功率因数校正电路解读
单相功率因数校正电路

【知识 | 写作答案】单相功率因数校正电路导语:单相功率因数校正电路是一种用来提高电力系统功率因数的装置。
本文将从什么是功率因数、为什么需要校正功率因数以及单相功率因数校正电路的原理和应用等方面展开,带您全面了解单相功率因数校正电路。
一、什么是功率因数?功率因数是指电路中有功功率与视在功率的比值,用cos(φ)表示,其中φ为电路中的相位角。
功率因数是一个描述电路所消耗或所提供的有效功率与总功率之间比值的重要参数。
当功率因数为1时,电路所消耗的有功功率与所提供的总功率完全一致,电路运行高效。
而当功率因数小于1时,电网损耗加大,效率降低,造成能源浪费。
二、为什么需要校正功率因数?校正功率因数的重要性在于提高电力系统的效率和可靠性。
电力系统中功率因数低不仅会导致能源浪费,还会引起电网电流过大、线路和设备过载、线损加大等问题。
功率因数低还会导致电动机效率下降,影响电气设备的寿命。
对于电力系统来说,校正功率因数是一项必不可少的工作。
三、单相功率因数校正电路的原理单相功率因数校正电路采用了电子电路技术,通过合理的电路设计和控制方法来调整电路的功率因数。
其基本原理是通过添加合适的电路,实现对电流和电压的相位调整,从而使得电路的功率因数接近于1。
单相功率因数校正电路的核心部件是功率因数校正电容器,它根据电路的工作情况来调整电流和电压的相位关系。
通过合理选择和调整校正电容器的参数,可以精确校正功率因数,提高电路的能耗效率。
四、单相功率因数校正电路的应用单相功率因数校正电路广泛应用于家庭电器、办公场所、商业设施、工厂厂房等各类电力系统。
在这些场合中,电器设备常常工作在不同负载条件下,功率因数波动较大。
通过使用单相功率因数校正电路,可以有效地提高电力系统的功率因数,减少能源浪费,提高设备的效率和寿命。
结语:单相功率因数校正电路是一种提高电力系统效率和可靠性的重要装置。
本文从功率因数的概念入手,解释了为什么需要校正功率因数,并介绍了单相功率因数校正电路的原理和应用。
功率因数校正电路PFC电路图

功率因数校正电路PFC电路图功率因数校正电路PFC电路图图2为图1中功率因数校正电路(PFC)的简化电路。
它对图1的输入交流电压进行整流和调节。
该PFC 电路包括浪涌电流抑制电路,全波整流桥,滤波电路,扼流电感L1,PFC集成块(N1),场效应晶体管M OSFET(Q1),输出滤波和反馈网络以及由若干个电阻、电容及二极管组成的网络。
该PFC电路把220V/ 50Hz交流电压变成DC电压,其线路输入功率因数接近于1。
桥式整流电路的输出从X6处接到控制电路,经变换后为其提供12VDC电压。
经滤波后的直流电压接到扼流电感L1,该电感和Q1(由芯片N1驱动)以及滤波电容C1一起把线路输入功率因数提高到接近于1。
PFC的应用:2kW有源功率因数校正电路设计时间:2010-03-18 950次阅读【网友评论0条我要评论】收藏1 引言目前家用电器的功率前级多采用二极管全桥整流方式,这会造成电网谐波污染,功率因数下降,无功分量主要为高次谐波,其中三次谐波幅度约为基波幅度的95%,五次谐波幅度约为基波幅度的70%.七次谐波幅度约为基波幅度的45%。
高次谐波会对电网造成危害,使用电设备的输入端功率因数下降,而且产生很强的电磁干扰(EMI),对电网和其他用电设备的安全运行造成潜在危害。
有源功率因数校正电路(Active Power Factor Corrector,APFC)可将电源的输入电流变换为与输入市电同相位的正弦波,从而提高电器设备的功率因数,减少对电网的谐波污染。
理论上,降压式(Buck)、升压式(Boost)、升/降压式(Boost-Buck)以及反激式(Flyback)等变换器拓扑都可作为APFC的主电路。
其中,Boost APFC是简单电流型控制,功率因数值高,总谐波失真小,效率高,但输出电压高于输入电压,适用于75~2 000 W功率电源,应用广泛。
因为升压式APFC的电感电流连续,储能电感可作为滤波器抑制射频干扰(RFI)和EMI噪声,并防止电网对主电路的高频瞬态冲击.电路有升压斩波电路,输出电压大于输入电压峰值,电源允许的输入电压范围扩大,通常可达90~270 V,提高电源的适应性,且升压式APFC控制简单,适用的功率范围宽。
功率因数校正电路

则在一个开关工作周期中,经过占空比调制输出信号的平均值就与控 制信号的平均值相等,则下式成立:
这样, 在一个工作周期中实时的调制输出信号的有效值,就可得到输 出有效值的表达式:
单周期buck变换器
单周期PFC控制
100k
R4 LM324
100k
R3 100k R7
X4
7 V10
1.李慧."基于数字峰值电流控制的PFC电路设计"浙江大学. 2.张祥东,钱峰."单周期控制连续导电模式 PFC 原理和应用".上海华东理工大学自动化 研究所. 3.Keyue M. Smedley and Slobodan Cuk. "ONE-CYCLE CONTROL OF SWITCHING CONVERTERS".IEEE 4."功率因数校正手册".安美森半导体.2004.8 5.盛健健."单周期控制CCMPFC芯片的设计".电子科技大学
*D
1 T
0
Vm (t)dt
张祥东,钱峰。"单周期控制连续导电模式 PFC 原理和应用".上海华东理工大学自动化研究所
得到控制方程组:
V1(t) Vm Iin * Rs
DT
V2(t )
1 T
0
Vm (t)dt
只要上面两式相等就可以确定占空比D。由上式可以看出控制部分只 要有一个加法器、一个积分器、一个比较器即可实现控制大大简化了 控制电路。
谐波的存在会使连接在同一电源系统中的相关的电子设备 在正常工作中产生一些不必要的干扰,而出现错误的工作 状态。
功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是目前比较流行的一个专业术语。
PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。
PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。
线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。
前一个原因人们是比较熟悉的。
而后者在电工学等书籍中却从未涉及。
功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。
对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。
由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。
这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。
为提高负载功率因数,往往采取补偿措施。
最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。
PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。
长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。
由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。
滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。
根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。
什么是功率因数校正电路如何设计一个功率因数校正电路

什么是功率因数校正电路如何设计一个功率因数校正电路功率因数校正电路的设计是为了改善电力系统中的功率因数,通过使功率因数接近1来提高电力系统的效率。
本文将介绍功率因数校正电路的概念和原理,并提供一个设计功率因数校正电路的步骤。
概述功率因数是衡量电路中有功功率与视在功率之比的指标。
功率因数越接近1,表示电路中的有用功率越高,无用功率(如无功功率)越低。
而功率因数校正电路的作用,则是通过改变电路中的电流波形,以提高功率因数的数值。
功率因数校正电路的设计步骤如下:1. 确定校正电路的类型在设计功率因数校正电路之前,需要明确校正电路的类型。
常见的功率因数校正电路有无源LC滤波器和有源电路两种。
无源LC滤波器主要由电感和电容组成,通过调整滤波器中的元件数值和结构来实现功率因数的校正。
有源电路则需借助电子元器件如运放、晶体管等来完成。
2. 计算电路参数根据所选类型的校正电路,需要计算电路参数。
对于无源LC滤波器,需要计算所需的电感和电容数值,以及它们的布局和连接方式。
而对于有源电路,则需计算运放或晶体管的增益和频率响应等参数。
3. 选择合适的元件根据所计算得到的电路参数,选择合适的电感、电容和其他元件。
这些元件的质量、容值和频率响应等都会直接影响校正电路的性能和效果。
4. 电路的连接和布局在连接和布局电路时,要遵循电路设计的原则,如尽量缩短信号路径和降低电路的损耗等。
对于有源电路,要保证电子元器件的正确连接,并注意电路的绝缘和屏蔽。
5. 进行测试和优化完成电路的连接后,需要进行测试和优化。
通过使用示波器等测试设备,检测电路的功率因数和性能,并根据测试结果对电路进行调整和优化。
总结功率因数校正电路的设计是为了提高电路的功率因数,并优化电力系统的效率。
通过选择合适的校正电路类型、计算得到电路参数、选择合适的元件、正确连接和布局电路,并进行测试和优化,可以设计出效果良好的功率因数校正电路。
以上是关于功率因数校正电路如何设计的简要介绍。
有源功率因数校正电路(APFC)分析

有源功率因数校正电路(APFC)
2. 功率因数
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
设基波电流i1落后Vi,相位差为α,如下图所示。
Vi 、Ii 波形
有源功率因数校正电路(APFC) AC-DC电路输入功率因数与谐波的关系: 定义总谐波畸变(THD):
I 2 2 I 2 3 I 2 4 .... I 2 n THD 100% I1
由此可见,大量应
用整流电路,要求电网 供给严重畸变的非正弦 电流,造成严重的后果, 谐波电流对电网有危害 作用,并且输入端功率 因数下降。
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
谐波电流对电网的危害 脉冲状的输入电流,含 有大量谐波。右图给出了输 入电流波形及电流谐波频谱 分析,其中电流的三次谐波 分量达77.5%,五次谐波分 量达50.3%,……总的谐波 分量(或称总谐波失真Total Harmonic Distortion,用 THD表示)为95.6%,输入 端功率因数仅有0.683,非常 的低。
输入电流波形及其谐波分量频谱分析
有源功率因数校正电路(APFC)
I 2 2 I 2 3 I 2 4 .... I 2 n THD 100% I1
对AC-DC电路输入端谐波电流的限制 为了减小AC-DC交流电路输入端谐波电流造成的噪 声和对电网产生的谐波“污染”,以保证电网供电质量, 提高电网的可靠性;同时也为了提高输入端功率因数, 已达到节能的效果;必须限制AC-DC电路的输入端谐 波电流分量。
有源功率因数校正电路(APFC)
有源功率因数校正电路(APFC)
1. 平均电流模式 2. 峰值电流模式
功率因数校正电路

功率因数校正电路功率因数校正电路是一种用于改善电力系统的功率因数的电路。
功率因数是衡量电路中有功功率与视在功率之比的指标,是一个无量纲的数值,通常用cosφ表示。
功率因数的大小表示了电路中有功功率(真实能量转换)和视在功率(总能量传输)的比例。
在电力系统中,有功功率是能够有效利用的功率,而视在功率则是电力供给的总功率。
在实际电力系统中,当负载处于感性(电感性)或容性(电容性)状态时,由于电感或电容的特性,电流与电压之间的相位差会导致功率因数的变化。
当负载处于感性状态时,电流会滞后于电压,功率因数为正。
当负载处于容性状态时,电流会超前于电压,功率因数为负。
一种常见的功率因数校正电路是利用谐振器的原理来实现的。
该电路由一个串联电容和一个并联电感组成。
在感性负载的情况下,电感产生的感抗可以与电容的电抗相消,从而实现相位校正。
同理,在容性负载的情况下,电容产生的电抗可以与电感的感抗相消。
另一种常见的功率因数校正电路是利用电路中的控制器进行相位校正。
该电路通过调节负载的电流和电压之间的相位差,实现功率因数的改善。
通常,控制器使用一种叫做PWM(脉宽调制)的技术来控制负载电流的相位。
PWM技术通过改变电压波形的占空比来调整电流与电压之间的相位差,从而改变功率因数。
此外,还有一些其他的功率因数校正电路设计方法,例如并联无功补偿电容器、有源功率因数校正器等。
这些方法都通过改变电路的特性,调整电流和电压之间的相位差,来实现功率因数的校正。
总的来说,功率因数校正电路是一种用于改善电力系统的功率因数的电路。
该电路可以通过改变电路的特性,调整电流和电压之间的相位差,实现功率因数的校正,提高系统的能效和电力质量。
第8章 功率因数校正电路

电压模式控制方法: 电压模式控制方法:
而电压模式是与振荡电路产生的固定三角波状电压 斜波比较, 斜波比较,
电流模式控制是一种固定时钟开启、 电流模式控制是一种固定时钟开启、峰 值电流关断的控制方法。 值电流关断的控制方法。
(峰值)电流模式控制不是用电压误差 峰值) 信号直接控制PWM脉冲宽度,而是直接 脉冲宽度,而是直接 信号直接控制 脉冲宽度 控制峰值输出侧的电感电流大小 峰值输出侧的电感电流大小, 控制峰值输出侧的电感电流大小,然后 间接地控制PWM脉冲宽度。 脉冲宽度。 间接地控制 脉冲宽度
将 乘 法 器 的 输 出 作 为 电 流 环 的 给 定 信 号 I s∗, 才 能 保 证 被 控 制 的 电 感 电 流 iL 与 电 压 波 形 ud 一 致 。 I s∗的 幅 值 与 输 出 电 压 u C同 给 定 电
∗ 压 U c 的 差 值 有 关 , 也 与 ud的 幅 值 有 关 。 L1中 的 电 流 检 测 信 号 i F
中的电流有连续和断续两种工作模式, 由于升压电感L1中的电流有连续和断续两种工作模式,因此 可以得到电流环中的PWM信号即开关V 可以得到电流环中的PWM信号即开关V的驱动信号有两种产生 PWM信号即开关 方式: 方式: 一种是电感电流临界连续的控制方式( 一种是电感电流临界连续的控制方式(峰值电流控制方式); 另一种是电感电流连续的控制方式(平均值控制方式) 。 )
6.1.3 有源功率因数校正的电路结构
(a) 双级式
(b) 单级式
图6-5 有源功率因数校正的电路结构
L1 ii ui EMI 滤滤滤 + ud - iF
电流给定
VD Uo V C uC
C1
PWM 形形形形
采采 滤滤
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L
D
S1
C
当电感电流超过指令, 积分器反向积分,输出 电压变小,脉宽变窄; 相反,脉宽变宽 在一个控制周期中开关 动作时刻取决于误差信 号的积分结果,所以, 称为平均值控制
Vs
Vo
R K
C
PI c vref comp
西南交通大学
CCM控制----2) 平均值电流控制仿真
西南交通大学
PWM Phase shift
并联
VPEC
Boost
Dither
西南交通大学
两级级联
西南交通大学
单级1
西南交通大学
第2节 升压型 Boost PFC电路
V, I
V I
2Vin sin t 2 I in sin tຫໍສະໝຸດ PiniD , vo
P in Vin I in (1 cos2t )
西南交通大学
CCM控制----1) 峰值电流控制
电网电压被当作电流参 考指令。电感电流与电 流指令比较。当电感电 Vs 流峰值小于指令值,开 关闭合,电感电流增大; 当电感电流峰值大于指 令值,开关断开,电感 C 电流减小。电感电流的 峰值包络线是正弦
L
D
S1
C
Vo
R comp C K
vref
西南交通大学
当输出电压变化时,等效参 考电流指令的大小发生变化, 开关时刻也相应变化。当输 出电压↓→误差电压↑→电流 指令变大→电感电流增大→ 输出电压↑ 由于电流跟踪方式不能实现恒频PWM,这会产生 连续谐波谱,不利于滤波。需要增加一个定频控制 环节。即将比较器的输出与一个锯齿波相比较,再 去控制开关的导通与关断
在每个斩波周期电感电流平均值为
iLd VS D VS DT (ton t d ) ( DT ) 2T 2L Vo Vs iLp
iLp L
VS D 2T VS VS D 2T Vo (1 ) 2L Vo Vs 2 L Vo Vs VO D 2T VS / VO sin ti ( )K 2L 1 VS / VO 1 sin ti
2 THD I 2 I (2 1 100 % 1 k % 1) d 1 100
采用电容滤波时交流侧电流的波形和频谱图:
电流中含有丰富的奇次谐波
西南交通大学
交流侧电压、电流的波形与功率因数的关系:
kd 1 k 1
kd 1 k 1
kd 1 k 1
kd 1 k 1
kd 电流畸变系数
总谐波失真(THD) 电流总有效值I
I
k 基波电流相位移系数
2 I (n) i 1 n
西南交通大学
总谐波电流有效值In I n I 2 I (21)
THD I n I (1) 100% I 2 I (2 % 1) I (1) 100
电流畸变系数 kd 与THD关系
Pin iDVo Vin I in iD (1 cos 2t ) Vo Vin I in vo,rip sin(2t ) 2VoC
西南交通大学
vo,rip
交流侧电压、电流为正弦,功率以2倍网频脉动。 当负载电压不变,交流分量全部流经电容。输出 电压的纹波可由电容电流积分得出
西南交通大学
CCM控制----1) 峰值电流控制仿真
西南交通大学
也可以采用一个RS触发器,在每个周期开始时导 通,比较器输出使S断开,实现恒频控制
comp R S
Q
clock
CCM控制----2) 平均值电流控制 电路如图示。电感电流与电流参考进行比较,结 果送PI调节器。PI输出电压与锯齿电压比较得到 开关通断信号
西南交通大学
上式中
K VO D2T 2L
0.3 0.5 0.7 0.9
VS / VO 1
在不同的α下线电流的波形如图
Boost电路中,电感电流是电源电流,所以能够直 接控制电源电流波形。开关在低电位端,控制容 易。当在DCM方式下时,电路具有自然的PFC能力 而不需要复杂的控制。PFC效果与α有关。VO越高 电流越正弦
电力电子技术 Power Electronics
功率因数校正电路
西南交通大学
第 1节
功率因数(PF)的定义与PFC电路的结构
PF =有功功率/视在功率
设交流电压为正弦,电流非正弦,则只有基波电流产 生有功功率,谐波与不产生有功功率
PF U 2 I 2(1) cos U2I2 I 2(1) I2 cos kd k
-
Lm
D
i1
T
S
T
输入端的电流是:
D 2T iin Vinm sin ti 2L
西南交通大学
L
D1
S1
Vs
CB
S2
D2
Co
常 (恒)频断续电流模式 (DCM)PFC控制 特点:导通时间保持为常数。开关频率远大于交 流电源频率。电感电流不连续
ton t d
西南交通大学
在一个开关周期中电感电流的平均值
iLd iLd (to n) iLd (td ) iLp (ton td ) / 2T
由于开关频率远高于交流电源频率
单相PFC的结构:
AC
单端 PFC
DC DC
DC
AC
隔离型 PFC
DC
可以精确调节输出电压
不能精确调节输出电压
CB DC
AC
PFC和 DC/DC组合
可以精确调节输出电压
西南交通大学
单相PFC 两级级联 Boost Buck+ 单级1 Flyback Iso. Boost shower 单级2 Bifred Bibred Resonant
iLp 1 L
t on
0
u L (t ) dt
Vs , m L
sin ti ton
即电感电流峰值的包络线为正弦
sin ti 是第i个开关周期中的正弦中值(或端点值)
每个开关周期中电感电流的平均值 (与td有关)
西南交通大学
电感电流衰减到零所需时间
VS VS DT td ton VO VS VO VS VO VS
其它具有自然PFC能力的变换器拓扑
DCM Sepic电路
L
C1
D
CB
Vs
S1
L1
Vo
其工作波形如图。电感放电电流取决于C1上电压 的大小
西南交通大学
工作在DCM下的反激式变换器也具有自然的PFC能 力。但是在DCM方式下,反激式变换器的输出电压 与负载有关,电源的性能要受到影响
s + US