压纵向钢筋合力点的距离,计算中应计入偏心距增大系数。
﹡﹡矩形截面非对称配筋的小偏心受压构件,当N >f c bh时,尚应按下列公式验算:(7-13)(7-14)式中,——轴向压力作用点到受压区纵向钢筋合力点的距离;——纵向受压钢筋合力点到截面远边的距离;2、垂直于弯矩作用平面的受压承载力验算当轴向压力设计值N较大且弯矩作用平面内的偏心距较小时,若垂直于弯矩作用平面的长细比较大或边长较小时,则有可能由垂直于弯矩作用平面的轴心受压承载力起控制作用。
[学习]钢管混凝土构件计算
![[学习]钢管混凝土构件计算](https://img.taocdn.com/s3/m/6f104e43c5da50e2524d7fa6.png)
b—两肢钢管混凝土柱的中心距
2、双(四)肢缀条柱(有斜腹杆)
见图11-4,双(四)肢缀条柱的x、y两轴均为虚轴,且两 方向对称。
•3、三肢缀条柱自学
按上述公式求出换算长细比λoy或λox后,查表求出稳定设 计安全系数值,即可按公式(11-35)计算轴压格构柱的 稳定承载力:
(11-4)
式中:fsc——组合抗压强度设计值,按表10-2(或表10-5、 表10-9)取用,系数B、C按公式(10-2)计算 。对于空 心钢管混凝土柱按下式计算:
(11-5)
ζo——套箍系数,ζo=αf/fc; α——含钢率,按下式计算:
(11-6)
Asc——构件截面总面积,由下式确定:
t——钢管壁厚; fc——混凝土抗压强度设计值
§11-3 偏心受力构件的强度和稳定计算
偏心受力构件包括压弯和拉弯构件。钢管混凝土拱圈在绝 大多数情况下是属于压弯构件
一、偏压(即压弯)构件的强度和稳定问题 1、偏压构件的破坏特征 偏压构件的破坏与构件的长细比有关。对于长细比λsc≤20
的短柱,一般将发生强度破坏。图11-8给出了轴向力和构 件最大纤维应变的关系曲线。
式中:N、M——计算截面的最大轴向力和弯矩,用于钢管
混凝土拱桥计算时,应按公路桥规取用计算内力即Nj、Mj 并应同时考虑Njmax→ Mj和Mjmax→Nj两种布载工况;
Asc、Wsc——构件的截面面积和截面抵抗矩;
NE——欧拉临界力, 10-7、表Es1c—0-1—0)截确面定的;组合弹性模量,可查表10-3(或表
曲线上oa段为弹性工作; 过了a点,截面受压区不断发展塑性,钢管和受压区混凝
土之间产生了非均紧箍力,工作呈弹塑性。
大小偏心受拉构件的破坏特征

大小偏心受拉构件的破坏特征一、判别大、小偏心bai受压破坏的条件:1、大偏心受压,ξ<=ξ(b)且x>=2a'(s)2、小偏心受压,ξ>ξ(b)注意:ξ是相对受压区高度,ξ(b)是临界相对受压区高度,x是截面受压区高度。
a'(s)是上部钢筋区几何中心到截面上边缘距离。
二、大、小偏压破坏特征:大偏压(受拉破坏):首先在受拉一侧出现横向裂缝,受拉钢筋形变较大,应力增长较快。
在临近破坏时,受拉钢筋屈服。
横向裂缝迅速开展延伸至混凝土受压区域,受压区迅速缩小,压应力增大。
在受压区出现纵向裂缝,混凝土达到极限压应变压碎破坏。
小偏压(受压破坏):受拉区裂缝展开较小,临界破坏时,在压应力较大的混凝土受压边缘出现纵向裂缝,达到其应变极限值,压碎、破坏。
扩展资料:当相对偏心距较小,或虽然相对偏心距较大,但构件配置的受拉钢筋较多时,就有可能首先使受压区混凝土先被压碎。
在通常情况下,靠近轴力作用一侧的混凝土先被压坏,受压钢筋的应力也能达到抗压设计强度。
而离轴向力较远一侧的钢筋仍可能受拉但并未达到屈服,但也可能仍处于受压状态。
临破坏时,受压区高度略有增加,破坏时无明显预兆。
这种破坏属于小偏心受压破坏。
上述二种破坏形态可由相对受压区高度来界定。
随着纵向压力的偏心矩减小或受拉钢筋配筋率的增加。
在破坏时形成ac所示的应变分布状态,即当受拉钢筋达到屈服应变ey时,受压边缘混凝土也刚好达到极限压应变值ehmax=0.003,这就是界限状态。
若偏心距进一步减小或受拉钢筋配筋量进一步增大,则截面破坏时将形成ab所示的受拉钢筋达不到屈服的小偏心受压状态。
建筑结构习题指南

一.填空题1. 偏心受压构件正截面破坏有——和——破坏两种形态。
当纵向压力N 的相对偏心距e 0/h 0较大,且A s 不过多时发生——破坏,也称——。
其特征为——。
2. 小偏心受压破坏特征是受压区混凝土——,压应力较大一侧钢筋——,而另一侧钢筋受拉——或者受压——。
3. 界限破坏指——,此时受压区混凝土相对高度为——。
4. 偏心受压长柱计算中,由于侧向挠曲而引起的附加弯矩是通过_____来加以考虑的。
5. 钢筋混凝土偏心受压构件正截面承载力计算时,其大小偏压破坏的判断条件是:当____为大偏压破坏;当——为小偏压破坏。
6. 钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:①——;②——。
对于长柱、短柱和细长柱来说,短柱和长柱属于——;细长柱属于——。
7. 柱截面尺寸bxh (b 小于h),计算长度为l 0 。
当按偏心受压计算时,其长细比为——;当按轴心受压计算时,其长细比为——。
8. 由于工程中实际存在着荷载作用位置的不定性、——及施工的偏差等因素,在偏心受压构件的正截面承载力计算中,应计入轴向压力在偏心方向的附加偏心距e a ,其值取为——和——两者中的较大值。
9. 钢筋混凝土大小偏心受拉构件的判断条件是:当轴向拉力作用在A s 合力点及A s ’合力点——时为大偏心受拉构件;当轴向拉力作用在A s 合力点及A s ’合力点——时为小偏心受拉构件。
10. 沿截面两侧均匀配置有纵筋的偏心受压构件其计算特点是要考虑——作用,其他与一般配筋的偏心受压构件相同。
11. 偏心距增大系数2012011()1400i le hh ηξξ=+式中:e i 为______;l 0/h 为_____;ξ1为 ______。
12. 受压构件的配筋率并未在公式的适用条件中作出限制,但其用钢量A s +A s ′最小为______,从经济角度而言一般不超过_____。
13. 根据偏心力作用的位置,将偏心受拉构件分为两类。
《混凝土结构基本原理》12模拟试题2试题及参考答案

题目部分,(卷面共有42题,113.0分,各大题标有题量和总分)一、填空题(12小题,共14.0分)1.(1分)当钢筋混凝土纯扭构件的受扭箍筋和受扭纵筋都配置过多时,构件的受扭破坏是由于裂缝间的混凝土被压碎而引起的,破坏时箍筋和纵筋应力均未达到屈服强度,破坏具有脆性性质。
这种破坏称为( )破坏。
2.(1分)有明显流幅的热轧钢筋,有两个强度指标,一个是屈服强度,另一个是( )。
3.(2分)钢筋与混凝土之间的粘结力包含三部分因素,即:混凝土中水泥凝胶体与钢筋表面的化学胶着力、钢筋与混凝土接触面间的摩擦力以及( )。
4.(1分)结构的可靠度是指结构在规定的时间内,规定的条件下,完成预定功能的( )。
5.(1分)轴心受压构件承载力设计表达式为00.9()c y sN N f f A ϕ'≤=+,其中ϕ表示长柱较相同条件下短柱承载力的降低程度,称其为( )。
6.(1分)配有螺旋钢箍的钢筋混凝土柱,由于能有效约束核心混凝土的横向变形,因而可提高混凝土的( ),并增大其变形能力。
7.(1分)比较适筋梁和超筋梁的破坏形态可以发现,两者的区别主要在于适筋梁的破坏始于( )而超筋梁的破坏则始于受压区混凝土的压碎。
8.(1分) 双筋矩形截面梁计算时,必须满足公式2sx a '≥。
当不满足此式时,则表明受压钢筋的位置离中和轴太近,以致在双筋粱发生破坏时,其应力达不到( )。
9.(2分)钢筋混凝土偏心受压构件,当纵向压力N 的( )较大,而受托钢筋s A ,配置不过多时会出现拉压破坏(大偏心受压破坏)。
10.(1分)混凝土构件裂缝开展宽度及变形验算属于正常使用极限状态的设计要求,验算时荷载采用标准值、准永久值,材料强度采用( )。
11.(1分)影响受弯构件斜截面受剪承载力的主要因素为:剪跨比λ、箍筋的配箍率和箍筋强度yv f 、( )以及纵筋配筋率。
12.(1分)提高钢筋混凝土受弯构件抗弯刚度的最有效措施是( )。
大偏压与小偏压解决方案比较

大偏压与小偏压解决方案比较偏心受压构件正截面承载力计算一、偏心受压构件正截面的破坏特征(一)破坏类型1、受拉破坏:当偏心距较大,且受拉钢筋配置得不太多时,发生的破坏属大偏压破坏。
这种破坏特点是受拉区、受压区的钢筋都能达到屈服,受压区的混凝土也能达到极限压应变,如图7—2a 所示。
2、受压破坏:当偏心距较小或很小时,或者虽然相对偏心距较大,但此时配置了很多的受拉钢筋时,发生的破坏属小偏压破坏。
这种破坏特点是,靠近纵向力那一端的钢筋能达到屈服,混凝土被压碎,而远离纵向力那一端的钢筋不管是受拉还是受压,一般情况下达不到屈服。
(二)界限破坏及大小偏心受压的分界1、界限破坏在大偏心受压破坏和小偏心受压破坏之间,从理论上考虑存在一种“界限破坏”状态;当受拉区的受拉钢筋达到屈服时,受压区边缘混凝土的压应变刚好达到极限压应变值。
这种特殊状态可作为区分大小偏压的界限。
二者本质区别在于受拉区的钢筋是否屈服。
2、大小偏心受压的分界由于大偏心受压与受弯构件的适筋梁破坏特征类同,因此,也可用相对受压区高度比值大小来判别。
当时,截面属于大偏压;当时,截面属于小偏压;当时,截面处于界限状态。
二、偏心受压构件正截面承载力计算(一)矩形截面非对称配筋构件正截面承载力1、基本计算公式及适用条件:(1)大偏压():,(7-3),(7-4)(7-5)注意式中各符号的含义。
公式的适用条件:(7-6)(7-7)界限情况下的:(7-8)当截面尺寸、配筋面积和材料强度为已知时,为定值,按式(7-8)确定。
(2)小偏压():(7-9)(7-10)式中根据实测结果可近似按下式计算:(7-11)注意:﹡基本公式中条件满足时,才能保证受压钢筋达到屈服。
当时,受压钢筋达不到屈服,其正截面的承载力按下式计算。
(7-12)为轴向压力作用点到受压纵向钢筋合力点的距离,计算中应计入偏心距增大系数。
﹡﹡矩形截面非对称配筋的小偏心受压构件,当N >f c bh时,尚应按下列公式验算:(7-13)(7-14)式中,——轴向压力作用点到受压区纵向钢筋合力点的距离;——纵向受压钢筋合力点到截面远边的距离;2、垂直于弯矩作用平面的受压承载力验算当轴向压力设计值N较大且弯矩作用平面内的偏心距较小时,若垂直于弯矩作用平面的长细比较大或边长较小时,则有可能由垂直于弯矩作用平面的轴心受压承载力起控制作用。
理工 土木工程考试

1计算单层工业厂房的自振周期时选取的计算简图采用哪些基本假设钢筋混凝土单层厂房结构形式常常采用排架结构。
排架结构由屋架或屋面梁、柱和基础组成。
通常,排架结构或屋面梁为铰接,而与其下基础为刚结。
根据单层厂房结构的实际工程构造,为了简化计算,确定计算简图时,做如下基本假定:(1)排架柱下端固接于基础顶面。
(2)排架柱上端与横梁(屋架与屋面梁的统称)铰接。
横梁通常为预制构件,在柱顶通过预埋钢板焊接连接或用螺栓连接在一起。
这种连接方式可传递水平力和坚向力,而不能可靠地传递弯矩,因此假定排架柱上端与横梁为铰接较符合实际情况。
(3)横梁为轴向变形可忽略不计的刚性连杆。
钢筋混凝土或预应力混凝土屋架在荷载作用下,其轴向变形很小,可忽略不计,视为刚性连杆,根据这一假定,挂架受理后,横梁两端柱的水平位移相等。
但需注意,若横梁为下弦刚度较小的组合式屋架或两铰拱,三铰拱屋架,则应考虑横梁轴向变形对排架柱内力的影响2试述纵波和横波的传播特点及对地面运动的影响。
纵波在传播过程中,其介质质点的振动方向与波的传播方向一致,是压缩波,传播速度快,周期较短,振幅较小;将使建筑物产生上下颠簸;横波在传播过程中,其介质质点的振动方向与波的传播方向垂直,是剪切波,传播速度比纵波要慢一些,周期较长,振幅较大;将使建筑物产生水平摇晃;3框架梁抗震设计时应遵循的原则?如何在设计中实现“强剪弱弯”什么是时程分析法振型分解法也叫做简谐振动法。
机械振动在介质中的传播称为机械波(zhimechanical wave)。
最简单的dao 机械波就是正弦波。
正弦波与电磁波既有相似之处又有不同之处,正弦波由机械振动产生,电磁波由电磁振荡产生;正弦波的传播需要特定的介质,在不同介质中的传播速度也不同,在真空中根本不能传播,而电磁波(例如光波)可以在真空中传播;正弦波可以是横波和纵波,但电磁波只能是横波;正弦波与电磁波的许多物理性质,如:折射、反射等是一致的,描述它们的物理量也是相同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏心受压构件的破坏状态与偏心距的大小有关,也与截面的配筋状况有关。
【1.小偏心破坏模式】
当偏心距较小时,可能会形成全截面受压,并会在一侧出现较大的压应力状态,此时的破坏表现为混凝土被压碎的破坏形式。
当偏心超出截面核心的范围,但仍然比较小(e<0.3h0)时,虽然截面一侧会出现拉力,但相对另一侧的压力来讲,拉力仍然比较小,破坏仍然是以受压区的混凝土被压碎为特征。
偏心逐渐增加,凝土受拉区的拉力会逐渐增大,并会致使该区域混凝土开裂,此时拉力由该区域所配置的钢筋来承担。
如果在受拉区配有较多的钢筋,在较大的弯矩作用下,就会出现受拉钢筋不能屈服但受压区的混凝土却被压碎的截面破坏特征。
这种破坏状况虽然偏心较大,但依然以受压区混凝土被压碎为破坏特征的,可以称之为相对的小偏心破坏模式。
【2.大偏心破坏模式】
对于相对小偏心的破坏形式,如果在受拉区配置有适当的钢筋,就会使得截面出现受拉区的钢筋可以屈服,同时受压区的混凝土压碎而破坏的特征,这种以钢筋屈服为特征的破坏模式称为大偏心破坏模式。
因此,从这一系列状态可以总结出偏心受压构件的破坏特征:
截面内没有受拉区,或受拉钢筋不出现受拉屈服,仅存在混凝土受压为破坏特征的构件,称为小偏心破坏。
小偏心受压构件不仅是偏心距较小的构件,当偏心距较大时也会由于配筋不当——受拉区配置的钢筋较多,导致该类破坏。
然而,如果受拉区的钢筋受拉屈服,同时受压区的混凝土被压碎,以此为破坏
特征的偏压构件,称为大偏心破坏构件——大偏心构件的偏心距较大,且配筋适当,以钢筋屈服为破坏特征。
破坏时截面ξ=x/h0≤ξb,破坏是延性的。
大小偏心受压构件破坏的不同点在于(?)
区别:
①大偏压的破坏特征是受拉钢筋首先达到屈服,然后受压钢筋也能达到屈服,最后由于受压区混凝土压碎而导致构件破坏,这种破坏形态在破坏前有明显的预兆,即大偏压的
②小偏压破坏是由受压区混凝土的压碎所引起的。
破坏时,压应力较大一侧的受压钢筋的压应力一般都能达到屈服强度,而另一侧的钢筋不论受拉还是受压,其应力一般都达不到屈服强度。
构件在破坏之前变形不会急剧增长,但受压区垂直裂缝不断发展,破坏。