大学物理(第四版)课后习题及答案-磁场
大学物理-磁学习题课和答案解析

2. 均匀磁场的磁感应强度 B 垂直于半径为r的圆面.今
4. 如图,在面电流线密度为 j 的均匀载流无限大平板附近, 有一载流为 I 半径为 R的半圆形刚性线圈,其线圈平面与载流 大平板垂直.线圈所受磁力矩为 ,受力 0 0 为 .
μ
5、(本题3分) 长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体 中有等值反向均匀电流I通过,其间充满磁导率为μ的均匀磁介 质.介质中离中心轴距离为r的某点处的磁场强度的大小H I =________________ ,磁感强度的大小B =__________ . I 2 r 2 r
B (A) B (B) √ R B x (D) O 圆筒 电流 O x
B
0 I (r R) 2r
(r R)
O B
R
x O (C) x O
B
(E)
B0
O
R
R
x
R
x
2、(本题3分)一匀强磁场,其磁感强度方向垂直于纸面(指 向如图),两带电粒子在该磁场中的运动轨迹如图所示,则 (A) 两粒子的电荷必然同号. (B) 粒子的电荷可以同号也可以异号. (C) 两粒子的动量大小必然不同. (D) 两粒子的运动周期必然不同.
(C) B dl B dl , BP BP 1 2
(D) B dl B dl , BP1 BP2
L1 L2
L1
L2
L1
L2
[ ]
5.有一矩形线圈 AOCD ,通以如图示方向的电流 I,将它置 于均匀磁场 B 中,B 的方向与X轴正方向一致,线圈平面与X 轴之间的夹角为 , 90 .若AO边在OY轴上,且线圈可 绕OY轴自由转动,则线圈 (A)作使 角减小的转动. (B)作使 角增大的转动. (C)不会发生转动. (D)如何转动尚不能判定.
大学物理(第四版)课后习题及答案 磁介质

题11.1:如图所示,一根长直同轴电缆,内、外导体间充满磁介质,磁介质的相对磁导率为)1(r r <μμ,导体的磁化率可以略去不计。
电缆沿轴向有稳恒电流I 通过,内外导体上电流的方向相反。
求(1)空间各区域内的磁感强度和磁化强度;(2)磁介质表面的磁化电流。
题11.2:在实验室,为了测试某种磁性材料的相对磁导率r μ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一螺绕环,设圆环的平均周长为0.01 m ,横截面积为24m 1005.0-⨯,线圈的匝数为200匝,当线圈通以0.01 A 的电流时测得穿过圆环横截面积的磁通为Wb 100.65-⨯,求此时该材料的相对磁导率r μ。
题11.3:一个截面为正方形的环形铁心,其磁导率为μ。
若在此环形铁心上绕有N 匝线圈,线圈中的电流为I ,设环的平均半径为r ,求此铁心的磁化强度。
题11.4:如图所示的电磁铁有许多C 型的硅钢片重叠而成,铁心外绕有N 匝载流线圈,硅钢片的相对磁导率为r μ,铁心的截面积为S ,空隙的宽度为b ,C 型铁心的平均周长为l 4,求空隙中磁感强度的值。
题11.5:一铁心螺绕环由表面绝缘的导线在铁环上密绕1000匝而成,环的中心线mm 500=L ,横截面积23mm 100.1⨯=s 。
若要在环内产生T 0.1=B 的磁感应强度,并由铁的H B -曲线查得此时铁的相对磁导率796r =μ。
导线中需要多大的电流?若在铁环上开一间隙(mm 0.2=d ),则导线中的电流又需多大?题11.1解:(1)取与电缆同轴的圆为积分路径,根据磁介质中的安培环路定理,有 对1R r <, 22f r R I I ππ=∑ 得 2112R Ir H π= 忽略导体的磁化(即导体相对磁导率1r =μ)有对12R r R >> I I =∑f得 r IH π22=填充的磁介质相对磁导率为r μ,有rIMπμ2)1(r2-=;rIBπμμ2r2=对23RrR>>)()(2222223fRrRRIII---=∑ππ得)(2)(22232233RRrrRIH--=π同样忽略导体得磁化,有对3Rr>0f=-=∑III得04=H04=M04=B(2)由rMIπ2s⋅=。
大学物理第四版下册课后题答案(供参考)

习题1111-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。
解:1q 在C 点产生的场强:11204ACq E i r πε=, 2q 在C 点产生的场强:22204BCq E j r πε=,∴C 点的电场强度:4412 2.710 1.810E E E i j =+=⨯+⨯;C 点的合场强:22412 3.2410VE E E m =+=⨯,方向如图: 1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。
解:∵棒长为2 3.12l r d m π=-=, ∴电荷线密度:911.010q C m l λ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。
解法1:利用微元积分:21cos 4O x Rd dE R λθθπε=⋅,∴2000cos 2sin 2444O dE d R R R ααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m -=⋅;解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯,则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V mR πε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆αi2cm O R x αα心O 点的场强。
大学物理(第四版)课后习题及答案 刚体

题4.1:一汽车发动机曲轴的转速在s 12内由13min r 102.1-⋅⨯均匀的增加到13min r 107.2-⋅⨯。
(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?题4.1解:(1)由于角速度ω =2πn (n 为单位时间内的转数),根据角加速度的定义td d ωα=,在匀变速转动中角加速度为()200s rad 1.132-⋅=-=-=tn n t πωωα(2)发动机曲轴转过的角度为()t n n t t t 0020221+=+=+=πωωαωθ在12 s 内曲轴转过的圈数为 圈390220=+==t n n N πθ 题4.2:某种电动机启动后转速随时间变化的关系为)1(0τωωte --=,式中10s rad 0.9-⋅=ω,s 0.2=τ。
求:(1)s 0.6=t 时的转速;(2)角加速度随时间变化的规律;(3)启动后s 0.6内转过的圈数。
题4.2解:(1)根据题意中转速随时间的变化关系,将t = 6.0 s 代入,即得100s 6.895.01--==⎪⎪⎭⎫⎝⎛-=ωωωτte(2)角加速度随时间变化的规律为220s 5.4d d ---===tte e t ττωωα(3)t = 6.0 s 时转过的角度为 rad 9.36d 1d 60060=⎪⎪⎭⎫⎝⎛-==⎰⎰-s tst e t τωωθ 则t = 6.0 s 时电动机转过的圈数圈87.52==πθN 题4.3:如图所示,一通风机的转动部分以初角速度0ω绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题4.3解:(1)通风机叶片所受的阻力矩为ωM C -=,由转动定律αM J =,可得叶片的角加速度为JC t ωωα-==d d (1) 根据初始条件对式(1)积分,有⎰⎰-=ωωω00d d d t t J C t由于C 和J 均为常量,得t JC e-=0ωω当角速度由0021ωω→时,转动所需的时间为2ln CJt = (2)根据初始条件对式(2)积分,有⎰⎰-=tt JC t e00d d ωθθ即CJ 20ωθ=在时间t 内所转过的圈数为 CJ N πωπθ420==题4.4:一燃气轮机在试车时,燃气作用在涡轮上的力矩为m N 1003.23⋅⨯,涡轮的转动惯量为2m kg 0.25⋅。
大学物理(第四版)课后习题及答案 静电场

题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32的上夸克和两个带e 31-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中子内的两个下夸克之间相距2.60⨯10-15 m 。
求它们之间的斥力。
题7.1解:由于夸克可视为经典点电荷,由库仑定律r r 220r 2210N 78.394141e e e F ===r e r q q πεπεF 与r e 方向相同表明它们之间为斥力。
题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。
证明电子的旋转频率满足42k20232me E εν=其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。
题7.2分析:根据题意将电子作为经典粒子处理。
电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。
点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有220241r e r v m πε= 由此出发命题可证。
证:由上述分析可得电子的动能为re mv E 202k 8121πε==电子旋转角速度为30224mr e πεω=由上述两式消去r ,得43k 20222324me E επων== 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。
(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。
题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。
为方便计算可以利用晶格的对称性求氯离子所受的合力。
解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故01=F (2)除了有缺陷的那条对角线外,其它铯离子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为N 1092.134920220212-⨯===ae rq q F πεπε2F 方向如图所示。
4大学物理习题_稳恒磁场

稳恒磁场一、选择题1.一个半径为r 的半球面如右图放在均匀磁场中,通过半球面的磁通量为 (A )22r B π; (B )2r B π;(C )22cos r B πα; (D )2cos r B πα。
2.下列说法正确的是:(A )闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过; (B )闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必为零; (C )磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必为零;(D )磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度都不可能为零。
3.如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A )0=⋅⎰Ll d B,且环路上任意一点0=B 。
(B )0=⋅⎰Ll d B,且环路上任意一点0≠B 。
(C )0≠⋅⎰Ll d B ,且环路上任意一点0≠B 。
(D )0≠⋅⎰Ll d B,且环路上任意一点=B 常量。
4.图中有两根“无限长” 载流均为I 的直导线,有一回路L ,则正确的是(A )0=⋅⎰Ll d B,且环路上任意一点0=B ;(B )0=⋅⎰Ll d B,且环路上任意一点0≠B ;(C )0≠⋅⎰Ll d B,且环路上任意一点0≠B ;(D )0≠⋅⎰Ll d B,且环路上任意一点0=B 。
5.取一闭合积分回路L ,使三根载流导线穿过它所围成的面,现改变三根导线之间的相互间隔,但不越出积分回路,则:·LOI图(A )回路L 内的I ∑不变,L 上各点的B不变;(B )回路L 内的I ∑不变,L 上各点的B改变;(C )回路L 内的I ∑改变,L 上各点的B不变; (D )回路L 内的I ∑改变,L 上各点的B改变。
6.在球面上竖直和水平的两个载流圆线圈中,通有相等的电流I ,方向如图所示,则圆心处磁感应强度B的大小为(A )R I 0μ(B )R I20μ (C )RI 220μ(D )R I40μ7.一长直载流I 的导线,中部折成图示一个半径为R 的圆,则圆心的磁感应强度大小为 (A )R I 20μ;(B )RIπ20μ; (C )RIRIπ2200μμ+;(D )0。
大学物理第四版课后习题答案

大学物理第四版课后习题答案大学物理第四版课后习题答案大学物理是一门广受学生喜爱的学科,它涵盖了众多的知识点和概念,需要学生付出大量的努力来掌握。
而课后习题则是检验学生对所学知识的理解和掌握程度的重要方式之一。
然而,对于大多数学生来说,完成课后习题往往是一项具有挑战性的任务。
因此,有一本完整的课后习题答案对学生来说无疑是非常有帮助的。
在大学物理第四版中,课后习题是根据每一章节的内容设计的。
这些习题旨在帮助学生巩固所学的知识,并提供一些实际应用的练习。
然而,由于习题的难度和复杂性不同,学生在解答时可能会遇到一些困难。
因此,拥有一本详细的习题答案可以帮助他们更好地理解和解决问题。
对于大学物理第四版的课后习题,以下是一些可能的答案和解决方法:1. 机械振动和波动习题:一个质点以振幅为0.2m的简谐运动在频率为5Hz的弹簧上进行,求其最大速度和最大加速度。
答案:根据简谐运动的公式,最大速度v_max = Aω,其中A为振幅,ω为角频率。
最大加速度a_max = Aω²。
代入数据,可得到v_max = 0.2m × 2π × 5Hz ≈ 6.28m/s,a_max = 0.2m × (2π × 5Hz)² ≈ 62.8m/s²。
2. 电磁场和电磁波习题:一个半径为0.1m的圆形线圈中通有电流,求该线圈在中心处产生的磁场强度。
答案:根据安培环路定理,磁场强度B = μ₀I/(2πr),其中μ₀为真空中的磁导率,I为电流,r为距离。
代入数据,可得到B = (4π × 10⁻⁷T·m/A) × I/(2π × 0.1m) ≈ 2 × 10⁻⁵T。
3. 热力学习题:一个理想气体从初始状态(P₁,V₁,T₁)经历了一个等温过程,最终达到状态(P₂,V₂,T₁),求气体对外做功。
答案:由于等温过程中气体的温度保持不变,根据理想气体状态方程PV = nRT,可得到P₁V₁ = P₂V₂。
《大学物理》习题册题目及答案第12单元稳恒电流的磁场

第12单元 稳恒电流的磁场 第七章 静电场和恒定磁场的性质(三)磁感应强度序号序号 学号学号 姓名姓名 专业、班级专业、班级一 选择题[ C ]1.一磁场的磁感应强度为B ai bj ck =++(T ),则通过一半径为R ,开口向z 正方向的半球壳表面的磁通量的大小是:向的半球壳表面的磁通量的大小是: (A) Wb 2a R p(B) Wb 2b R p (C) Wb 2c R p (D) Wb 2abc R p[ B ]2. ]2. 若要使半径为若要使半径为4×103-m 的裸铜线表面的磁感应强度为7.07.0××105- T T,则铜线中需,则铜线中需要通过的电流为要通过的电流为((μ0=4π×107-T ·m ·A 1-)(A) 0.14A (B) 1.4A (C) 14A (D) 28A[ B ]3. [ B ]3. 一载有电流一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r)(R=2r),,两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小R B 和r B 应满足: (A) R B =2r B(B) R B =rB (C) 2R B =r B (D) R B R=4r B[ D ]4.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感应强度B 沿图中闭合路径L 的积分l B d ×ò等于等于(A)I 0m(B)I 031m (C) I041m(D)I032m[ D ]5. [ D ]5. 有一由有一由N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场外磁场 B 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩mM(A) 2/32IB Na (B) 4/32IB Na (C) 0260sin 3IB Na (D) 0abcdI L1201I 2I 1R 2R二 填空题1.1.一无限长载流直导线,通有电流一无限长载流直导线,通有电流I ,弯成如图形状,设各线段皆在纸面内,则P 点磁感应强度强度 B B 的大小为aIp m 830。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题题10.1:如图所示,两根长直导线互相平行地放置,导线内电流大小相等,均为I = 10 A ,方向相同,如图所示,求图中M 、N 两点的磁感强度B 的大小和方向(图中r 0 = 0.020 m )。
题10.2:已知地球北极地磁场磁感强度B 的大小为6.0105 T 。
如设想此地磁场是由地球赤道上一圆电流所激发的(如图所示),此电流有多大?流向如何?题10.3:如图所示,载流导线在平面内分布,电流为I ,它在点O 的磁感强度为多少?题10.4:如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单层线圈覆盖住半个球面,设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的磁感强度。
题10.5:实验中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图所示,一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同,试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场。
(提示:如以两线圈中心为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为x B d d = 0;0d d 22 xB )题10.6:如图所示,载流长直导线的电流为I,试求通过矩形面积的磁通量。
题10.7:如图所示,在磁感强度为B的均匀磁场中,有一半径为R的半球面,B与半球面轴线的夹角为 ,求通过该半球面的磁通量。
题10.8:已知10 mm2裸铜线允许通过50 A电流而不会使导线过热。
电流在导线横截面上均匀分布。
求:(1)导线内、外磁感强度的分布;(2)导线表面的磁感强度。
题10.9:有一同轴电缆,其尺寸如图所示,两导体中的电流均为I,但电流的流向相反,导体的磁性可不考虑。
试计算以下各处的磁感强度:(1)r<R1;(2)R1<r<R2;(3)R2<r<R3;(4)r>R3。
画出B-r图线。
题10.10:如图所示。
N匝线圈均匀密绕在截面为长方形的中空骨架上。
求通入电流I后,环内外磁场的分布。
题10.11:设有两无限大平行载流平面,它们的电流密度均为j,电流流向相反,如图所示,求:(1)两载流平面之间的磁感强度;(2)两面之外空间的磁感强度。
题10.12:测定离子质量的质谱仪如图所示,离子源S产生质量为m,电荷为q的离子,离子的初速很小,可看作是静止的,经电势差U加速后离子进入磁感强度为B的均匀磁场,并沿一半圆形轨道到达离入口处距离为x 的感光底片上,试证明该离子的质量为228x Uq B m =题10.13:已知地面上空某处地磁场的磁感强度B = 0.4×10-4 T ,方向向北。
若宇宙射线中有一速率17s m 105.0-⋅⨯=v 的质子,垂直地通过该处。
如图所示,求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较。
题10.14:在一个显像管的电子束中,电子有eV 101.24⨯的能量,这个显像管安放的位置使电子水平地由南向北运动。
地球磁场的垂直分量5105.5-⊥⨯=B T ,并且方向向下,求:(1)电子束偏转方向;(2)电子束在显像管内通过20 cm 到达屏面时光点的偏转间距。
题10.15:如图所示,设有一质量为m e 的电子射入磁感强度为B 的均匀磁场中,当它位于点M 时,具有与磁场方向成α角的速度v ,它沿螺旋线运动一周到达点N ,试证M 、N 两点间的距离为eBαv m MN cos π2e =题10.16:利用霍耳元件可以测量磁场的磁感强度,设一霍耳元件用金属材料制成,其厚度为0.15mm ,载流子数密度为1.0×1024 m —3。
将霍耳元件放入待测磁场中,测得霍耳电压为42V μ,电流为10 mA 。
求此时待测磁场的磁感强度。
题10.17:试证明霍耳电场强度与稳恒电场强度之比ρne B E E //C H =这里ρ为材料电阻率,n 为载流子的数密度。
题10.18:载流子浓度是半导体材料的重要参数,工艺上通过控制三价或五价掺杂原子的浓度,来控制p 型或n 型半导体的载流子浓度,利用霍耳效应可以测量载流子的浓度和类型,如图所示一块半导体材料样品,均匀磁场垂直于样品表面,样品中通过的电流为I ,现测得霍耳电压为U H ,证明样品载流子浓度为n =HedU IB题10.19:一通有电流为I 的导线,弯成如图所示的形状,放在磁感强度为B 的均匀磁场中,B 的方向垂直纸面向里,求此导线受到的安培力为多少?题10.20:一直流变电站将电压为500 kV 的直流电,通过两条截面不计的平行输电线输向远方,已知两输电导线间单位长度的电容为111103.0--⋅⨯m F ,若导线间的静电力与安培力正好抵消,求:(1)通过输电线的电流;(2)输送的功率。
题10.21:将一电流均匀分布的无限大载流平面放入磁感强度为B 0的均匀磁场中,电流方向与磁场垂直,放入后,平面两侧磁场的磁感强度分别为B 1和B 2(图),求该载流平面上单位面积所受的磁场力的大小和方向。
题10.22:在直径为1.0 cm 的铜棒上,切割下一个圆盘,设想这个圆盘的厚度只有一个原子线度那么大,这样在圆盘上约有6.2⨯1014个铜原子,每个铜原子有27个电子,每个电子的自旋磁矩为224e m A 109.3⋅⨯=-μ,我们假设所有电子的自旋磁矩方向都相同,且平行于铜棒的轴线,求:(1)圆盘的磁矩;(2)如这磁矩是由圆盘上的电流产生的,那么圆盘边缘上需要有多大的电流。
题10.23:通有电流I 1 = 50 A 的无限长直导线,放在如图所示的弧形线圈的轴线上,线圈中的电流I 2 = 20 A ,线圈高h = 7R /3。
求作用在线圈上的力。
题10.24:如图所示,在一通有电流I 的长直导线附近,有一半径为R ,质量为m 的细小线圈,细小线圈可绕通过其中心与直导线平行的轴转动,直导线与细小线圈中心相距为d ,设d >>R ,通过小线圈的电流为I '。
若开始时线圈是静止的,它的正法线矢量n e 的方向与纸面法线ne '的方向成0θ角。
问线圈平面转至与屏幕面重叠时,其角速度的值为多大?题10.25:如图所示,电阻率为ρ的金属圆环,其内外半径分别为R 1和R 2,厚度为d 。
圆环放入磁感强度为α的均匀磁场中,B 的方向与圆环平面垂直,将圆环内外边缘分别接在如图所示的电动势为ε的电源两极,圆环可绕通过环心垂直环面的轴转动,求圆环所受的磁力矩。
题10.26:如图所示,半径为R 的圆片均匀带电,电荷面密度为σ,令该圆片以角速度ω绕通过其中心且垂直于圆平面的轴旋转。
求轴线上距圆片中心为x 处的点P 的磁感强度和旋转圆片的磁矩。
题10.27:如图所示是一种正在研究中的电磁轨道炮的原理图。
该装置可用于发射速度高达10km.s -1的炮弹,炮弹置于两条平行轨道之间与轨道相接触,轨道是半径为r 的圆柱形导体,轨道间距为d 。
炮弹沿轨道可以自由滑动。
恒流电源ε、炮弹和轨道构成一闭合回路,回路中电流为I 。
(1)证明作用在炮弹上的磁场力为rrd I μF +=ln)π(2120 (2)假设I = 4 500 kA ,d = 120 mm ,r = 6.7 cm ,炮弹从静止起经过一段路程L = 4.0 m 加速后的速度为多大?(设炮弹质量m = 10.0 kg )习 题 解 答题10.1解:距离无限长直载流导线为r 处的磁感强度RIμB B π2021== 磁感强度1B 和2B 的方向可以根据右手定则判定。
根据磁场叠加原理B = B 1+B 2,考虑到磁场的对称性,点M 的磁感强度00021M π2π2r Iμr I μB B B -=-= = 0 点N 的磁感强度T100122π24πcos )(40021N -⨯=⋅=+=. r I μB B B由右手定则可知N B 的方向沿水平向左。
题10.2解:设赤道电流为I ,则圆电流轴线上北极点的磁感强度RI μR R IR μB /24)(20232220=+=因此赤道上的等效圆电流为A 107312490⨯==.μRBI 由于在地球内部,地磁场由南极指向北极,根据右手螺旋法则可以判断赤道圆电流应该是由西向东流,与地球自转方向一致。
题10.3解:将载流导线看作圆电流和长直电流,由叠加原理可得RIμR I μB π22000-=0B 的方向垂直屏幕向里。
题10.4解:现将半球面分割为无数薄圆盘片,则任一薄圆盘片均可等效为一个圆电流,任一薄圆盘片中的电流为I θR RNN I I ⋅⋅==d π2d d 该圆电流在球心O 处激发的磁场为I y x y μB /d )(2d 232220+=球心O 处总的磁感强度B 为θR RN y x I y μ/d π2)(2B 2/0232220⋅+⋅=⎰π 由图可知θR y R x sin cos ==;θ,将它们代入上式,得RNIμR NI μB π/4d sin π02200==⎰θθ 磁感强度B 的方向由电流的流向根据右手定则确定。
题10.5证:取两线圈中心连线的中点为坐标原点O ,两线圈中心轴线为x 轴,在x 轴上任一点的磁感强度232220232220])2([2])2([2//x d/R IR μx d/R IR μB +++-+=则当 0}])2([)2(3)2()2(3{2d )(d 22220=+++--+-=x d/R x d/x d/R x d/IR μx x B0=++-++-+--=}])2([)2(4])2([)2(4{23d )(d 272222722222022//x d/R R x d/x d/R R x d/IR μx x B时,磁感强度在该点附近小区域内是均匀的,该小区域的磁场为均匀磁场。
由0d )(d =xx B ,解得0=x 由0d )(d 022==x x x B ,解得R d =这表明在d = R 时,中点(x = 0)附近区域的磁场可视为均匀磁场。
题10.6解:在矩形平面上取一矩形面元d S = I d x ,载流长直导线的磁场穿过该面元的磁通量为x l xIμΦd π2d d 0=⋅=S B 矩形平面的总磁通量⎰==ΦΦd ⎰=211200ln π2d π2d d d dl I μx l x I μ 题10.7解:由磁场的高斯定理⎰=⋅,0d S B 穿过半球面的磁感线全部穿过圆面S ,因此有αcos π2B R Φ=⋅=S B题10.8解:(1)围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有⎰∑=⋅=⋅I r B 0π2d μl B在导线内∑==<2222ππR Ir r R I I R r ,,因而20π2R r I μB =在导线外∑=>,I I R r ,因而rIμB π20=(2)在导线表面磁感强度连续,由3101.78/π A,50-⨯===S R I m ,得T 1065π2300-⨯==.RIμB 题10.9解:由安培环路定理⎰∑=⋅I 0d μl B ,得1R r < 2211πππ2r R Iμr B =⋅ 2101π2R IrμB =R 1<r <R 2 I r B 02π2μ=⋅B 2 =rμπ2I0 R 2<r <R 3r B π23⋅=]π22232220I )R π(R )R (r I ---[μ B 3 =22232230 π2R R rR r I --⋅μ r >R 3 r B π24⋅=μo (I I ) = 0B 4 = 0磁感强度B(r )的分布曲线如图。